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Abstract— This paper investigates the set of admissible equi-
librium points of nonlinear dynamical systems affected by
parametric uncertainty. As it is well-known, determining this set
is a difficult problem since one should compute the solutions of
a system of nonlinear equations for all the admissible values of
the uncertainty, which typically amounts to an infinite number
of times. In order to address this problem, this paper proposes
a characterization of this set via convex optimization for the
case of polynomial nonlinearities and uncertainty constrained
in a polytope. Specifically, it is shown that an upper bound
of the smallest outer estimate with a freely selectable fixed
shape can be obtained by solving a linear matrix inequality
(LMI) problem built through the square matrix representation
(SMR). Then, a necessary and sufficient condition is provided
for establishing the tightness of the found upper bound. The
proposed methodology and its benefits are illustrated through
several numerical examples.

I. INTRODUCTION

It is well-known that analyzing and designing a control

system often requires the knowledge of the equilibrium

points of a nonlinear dynamical system. In fact, this knowl-

edge is exploited in various tasks, such as establishing the

stability of the steady states, their domains of attractions,

the input-output properties of the system when working in a

neighborhood of a steady state of interest, etc. See e.g. [1],

[2] and reference therein.

The determination of the equilibrium points amounts to

solving a system of nonlinear equations for a given math-

ematical model of a nonlinear dynamical system. However,

mathematical models of real nonlinear systems are almost

always affected by uncertainty. This is due, for example, to

the fact that the coefficients of the model (such as friction,

mass and stiffness in a mechanical systems) cannot be

measured exactly. Another reason is that these system often

present some variable components, such as potentiometers in

electric circuits, in order to allow one to vary some system

performance. As a consequence, a family of admissible

nonlinear systems has to be considered, and hence the

determination of the equilibrium points has to be repeated

for all admissible values of the uncertainty.

Clearly, it is generally undesirable, and often even infea-

sible, repeating the determination of the equilibrium points

for all admissible uncertainties. In fact, determining the

equilibrium points is a nontrivial problem even in the case of

nonlinear systems without uncertainty: this is either due to

the computational burden of symbolic tools or to the fact that
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numerical techniques do not guarantee to find all solutions.

Moreover, the set of admissible values of the uncertainty is

typically not finite, and considering a finite grid only could

easily miss key equilibrium points achievable by the system.

This paper proposes a characterization of the set of ad-

missible equilibrium points via convex optimization. Specif-

ically, nonlinear dynamical systems affected by parametric

uncertainty are considered in the case of polynomial non-

linearities and polynomial dependence on the uncertainty

constrained in a polytope. Hence, the problem of determining

the smallest outer estimate with a freely selectable fixed

shape is considered. This estimate is expressed as a sublevel

set of a given polynomial, and it is shown that an upper

bound of the optimal level can be obtained by solving

an eigenvalue problem (EVP), which belongs to the class

of convex optimization problems with LMI constraints [3].

This EVP is constructed by adopting the square matrix

representation (SMR) and by introducing a suitable expres-

sion of parameter-dependent polynomials and a parameter-

dependent polynomial multiplier whose degrees allow one to

regulate the conservatism of the found upper bound. More-

over, a necessary and sufficient condition for establishing

the tightness of the found upper bound is provided. The use

of the proposed methodology and its benefits are illustrated

through several numerical examples.

The paper is organized as follows. Section II provides

the problem formulation and some preliminaries about the

representation of polynomials. Section III describes the pro-

posed methodology. Section IV illustrate some numerical

examples. Lastly, Section V concludes the paper with some

final remarks.

Before proceeding it is useful mentioning that LMI tech-

niques have been proposed for solving systems of polynomial

equations, see for instance [4], [5] and references therein.

