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Abstract— The control law of a typical industrial system has
a modulating (continuous) component and a sequential/modal
component. Control engineers are traditionally good at speci-
fying the modulating part of the control laws unambiguously,
correctly and completely. Software engineers have similar skills
on the sequential component. In this paper, we discuss a mixed
approach in which software and control engineers collaborate
to develop control designs. The proposed approach is based
upon a novel modeling notation called RRM diagrams. A formal
refinement method based on RRM diagrams is developed which
enables the development of sequential components as well as
control designs. We illustrate our method by considering the
case study of a simplified Adaptive Cruise Controller (ACC).

I. INTRODUCTION

A control design specification can be broadly partitioned
into two diverse components: the modulating (or feedback)
control laws, usually expressed as continuous functions, and
the sequential (or discrete logic) component which models
the mode behaviour [8], [3]. Control engineers derive the
feedback control laws from known plant behaviour and en-
vironmental conditions, while software engineering expertise
is needed to model accurately the mode behaviour, which
could be complex when the input size is large and the plant
is complex. The design techniques used by control engineers
are typically different to those used by software engineers.
Therefore, there is a case for using the expertise of both.

Consider the example of a cruise controller (CC). A
control engineer first models the plant, then derives the
feedback control law — say, a PID controller — from the plant
behaviour with additional inputs like the road condition and
the number of passengers in a vehicle. Furthermore, when
the vehicle is riding a steep height, the plant is different from
the plant when the vehicle is climbing down a hill. For such
cases where the plant characteristics could change drastically,
depending on the operating regime, multiple feedback control
laws, each of which would be switched on at different
operating situations, are often employed. Development of
a feedback control component that meets right parameters
like response time, settling time etc. requires sound control
engineering principles.

A CC also requires inputs from the driver and the en-
vironment. Depending on all such inputs, it is determined
whether a feedback control law would be operational or not.
Furthermore, since there are multiple feedback control laws,
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which law would be invoked in which situations, must be
determined accurately. All these tasks become much more
complicated when we consider complex control systems like
the Lane Centering Controller of a vehicle.

In this paper, we propose a mixed approach, in which
both control and software engineers cooperate to develop
control designs. This approach uses a notation called RRM
(Requirement, Refinement and Modeling) diagrams [5]. A
software engineer uses RRM diagrams to develop a frame of
the final design containing only the discrete component; the
frame has placeholders for continuous components, which
are separately developed by control engineers. Our main
contributions:

« Development of a novel approach in which software and
control engineers collaborate to develop control designs.
In a previous research [5], we have developed a RRM
diagram based method for developing discrete control
designs; in this research, we extend our earlier method-
ology to develop modulating feedback controllers.

o Integration of the discrete and modulating components
developed respectively by software and control engi-
neers to obtain the final controller in SL/SF. The discrete
component in SL/SF is auto-generated from a RRM
model; the modulating component is manually obtained.

The organization of the paper is as follows. Section IT
discusses the related work. Next, we present RRM diagrams
in greater detail. In Section IV, we model an ACC using
RRM diagrams. Section V presents our method of Simulink
generation. Next we discuss our implementation, and analyse
our approach. Finally, Section VIITI concludes the paper.

II. RELATED WORK

Satpathy ef al. in [5] have introduced RRM diagrams
(RRMDs) for developing pure discrete controllers. Abstract
RRMDs are gradually refined till they capture all require-
ments of a discrete controller. Such diagrams have been
encoded as UML-B models [7]. The authors have developed
a prototype tool to auto-generate SL/SF design models from
RRMDs. The proposed work extends RRM diagrams and the
refinement methodology to include continuous elements.

The SL/SF modeling notation allows unsafe constructs,
which if used could lead to issues like non-termination, stack
overflow efc. Scaife et al. in [6] have presented a safe SL/SF
subset which can be translated to the synchronous language
Lustre. Properties in a Lustre model can be verified by a
model checker. We prove properties at an early stage so that
by the time SL/SF models are generated, the models have
safe constructs, and the properties are already verified.
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Fig. 1.

Rajhans et al. in [4] discuss compositional verification of
heterogeneous systems. They use constraints over parameters
at architectural level to define the semantic relationship be-
tween the individual components and the system properties.
Under certain conditions, the system level safety properties
could be verified from the properties of the component
models. Our work has similarity with this approach in that
development of a logic component imposes some constraints
which the modulating part must respect.

