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Abstract—We present a robust approach for reconstructing
the architectural structure of complex indoor environments
given a set of cluttered input scans. Our method first uses an
efficient occlusion-aware process to extract planar patches as
candidate walls, separating them from clutter and coping with
missing data. Using a diffusion process to further increase its
robustness, our algorithm is able to reconstruct a clean archi-
tectural model from the candidate walls. To our knowledge, this
is the first indoor reconstruction method which goes beyond
a binary classification and automatically recognizes different
rooms as separate components. We demonstrate the validity
of our approach by testing it on both synthetic models and
real-world 3D scans of indoor environments.
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I. INTRODUCTION

In the architecture and engineering domains there is a

substantial need for semantically rich 3D models of build-

ings. 3D acquisition devices such as laser range scanners

are now mature enough for fast, accurate, and cost-effective

gathering of 3D measurements. However, efficient methods

must be devised to extract such higher-level models from

the acquired raw point-cloud data.

Of particular interest is the problem of determining the

architectural shape of indoor environments (e.g., rooms

bounded by walls, floors, and ceilings). While akin to the

more well-studied topic of buildings and outdoor settings re-

construction, indoor reconstruction exhibits a number of dis-

tinctive features that make it significantly harder to manage

(see Sec. II). First of all, methods for indoor reconstruction

must be significantly more tolerant to missing data than their

outdoor counterparts, since environments such as offices and

apartments exhibit extremely high levels of clutter, which

typically results in heavy occlusions of walls and other

structures of interest (see Fig.1). Secondly, windows and

other highly reflective surfaces are often present in such

scenes. Due to the critical interaction properties of such

elements with the input devices, large-scale artifacts, noise

and missing data affect the acquired model (see Fig. 1). Fi-

nally, typical indoor structures such as apartments and office

buildings pose the challenge of recognizing the structure in

terms of a graph of connected rooms and corridors.
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Figure 1. Heavy occlusions (a) and large-scale artifacts (b) often occur in
scanned models of interiors.

Several approaches have been proposed to recover the

architecture of indoor scenes. Some methods focus on re-

constructing architectural floor plans [1], while others [2]

aim at directly extracting wall boundaries. However, most

current algorithms rely on the implicit assumption that the

architectural components are well sampled, are only able to

tolerate small amounts of clutter and can therefore fail in

many real world situations. Moreover, many of the existing

solutions are targeted at simply connected environments such

as corridors and cannot reconstruct the shape of individual

rooms within more complex environments.

This paper presents a robust approach to reconstructing

the architectural shape of indoor environments given a set

of cluttered input range scans that partially cover the scene

of interest (typically 1 or 2 scans per room). Our method

assumes that the environment is composed of multiple rooms

bound by vertical walls, which holds true for the majority

of buildings. An occlusion-aware process extracts vertical

planar patches as candidates for genuine wall segments,

separating them from clutter and coping with missing data,

by using efficient viewpoint-based visibility computations on

a per-scan basis. Starting from these candidates, we recon-

struct a clean multi-room architectural model, by segmenting

the area into multiple rooms using a robust diffusion process

(see Fig. 2) .

Our system extends and combines a number of state-of-

the-art results in a non-trivial way. Its main novel contribu-

tions are the following:

• An efficient yet robust approach to extract architectural
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Figure 2. The main phases of our algorithm: From the input model (a) we robustly extract wall candidates (b). These are used to construct a cell complex
in the 2D plane, from which we obtain a room segmentation using recursive clustering (c) and finally the individual room polyhedra (d).

elements corresponding to genuine wall segments that

effectively takes missing data into account, a predomi-

nant issue in real-world indoor scan data.

• An automatic segmentation of the input model into the

correct number of rooms, which is robust with respect

to imperfect data due to the used diffusion distances.

• A robust reconstruction of each detected room as a

single watertight polyhedron.

To our knowledge, this is the first indoor reconstruction

method which goes beyond a binary in/out classification

and automatically recognizes different rooms as separate

components. Such a room labeling is useful in many real-

world applications, such as the definition of thermal zones

for energy simulation. As demonstrated in Sec. VII, the

method is applicable to environments with an extremely

high level of clutter, and is robust in terms of tolerance to

scanning noise and artifacts from reflecting surfaces.