Also, it is worth mentioning that methodologies for the

study and design of uncertain nonlinear systems have been

proposed in the literature, mainly by assuming that the

system has an equilibrium point of interest that does not

change with the uncertainty. This is the case, for instance, of

[6], [7] that investigate robust stability in uncertain nonlinear

systems, and of [8], [9] that consider stability analysis and

synthesis in nonlinear switching systems.

II. PRELIMINARIES

A. Problem formulation

The notation used throughout the paper is as follows: ℕ,ℝ:

natural number set (including 0) and real number set; 0n:

origin of ℝn; ℝn
0 : ℝn ∖ {0n}; In: n×n identity matrix; A′:
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transpose of the vector/matrix A; A > 0 (A ≥ 0): symmetric

positive definite (semidefinite) matrix A; conv(S): convex

hull of the elements in the set S; vol(S): volume of the

set S; ∥x∥ =
√
x′x with x ∈ ℝ

n; xy = x
y1

1 ⋅ ⋅ ⋅xyn
n with

x, y ∈ ℝ
n; s.t.: subject to.

Let us consider the uncertain nonlinear system
{

ẋ = f(x, �)
� ∈ Θ

(1)

where x ∈ ℝ
n is the state, � ∈ ℝ

q is the time-invariant

uncertain vector, and Θ ⊂ ℝ
q is the set of admissible values

for �. It is supposed that Θ is a bounded convex polytope,

expressed as

Θ = conv
({

�(1), . . . , �(r)
})

(2)

where �(1), . . . , �(r) ∈ ℝ
q are given vectors, and conv(⋅)

denotes the convex hull. The function f(x, �) ∈ ℝ
n is a

vector polynomial (i.e., a vector of polynomials) in x and �,

and we denote with d1 the degree of f(x, �) in x for fixed

� and with d2 the degree in � for fixed x, i.e.

f(x, �) =
∑

i∈ℕ
n, i1+...+in≤d1

j∈ℕ
q, j1+...+jq≤d2

ci,jx
i�j (3)

for some vector coefficients ci,j ∈ ℝ
n. The set of admissible

equilibrium points of (1) is the set of equilibrium points that

this system can own for different values of � in Θ, and is

given by

ℰ = {x ∈ ℝ
n : f(x, �) = 0n for some � ∈ Θ} . (4)

The problem addressed in this paper consists of determin-

ing outer estimates of ℰ of the form

G(
) = {x ∈ ℝ
n : g(x) ≤ 
} (5)

where g(x) is a given polynomial of degree 2dg and 
 ∈ ℝ.

In particular, the problem consists of estimating the smallest

outer estimate of ℰ with fixed shape defined by g(x),
which is denoted by G(
∗) where 
∗ is the solution of the

optimization problem


∗ = inf

≥0


 s.t. ℰ ⊆ G(
). (6)

This problem will be addressed in Section III-A by provid-

ing an upper bound of 
∗ through a convex optimization

problem. Moreover, a necessary and sufficient condition for

establishing tightness of the found upper bound will be

provided in Section III-B.

B. SMR

Before proceeding we briefly introduce a key tool that

will be exploited in the next sections to derive the proposed

conditions. For x ∈ ℝ
n, let p(x) be a polynomial of degree

2d. Let x
{d}
pol ∈ ℝ

�(n,d) be a vector containing all monomials

of degree less than or equal to d in x, where �(n, d) is the

number of such monomials given by

�(n, d) =
(n+ d)!

n!d!
. (7)

Then, p(x) can be expressed via the square matrix represen-

tation (SMR) introduced in [10] as

p(x) = x
{d}′

pol (P + L(�)) x
{d}
pol (8)

where P = P ′ ∈ ℝ
�(n,d)×�(n,d) is a symmetric matrix such

that p(x) = x
{d}′

pol Px
{d}
pol , L(�) = L(�)′ ∈ ℝ

�(n,d)×�(n,d) is

a linear parametrization of the set

ℒ =
{

L = L′ : x
{d}′

pol Lx
{d}
pol = 0

}

, (9)

and � ∈ ℝ
�ℒ is a vector of free parameters, where ! is the

dimension of the linear subspace ℒ given by

�ℒ =
1

2
�(n,m)(�(n,m) + 1)− �(n, 2m). (10)

The matrices P and P +L(�) are referred to as SMR matrix

and complete SMR matrix, respectively, of p(x). The matrix

P is also known as Gram matrix of p(x).