III. RRM DIAGRAMS
A. Why RRM Diagrams

The SL/SF modeling notation is widely used in industry
for developing control applications. The benefits are: (a)
graphical models are better understood, and (b) model-in-
loop and processor-in-loop simulation platforms are readily
available around SL/SF. The negative points are: (a) mod-
els are usually not amenable to formal reasoning, and (b)
simulation alone may not remove bugs. Control systems can
also be developed using formal methods like Event-B [1].
The plus points are: (a) design steps can be verified, and
(b) incremental development can deal with scalability. The
negative points here are: (a) the languages are text based, and
(b) control/data flow information are not explicit in a model.
RRM Diagrams are formal models which incorporate the
benefits of both the above formalisms.

B. Structure of RRMDs

Figure 1 shows an RRM diagram, which consists of
blocks and connectors. Connectors are of two kinds: control
flow and data flow edges. In the figure, they have been
respectively shown as solid and dashed lines. A control flow
edge determines a block execution order, and a labeled data
flow means the source block computes the value of the
labeled variable and the target block uses it. Within a block,
some computation is performed which is represented as a
state machine. Figure 1 shows three computation blocks, A
being the initial one. The control flow edges signify that B
is computed after A, C is after B, and so on.

The state machines for the respective blocks are as shown
in Figure 1. When a block starts execution, one of the
enabled transitions of the block’s state machine is executed.
Execution of transitions within the block continues until there
is no enabled transition, control then moves to the next block.
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Closing of open inputs and outputs

In the figure, the lone transition in block A assigns a non-
deterministic value to variable xz; next, the state machine
finishes execution and control moves to block B. Additional
flags disable the block A and enables the transition(s) in
block B; in the figure, they have not been shown to avoid
clutter. In B, either of the transitions is executed which uses
x and produces outputs y and z. Next B finishes execution
and control moves to C, which uses y and z and produces
outputs p and s. Variable s is produced as well as consumed
by block C, the dashed self-loop around C signifies that it
has a state. p is an open output, not yet used by any block;
possibly, a latter refinement would use it.

C. Refinement of an RRMD

RRMDs can be refined in three different ways: (a) refine-
ment of block state machines, (b) closing of open inputs and
outputs, and (c) sequencing of parallel control.

Refinement of State Machines: A refinement of a block state
machine can be any of (a) strengthening of a transition
guard or reduction of non-determinism in the action, (b) case
splitting of a transition, (c) adding a transition modeling an
internal action, and (c) creation of sub-states and introducing
transitions between those. In Figure 2, the transition g/e on
top is an abstract transition. Figure 2(a) shows strengthening
of this transition; i.e., g1 — g, and el reduces the non-
determinism in e; el may also have assignments to new
variables. Figure 2 (b) shows the case splitting of the abstract
transition into parallel transitions; here, g1 V g2 = ¢ and
gl A g2 = (). Figure 2 (c) shows addition of an internal
action; i.e., 71 can have assignments to new variables, which
could be used in el. Figure 2 (d) shows creation of sub-states
within a state, and addition of transitions between those.

Handling of open inputs and outputs: State machine refine-
ment of a block may result in creation of new variables,
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Fig. 4. Development Process using RRMDs

which will be represented as open inputs and outputs; z is
an open input in Figure 3(a). An open input can be any of
(1) an environmental input, (ii) the input is already produced
by another block, or (iii) it is neither. Our aim is to build
control applications, so, we assume an RRMD has a special
block representing the environment, say ENV. If the open
input is from the environment, this is closed by making it
an output of ENV. If the input is an output of another block,
this is closed by connecting it to the latter. If the input is not
from the environment and not yet produced by any block,
this has to be an internal input; it would be computed in the
subsequent modeling steps. So we create a new block which
generates this open input. In Figure 3(b), the open input 2 has
been closed by creating a new block X in a parallel control
path, block X — without consuming any input — gives a non-
deterministic value to z; the non-determinism in X would be
refined at a later stage. The parallel control path is created
between ENV and the block which needed this input.
Sequencing of Parallel Control: Two parallel control paths
would mean that the two paths can be executed in arbitrary
order. So sequencing them can be a refinement step. In Figure
3(b), blocks B and X can be made sequential depending on
the data dependency between those.