Homogeneous polynomials can be represented with a more

compact SMR. Specifically, let ℎ(x) be a homogeneous

polynomial of degree 2d, and let x
{d}
ℎom ∈ ℝ

�(n−1,d) be a

vector containing all monomials of degree d in x. Then, ℎ(x)
can be expressed via the SMR as

ℎ(x) = x
{d}′

ℎom (H + L(�))x
{d}
ℎom (11)

where H and L(�) are defined analogously to the previous

case.

The SMR is useful because it allows one to investigate

positivity of polynomials. Indeed, one can establish whether

a polynomial is a sum of squares of polynomials (SOS) by

solving a convex optimization problem with linear matrix

inequalities (LMIs). Specifically, p(x) (resp., ℎ(x)) is SOS

if and only if there exists � such that

P + L(�) ≥ 0 (resp., H + L(�) ≥ 0) (12)

which is an LMI feasibility test since P (resp., H) is constant

and L(�) is a linear matrix function, see for instance [10].

LMI feasibility tests can be checked by solving a convex

optimization problem, see for instance [3]. See also [11],

[12] for details and algorithms about the SMR and SOS

polynomials.

In the sequel it will be assumed that the first entry of any

vector x
{d}
pol is 1, e.g.

x
{d}
pol = (1, x1, . . . , xn, x

2
1, . . . , x

d
n)

′. (13)

III. ESTIMATING THE SET OF ADMISSIBLE

EQUILIBRIUM POINTS

Here we address the computation of outer estimates with

fixed shape. Specifically, Section III-A considers the com-

putation of an upper bound of the smallest outer estimate

with fixed shape. Then, Section III-B provides a necessary

and sufficient condition for establishing the tightness of the

found upper bound.
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A. Upper Bound Computation

First of all, let us express a generic � in the set Θ as

� =

r
∑

i=1

�i�
(i) (14)

where � = (�1, . . . , �r)
′ is a vector in the simplex Φ given

by

Φ =

{

� ∈ ℝ
r :

r
∑

i=1

�i = 1, �i ≥ 0

}

. (15)

Let ci,j be the generic vector coefficient of f(x, �) in (3)

and let us define

ℎ(x, �) =
∑

i∈ℕ
n, i1+...+in≤d1

j∈ℕ
q , j1+...+jr≤d2

ci,jx
iajbd2−j1−...−jr (16)

where

a =

r
∑

i=1

�i�
(i), b =

r
∑

i=1

�i. (17)

It turns out that each entry of the function ℎ(x, �) ∈ ℝ
n

is a homogeneous polynomial in � of degree d2 for any

fixed x and a polynomial in x of degree d1 for any fixed �.

Moreover,

∀� ∈ Θ ∃� ∈ Φ : f(x, �) = ℎ(x, �)
∀� ∈ Φ ∃� ∈ Θ : ℎ(x, �) = f(x, �).

(18)

This implies that (1) can be rewritten as
{

ẋ = ℎ(x, �)
� ∈ Φ

(19)

and hence ℰ is given by

ℰ = {x ∈ ℝ
n : ℎ(x, �) = 0n for some � ∈ Φ} . (20)

Let us introduce the notation

sq(�) =
(

�21, . . . , �
2
r

)′
(21)

and

Δ(A, b, c) = (b⊗ c)
′
A (b⊗ c) (22)

where b and c are vectors and A is a matrix of suitable

dimension. Let us define the integers

d3 =

⌈

d1 + dx

2

⌉

− dg

d4 = d2 + d�

(23)

for some dx, d� ∈ ℕ (with dx such that d3 ≥ 0). Let us

define the polynomial

u(x, �) = U
(

x
{dx}
pol ⊗ �

{d�}
ℎom

)

(24)

where U ∈ ℝ
n×�(n,dx)�(r−1,d�) is a variable matrix to be

determined. Let H(U) = H(U)′, V = V ′ and W = W ′

be any symmetric matrix functions of suitable dimension

satisfying

u(x, sq(�))′ℎ(x, sq(�)) = Δ
(

H(U), x
{d3}
pol , �

{d4}
ℎom

)

a(x, sq(�))g(x) = Δ
(

V, x
{d3}
pol , �

{d4}
ℎom

)

a(x, sq(�)) = Δ
(

W,x
{d3}
pol , �

{d4}
ℎom

)

(25)

where

a(x, �) =
(

1 + ∥x∥2
)d3

(

r
∑

i=1

�i

)d4

. (26)

Lastly, let N(�) be any linear parametrization of the linear

subspace

N =
{

N = N ′ : Δ
(

N, x
{d3}
pol , �

{d4}
ℎom

)

= 0
}

(27)

where � is a free vector of suitable dimension, and let us

define the notation

jrp(�) =

(√
�1, . . . ,

√
�r
)′

r
∑

i=1

√

�i

. (28)

The following result provides an upper bound of 
∗ in (6)

via a convex optimization problem.

Theorem 1: Let g(x) ∈ Pn,2dg
be given. Define the

optimization problem


# = inf

,U,�


 s.t. H(U)− V + 
W +N(�) > 0. (29)

Then, 
# ≥ 
∗.

Proof. Let us suppose that the LMI in (29) is fulfilled for

some 
̄, Ū , �̄. Let us consider any x̄ in ℰ , and let �̄ be a

vector of admissible uncertain parameters corresponding to

x̄, i.e. such that
{

ℎ(x̄, �̄) = 0n
�̄ ∈ Φ.

Since �̄i ≥ 0 for all i = 1, . . . , r, we can define the vector

 ̄ = jrp(�̄).

Let us pre- and post- multiply the LMI by
(

x̄
{d3}
pol ⊗  ̄

{d4}
ℎom

)′

and x̄
{d3}
pol ⊗  ̄

{d4}
ℎom , respectively. It follows that

0 < Δ
(

H(Ū)− V + 
̄W +N(�̄), x̄
{d3}
pol ,  ̄

{d4}
ℎom

)

= ū(x̄, sq( ̄))′ℎ(x̄, sq( ̄))− a(x̄, sq( ̄))g(x̄)

+
̄a(x̄, sq( ̄))

where ū(x̄, sq( ̄)) is given by (24) for U = Ū , and where

it has been taken into account that

Δ
(

N(�̄), x̄
{d3}
pol ,  ̄

{d4}
ℎom

)

= 0.

Let us observe that

sq( ̄) = c�̄

where

c =

(

r
∑

i=1

√

�̄i

)−2

.

Since ℎ(x, �) is a homogeneous polynomial of degree d2 in

�, it follows that

ℎ(x̄, c�̄) = cd2ℎ(x̄, �̄).

Hence, from ℎ(x̄, �̄) = 0n one has that

0 < −a(x̄, c�̄)g(x̄) + 
̄a(x̄, c�̄).
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Finally, let us observe that a(x̄, c�̄) > 0 since

a(x̄, c�̄) = cd2

(

1 + ∥x̄∥2
)d3

and c > 0, which implies that g(x̄) < 
̄. Hence, ℰ ⊆ G(
̄),
and therefore 
# ≥ 
∗. □

Theorem 1 provides the upper bound 
# of 
∗ in (6), and

hence the outer estimate G(
#) of ℰ . This upper bound is

obtained by solving the optimization problem (29), which

is an EVP and belongs to the class of convex optimiza-

tion problems with LMI constraints [3]. This EVP is con-

structed by introducing a suitable expression of parameter-

dependent polynomials via the function Δ(⋅, x{d3}
pol , �

{d4}
ℎom)

and the parameter-dependent polynomial multiplier u(x, �).
The conservatism of the upper bound 
# decreases by

increasing the degrees dx and d� of u(x, �).