D. Development Process using RRMDs

Figure 4 shows the development process using RRMDs.
The R-chain (R1, R2, R3,..) represents an incremental
development chain using RRMDs. R1 models some of the
requirements. R2, a refinement of R1, models some more
requirements. This goes on until we model all the require-
ments in Ry. Each R; has a corresponding representation in
the Event-B modeling language [1], we call it M;. In the
figure, M2 is a refinement of M1, M3 is a refinement of
M2 and so on. The consistency of each M; and the refine-
ment relationship between two adjacent Event-B models, are
proved using tool support [2]. Thus the correctness of the R-
chain is established by proving the M-chain (M1, M2, M3,
...). Finally, a model-generating tool auto-generates a SL/SF
frame from R;. As mentioned earlier, the place holders in
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Fig. 5. (a) The initial RRMD, (b) The first refinement

the SL/SF frame are filled up with the feedback control laws.
IV. ACC CASE STUDY

The important requirements of an ACC are: (a) Only when
CC or ACC is engaged, the throttle value is determined by
the controller; in all other cases, the driver determines the
throttle, (b) CC/ACC can only operate above a given minimal
speed, (c) The driver can activate CC by pressing a button if
speed conditions are met, and then the vehicle maintains the
cruise speed. (d) When in CC mode, and a forward vehicle
appears and the gap is less than a threshold, then ACC is
engaged; the task of the ACC is to maintain the set gap with
the forward vehicle, (e) When any of CC/ACC is engaged,
the driver can take control by pressing either the brake or the
throttle. The driver can re-engage the CC/ACC by pressing
the resume button provided speed conditions are satisfied,
(f) When ACC is engaged, if the controller cannot deal with
a situation (say, a vehicle suddenly appearing too close to
the host vehicle), then the ACC can raise an alarm until the
driver takes control. Until that time, the ACC is expected to
control the speed of the host-vehicle.

A. Modeling using RRMDs

Figure 5(a) shows the initial RRMD, where PE represents
the plant and the environment. There are no data flow edges.
This models the requirement that block PE gives control to
the Controller block, and the latter gives control back
to PE, and this continues.

Figure 5(b) shows the first refinement. The trivial state
machine of Controller is refined, the new state machine
has two transitions. When mode is active — CC or ACC is
engaged — throttle gets a non-deterministic value between 0
and max. When mode is not active, the driver determines the
throttle (variable dri_throttle). mode and dri_throttle
are two open inputs. The latter is an environmental input;
so this is connected to PE; its state machine gives a non-
deterministic value to dri_throttle. mode is neither an
environmental variable nor it is produced by any block. So
a new block — selectMode - is created in between PE
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and Controller to produce the value of mode; this new
block assigns a non-deterministic value to mode.

Figure 6(a) is the final refined RRMD that captures all the
requirements. We omit the details of the intermediate refine-
ment steps. Figure 7 is the state machine of selectMode in
the final RRMD. Initially control is at the OFF state. When
the driver presses a switch — input sw — and there is no
fault, control moves to Standby. When the driver presses
the setCC button and the speed conditions are met, control
moves to the CC state. When there is a front vehicle within
some threshold and the control is already in CC, then control
moves to the ACC state. From the CC or the ACC states, the
driver can take control by pressing either the brake or the
throttle — inputs brake and thr — and then control moves to
Override. We omit the discussion on all other transitions.
Note that block selectMode is state-holding.

Figure 6(b) shows the state machine of Controller.

The bottom transition shows that in CC mode,
f(setSpeed,actSpeed) computes the throttle value,
switch
— state
- e
actspeed mode
actGap
—]
— - On subMode
setCC Standby Override
ﬂ. setSpeed
coast+/coagt- Active
gap+igap- setGap
fv :
warning
brPedal s
—]
thPeda
Fig. 7. State machine of selectMode in Figure 6

Model Total number | Automatic | Interactive
of POs Proof Proof

Abstract Model 17 17(100%) 0(0%)

First Refinement 224 218(97%) 6(3%)

Second Refinement 104 90(87%) 14(13%)

Third Refinement 184 138(75%) 46(25%)

Total 529 463(88%) 66(12%)

TABLE I

PROOF STATISTICS

where f is a function of the set speed and the actual speed
of the host vehicle. f is not yet defined, its input/output
types though are known. The sequence of two transitions in
the right corresponds to the ACC mode of operation. The
first transition computes refSpeed = g(setGap, actGap),
where ¢ is another undefined function which computes the
speed which needs to be maintained so that the desired gap
would be met. The inputs of g are the set gap between
the host and the front vehicle, and actGap is the actual
gap. In the next transition — in the ACC mode of operation,
flrefSpeed, actSpeed) computes the desired throttle value
to be sent to the actuator. What will be done with the
undefined functions f and g, will be discussed in Section V.