B. Establishing Tightness

In Section III-A we have shown how an upper bound 
#

of 
∗ can be computed by solving an EVP. A question that

naturally arises concerns the tightness of the found upper

bound: is 
# = 
∗?

The following result provides an answer to this question,

by proposing a necessary and sufficient condition for estab-

lishing whether the found upper bound 
# is tight.

Theorem 2: Let U#, �# be the optimal values of U, � in

(29), and define

J = H(U#)− V + 
#W +N(�#). (30)

Then, 
# = 
∗ if and only if there exist x ∈ ℝ
n and  ∈ ℝ

r
0

such that
⎧



⎨



⎩

(

x
{d3}
pol ⊗  

{d4}
ℎom

)

∈ ker(J)

ℎ(x, prj( )) = 0n
g(x) = 
#

(31)

where

prj( ) =
sq( )

∥ ∥2 . (32)

Proof. “⇒” Let us suppose that 
# = 
∗. Let x∗ ∈ ℰ be

a tangent point between ℰ and G(
∗), and let �∗ ∈ Φ be a

vector of admissible uncertain parameters corresponding to

x∗, i.e.
⎧

⎨

⎩

g(x∗) = 
∗

ℎ(x∗, �∗) = 0n
�∗ ∈ Φ.

Since �∗i ≥ 0 for all i = 1, . . . , r, we can define the vector

 ∗ = jrp(�∗). Let us observe that sq( ∗) = c�∗ where c >

0. Due to the fact that ℎ(x, �) is a homogeneous polynomial

of degree d2 in �, one has that

ℎ(x∗, sq( ∗)) = cd2ℎ(x∗, �∗)
= 0.

Let us observe that J ≥ 0 since J is the left-hand side of

the LMI in (29) evaluated for the optimal values of the EVP.

Let us pre- and post- multiply J by
(

x∗
{d3}
pol ⊗  ∗{d4}

ℎom

)′

and

x∗
{d3}
pol ⊗  ∗{d4}

ℎom , respectively. It follows that

0 ≤ Δ
(

J, x∗
{d3}
pol ,  

∗{d4}
ℎom

)

= u#(x∗, sq( ∗))′ℎ(x∗, sq( ∗))

−a(x∗, sq( ∗))g(x∗) + 
∗a(x∗, sq( ∗))

= 0

since g(x∗) = 
∗ and ℎ(x∗, sq( ∗)) = 0, where

u#(x∗, sq( ∗)) is given by (24) for U = U#. Since J ≥ 0,

this implies that the vector x∗
{d3}
pol ⊗  ∗{d4}

ℎom must belong to

the null space of J . Moreover, one has that

prj( ∗) = prj(jrp(�∗))

= �∗

and hence (31) holds.

“⇐” Let us suppose that (31) holds for some x ∈ ℝ
n and

 ∈ ℝ
r
0. Let us observe that

prj( ) ∈ Φ

which means that x is an admissible equilibrium point of the

system, i.e. x ∈ ℰ . Moreover, x satisfies g(x) = 
#, i.e. x

lies on the boundary of G(
#). This implies that


# ≤ 
∗,

and since 
# is an upper bound of 
∗ from Theorem 1, one

finally has that 
# = 
∗. □

As explained in Theorem 2, a sufficient and necessary

condition for the found upper bound 
# to be tight is the

existence of vectors x ∈ ℝ
n and  ∈ ℝ

r
0 satisfying (31).

From the first condition in (31), it follows that these vectors

have to satisfy

x
{d3}
pol ⊗  

{d4}
ℎom = J1y (33)

where J1 is a matrix whose columns form a base of the null

space of J , and y is a vector of suitable dimension.