B. Correctness of the RRMD refinements

As shown in Figure 4, the respective RRMDs are trans-
lated to Event-B models. If RRMD R2 is a refinement of
RRMD R1, let M2 and M1 respectively be the corresponding
Event-B models. The fact that M1 and M2 have a refinement
relationship is proved in the Event-B domain using tool
support, say Rodin Platform [2]. For the details, refer to
[5]. Invariants are also added to the Event-B models, and
using tool support it is checked that the models satisfy the
invariants. Let us consider the following two invariants:

subMode = CC A ... = throttle = f(setSpeed, actSpeed)
subMode € {ACC, DA} A ... =
throttle = f(g(setGap, actGap), actSpeed)

In CC mode of operation, the throttle value is computed
by function f. In the ACC and DA modes of operation, first
g computes the reference speed, and next f computes the
throttle value. Note that both these functions are yet to be
defined, yet we are able to prove properties involving those.

Table I shows the proof statistics for our ACC case
study when Rodin Platform was used as the tool support.
Each row quantifies the proof effort in each step, which
contains (a) the proof obligations (POs) generated, the POs
automatically discharged by the Rodin prover, and the POs
proved interactively. As can be seen from the table, the total
no. of POs generated is 529, out of which 88% were proved
automatically, and remaining 12% were proved interactively.

V. SL/SF MODELS FROM RRM DIAGRAMS

We will now outline how SL/SF models can be derived from
RRMDs. All the control flow edges in the final RRMD can
be removed since, after all requirements are captured, the
data flow edges already determine the control flow [5]. Now
if we ignore the block internals then the final RRMD looks
like a SL/SF model; i.e., if we view it as a SL/SF model, the
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inter-block connections would remain the same. If we now
translate the block internals to Simulink subsystems, then
we would get an equivalent SL/SF frame; at this stage, this
model has some undefined functions (like f and g discussed
in the previous section) which will be derived by control
engineers, this we will discuss in the next section.

The role of block PE (Plant and environment) needs some
discussion. PE outputs all driver inputs which in the RRMD
receive non-deterministic values. All such outputs from PE
become external inputs to the generated SL/SF frame. In
addition, PE contains the plant function; for us, it is the
computation of speed given the throttle value, this could be
modeled by a plant model (refer Figure 9).

If an RRMD block is state-holding, we make it a Stateflow
subsystem. The structure of Stateflow chart remains exactly
the same as the block state machine. The guard/action of a
transition in the state machine becomes the guard/action of
the corresponding transition in the Stateflow chart; however,
the Stateflow syntax needs to replace the RRMD syntax. If a
block is stateless, we translate its state machine to a Simulink
subsystem. Based on the pattern of the state machine, we
define a set of mapping functions [5]; we outline two such
functions here: (note: we translate in a certain way though
other semantic preserving translations possible)

o If the pattern is as in Figure 8(a), then based on
the guards of the transitions, an if-else-if Simulink
subsystem is created. In the figure, guards g1, g2 and g3
are mutually exclusive (this is so by construction), and
they become the conditions in the if-elseif-else Simulink
block; its outputs trigger the subsystems for the transi-
tion actions, and the outputs of such subsystems are fed
to a merge Simulink block(s); refer to the figure. The
guards and actions are translated to the Simulink syntax.

o If the pattern is as in Figure 8(b), the translation is
similar excepting the sequencing of the subsystems
corresponding to actions A3 and A4.