A way to verify the existence of vectors x ∈ ℝ
n and

 ∈ ℝ
r
0 fulfilling (33) for some y and determine them is as

follows. First, let us observe that the vector x
{d3}
pol ⊗  

{d4}
ℎom

has the structure

x
{d3}
pol ⊗  

{d4}
ℎom =

⎛

⎜

⎜

⎜

⎜

⎝

 
{d4}
ℎom

x1 
{d4}
ℎom
...

xd3

n  
{d4}
ℎom

⎞

⎟

⎟

⎟

⎟

⎠

. (34)

Let J
(0)
1 , . . . , J

(�(n,d3)
1 be the sub-matrices of J1, with J

(i)
1

containing the rows of J1 from the (i−1)�(r−1, d4)+1-th

row to the i�(r − 1, d4)-th row. It follows from (33) that

 
{d4}
ℎom = J

(0)
1 y. (35)

The vectors  and y satisfying (35) can be found with the

approach proposed in [4], [12]. Once  and y have been

determined, the vector x fulfilling (33) can directly be read

from (34) according to

xi 
{d4}
ℎom = J

(i)
1 y. (36)

354



IV. EXAMPLES

Here we present some examples of the proposed method-

ology. The problem (29) is solved by using the toolbox

SeDuMi for Matlab on a standard computer. The parameter-

dependent polynomial multiplier u(x, �) is built as in (24)

with dx = 1 and d� = 0.

A. Example 1

Let us consider the uncertain nonlinear system
{

ẋ1 = (1 + 3�)x21 + 2x1x2 + (4 − 3�)x22 + x2 − 2

ẋ2 = x21 + (2− 4�)x1x2 + 2x22 − 2x1 − 2

where � is the uncertain time-invariant parameter satisfying

� ∈ [0, 1].

This system can be written in the form of (19) with � =
(�1, �2)

′, � = �1 and

ℎ1(x, �) = (4�1 + �2)x
2
1 + (�1 + 4�2)x

2
2

+(�1 + �2)(2x1x2 + x2 − 2)

ℎ2(x, �) = (�1 + �2)(x
2
1 + x22 − 2x1 − 2)

+(2�2 − 2�1)x1x2.

Let us select the shape function g(x) = ∥x∥2. From

Theorem 1 we find that an upper bound of 
∗ is given by


# = 2.147 (the computational time is 1.6 seconds). Figure

1a shows the boundary of the found estimate G(
#). This

figure also shows the equilibrium points computed for 101
values of � equally distributed in [0, 1].

In order to establish whether the found upper bound 
#

is tight, we use Theorem 2, in particular (31) holds with

 # = (0.774, 0.634)′ and x# = (0.925,−1.136)′. This

implies that 
# is tight, i.e. 
# = 
∗. Moreover, from

Theorem 2 we have that x# is an equilibrium point of the

system achieved for the uncertain parameter

�# = prj( #) = (0.599, 0.401)′.

Figure 1b shows the equilibrium points for �#.

It is worth observing that the equilibrium points shown

in Figure 1a for 101 values of � are unable to determine

the outer estimate of ℰ : in fact, none of these lies on the

boundary of G(
#). Such an extreme point is obtained for

�# found via Theorem 2 and is shown in Figure 1b.

B. Example 2

Let us consider the uncertain nonlinear system
{

ẋ1 = x21 + (3.5 + 2.5�2)x
2
2 + (1 + 3�1)x2 − 3

ẋ2 = (3− 2�1)x
2
1 + (1 + 3�2)x1x2 + 2x22 − 2x2 − 8

where � = (�1, �2)
′ ∈ ℝ

2 is the uncertain time-invariant

parameter satisfying

� ∈ [−1, 1]2.