VI. IMPLEMENTATION

In this section, we will discuss the tool support for the
RRMDs and the Simulink model generator. Our RRMDs are
encoded as synchronizing state machines in UML-B [5], a

i'“"t" [T E— Y

taur

saCC ’—‘ e
state

brakePedal

/]

Iz

]

[throttle Pedal

9
¥

lset apTime

Cortrol_th {— e fhe

e in - plant_v_out {—

7

7

setGapTime

lonuise Speed
cozstinus
Crise3peed

v Sensor

Al

3

In

2y

In

)

W

k.

a

@

n

e bactuaispeed (R
Out1

Controller

Fig. 9. The SL/SF model for ACC

graphical formal modeling notation which acts as a front-
end for Event-B models [7]. A RRMD-to-Simulink translator
translates a RRMD to Simulink by using the mapping rules
discussed in the previous section. Figure 9 is the SL/SF
model which has been obtained by applying the mapping
rules to the RRMD of Figure 6. The environmental inputs due
to the driver have become the external inputs to this model;
other environmental inputs come from the plant which has
been shown as a Simulink subsystem in the SL/SF model.
The internals of the Stateflow subsystem — called selectMode
— has not been shown here because of space constraints; it
resembles the state diagram of Figure 7.

We will discuss the generation of the Simulink subsystem
for the Controller block in Figure 9, which is generated
from the state machine of Figure 6(b). We apply the mapping
rule of Figure 8(b). Figure 10(a) shows the corresponding
Simulink model. The if-action-subsystem encodes
the 3 possibilities corresponding to the three disjoint guards
in Figure 6(b). The three enabled subsystems in the Simulink
model correspond to the transition actions in this figure.
The first enabled subsystem is labeled with function £,
which is a place holder for the cruise control function. The
PID controller in Figure 10(b) is the actual cruise control
function, designed by a control engineer, which is to replace
the place holder labelled with £ (refer Figure 6(b)).

The third enabled subsystem corresponds to the case when
the driver determines the throttle value. The second enabled
subsystem — with label ACC control — has also place
holders, which are also to be replaced by actual control
designs, we omit the details here.

VII. ANALYSIS OF OUR METHOD

On the Mixed Approach: The feedback control law and the
discrete logic components of a control system require differ-
ent skills and expertise. We use an incremental and formal
approach to deal with the complexity and correctness of a
discrete component. From our interaction with practitioners,
we gathered that the discrete component is usually prone to
errors, whereas the correctness of a feedback law is easier
to establish.
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When a control design moves from laboratory to the actual

plant, the real plant could be different from the plant model.
After interviewing control engineers, we have observed that
this change is local to the modulating component; the discrete
part more or less remains frozen. A control engineer may
modify the modulating part without touching the discrete
part. So, we can infer that our mixed approach would be
effective in industrial practice.
SL/SF model generation: SL/SF is a preferred modeling
notation for developing industrial controllers, and engineers
are very comfortable with it. If engineers are provided with
high quality SL/SF models they would readily accept it;
the same we can not say if engineers are directly provided
with code. That is why instead of code generation, we have
focused on SL/SF model generation.

Our work provides a way of introducing formal methods

in current industrial practice, thus it contributes to the formal
methods community. We also contribute to the SL/SF com-
munity; at present models are obtained manually, whereas
our method generates them automatically.
Problems with Manual Generation: Generating SL/SF
designs directly from requirements is a big intellectual step,
and the process can be error-prone. For example, in the
current case study, the generated Stateflow subsystem is
complex, and the guards of some transitions have more than
12 conditions, linked together by various logical operators.
We believe it would be very difficult to get those right if we
model those manually. Since we use formal refinements, and
invariants are proved using tool support, we can claim that
the SL/SF designs that we generate are of high quality.

VIII. CONCLUSIONS

We have discussed a novel method in which the require-
ments of a typical controller is partitioned into requirements
meant for the modulating component and those for the
discrete component. The first component is developed by
a control engineer and the second component is developed
by a software engineer using a formal approach; both the
components are integrated compositionally to obtain the final

(a) Simulink subsystem obtained from the RRMD state machine in Figure 6(b); (b) cruise control function developed by a control engineer

design. Our mixed approach produces high quality designs
for modulating controllers. We have discussed a simplified
ACC to illustrate our approach. Even in this simple controller
design, there are a few non-trivial features — like hierarchical
Stateflow with complex transition guards and actions — which
are difficult to get right if a manual approach is used. In
future we wish to perform industrial strength case studies
and to make our Simulink auto-generation process robust.
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