This system can be written as in (19) with � =
(�1, . . . , �4)

′ and

� =

(

−1 1 −1 1
−1 −1 1 1

)

�.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x1

x
2

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x1

x
2

(b)

Fig. 1. Example 1. (a) Boundary of the estimate G(
#) for g(x) = ∥x∥2

(red disc) and equilibrium points for 101 values of � equally distributed in
[0, 1] (black dots). (b) Equilibrium points for the uncertain parameter �#

found with Theorem 2 (the blue square is x#).

Let us select the shape function g(x) = ∥x∥2. We find

that an upper bound of 
∗ is given by 
# = 7.918 (the

computational time is 3.4 seconds). Figure 2a shows the

boundary of G(
#) and the equilibrium points computed for

289 values of � equally distributed in [0, 1]2.

In order to establish whether the found upper bound 
# is

tight, we use Theorem 2, in particular (31) holds with  # =
(0.993, 0.000, 0.117, 0.000)′ and x# = (0.751, 2.712)′. This

implies that 
# is tight, i.e. 
# = 
∗. Moreover, from

Theorem 2 we have that x# is an equilibrium point of the

system achieved for the uncertain parameter

�# = prj( #) = (0.986, 0.000, 0.014, 0.000)′.

Figure 2b shows the equilibrium points for �#.

C. Example 3

Let us consider the uncertain nonlinear system
⎧



⎨



⎩

ẋ1 = 1 + x21 + x31 + x32 + (3� − 4)x33
ẋ2 = 1 + x22 − x31 + (� + 1)x32 + x33

ẋ3 = 1 + x23 + (2� + 1)x31 − x32 + x33
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Fig. 2. Example 2. (a) Boundary of the estimate G(
#) (red disc) and
equilibrium points for 289 values of � equally distributed in [0, 1]2 (black
dots). (b) Equilibrium points for the uncertain parameter �# found with
Theorem 2 (the blue square is x#).

where � is the uncertain time-invariant parameter satisfying

� ∈ [0, 1].

This system can be written in the form of (19) with � =
(�1, �2)

′, � = �1, and ℎ(x, �) given by (16).

Let us select the shape function g(x) = ∥x∥2. We find

that an upper bound of 
∗ is given by 
# = 15.294.

In order to establish whether the found upper bound 
# is

tight, we use Theorem 2, in particular (31) holds with  # =
(0.000, 1.000)′ and x# = (−2.417,−2.501,−1.789)′. This

implies that 
# is tight, i.e. 
# = 
∗. Moreover, from

Theorem 2 we have that x# is an equilibrium point of the

system achieved for the uncertain parameter

�# = prj( #) = (0.000, 1.000)′.

It is worth observing that determining the equilibrium

point of this system for a fixed value of � takes more than

13 minutes with symbolic functions of Matlab (which means

that considering a hundred values of � as in Examples 1 and

2 would take more than 21 hours). Instead, the computational

time of 
# is 3.0 seconds.

V. CONCLUSION

The problem of characterizing the set of admissible equi-

librium points of nonlinear dynamical systems affected by

parametric uncertainty has been addressed for the case of

polynomial nonlinearities and uncertainty constrained in a

polytope. Specifically, it has been shown that an upper bound

of the smallest outer estimate with a freely selectable fixed

shape can be obtained by solving an LMI problem. Then,

a necessary and sufficient condition has been provided for

establishing the tightness of the found upper bound. Future

work will be devoted to extend the proposed methodology

to the case of estimates with variable shape.

The benefit of the proposed methodology is twofold.

First, determining outer estimates of the set of admissible

equilibrium points would require to repeat the determination

of the equilibrium points an infinite number of times while

this paper provides outer estimates by solving a convex

optimization problem. Second, the determination of the equi-

librium points can hardly be done even for fixed values of

the uncertainty (either due to the computational burden of

symbolic tools or due to the fact that numerical techniques do

not guarantee to find all solutions), while the computational

burden of the proposed techniques is indeed reasonable.
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