II. RELATED WORK

Classical methods for reconstructing building structures

from 3D laser scanner data have focused on creating visually

realistic models [3], [4], rather than structured 3D building

models. Even though some of these 3D reconstruction algo-

rithms extract planar patches from data [5], this has the goal

of finding simplified representations of the models, rather

than identifying walls, ceilings, and floors. In this context,

clutter is dealt with specialized hole-filling techniques [4],

[6], [7], which can only manage small-scale occlusions.

More recently, focus has shifted on the creation of more

structured 3D models, with the purpose of simplifying

the process of converting point cloud data into a build-

ing information model (the scan-to-BIM problem). One of

the key challenges is an effective handling of occlusion.

Most previous work in this area assumes almost complete

visibility, or that parts of the building occluded from one

view are available from another viewpoint [4], [6], [1].

This assumption is not verified in most practical situations,

which have to deal with complex occlusions and heavily

cluttered environments. Most recent work thus exploits prior

knowledge on building structure to achieve robustness.

Using the heavily constrained Manhattan World (MW)

assumption, which forces planar and axis-aligned orthogonal

walls, Furukawa et al. [8] reconstruct the 3D structure of

moderately cluttered interiors by fusing multiple depth maps

(created from images) through the solution of a volumetric

Markov Random Field, while Vanegas et al. [9] reconstruct

buildings from laser scans by detecting box structures and

shooting visibility rays to label the volumes as either inside

or outside. We focus, instead, on less constrained environ-

ments with vertical, but non-orthogonal walls.

In this setting, inside/outside labeling, possibly combined

with visibility computations and energy minimization tech-

niques, is often used to perform volumetric segmentation of

scanned models. Chauve et al. [10] build a BSP-like space

partitioning structure from an input point cloud and then

solve a minimum st-cut on its cell-adjacency graph, using

visibility criteria for the labelling of the arcs. Similarly,

Lafarge et al. [11] compute a 3D Delaunay triangulation

of a filtered version of the input point set and solve a min-

cut problem on its dual structure. The arcs of the graph

are weighted using visibility sampling. Oesau et al. [2]

generate a 3D space partitioning by stacking lines detected

in the vertical projection of the input model, then label the

volumetric cells into inside/outside using a visibility-driven



energy minimization. Sanchez and Zakhor [12] focus on

the simultaneous detection of both large-scale and small-

scale architectural structures, while Adan et al. [13], [14]

proposed a method that discriminates between empty space

and occlusions, and that can fill the latter. All of these

methods assume moderately clean environments and simply

perform a binary classification of space, while we propose an

automatic segmentation of the input model into the correct

number of rooms, which is robust with respect to imperfect

data due to the used diffusion distances.

III. METHOD OVERVIEW

The input to our algorithm is a set of point clouds taken

at known locations and representing one or more rooms of

the interior of a building. We assume that the scans are

registered in the same reference frame and, without loss

of generality, that the up-vector is vup = (0, 0, 1). We

consider only buildings with planar, vertical walls, but, like

Lafarge et al. [2], we drop the more restrictive Manhattan

World assumption. The method produces a set of k closed

polyhedra as output, one for each room in the input scene.

Although we target the reconstruction of indoor envi-

ronments with vertical walls, our pipeline does not purely

work in a 2D projection in the xy-plane, but we perform

operations both in the 3D space and in the 2D projection.

In particular, the patch detection and the occlusion-based

pruning are performed in 3D space, since this captures the

shape of the patches more faithfully, resulting in effective

wall regions selection. Similarly, the final wall fitting is

performed directly on the points in 3D space to make the

estimate of their position more accurate. The subsequent

diffusion-based room segmentation is performed entirely in

the 2D projection (i.e., the floor plan), as the assumption

of vertical walls makes the use of the third dimension

redundant.

In the following, we summarize the main steps of our

proposed approach. A visual overview of the method is given

in Fig. 2.

Occlusion-aware selection of candidate walls. Vertical pla-

nar regions that are potential wall patches are extracted

from the input scans. For each scan, occluding patches

are then projected onto the potential wall patches to

recover their actual (unoccluded) vertical extent and

hence get a robust indicator of the likelihood that they

are genuine wall segments, pruning those which are

likely to be clutter.

Room segmentation. This step is performed entirely in the

2D projection in the xy-plane. First of all, projected

candidate walls are clustered to get a smaller number

of good representative lines for walls. Secondly, a cell

complex is built from the intersections of the represen-

tative lines and its edges are weighted according to the

likelihood of being genuine walls. Diffusion distances

are then computed on the cell-graph of the complex

and they are used to drive a recursive clustering of the

cells that extracts the separate rooms.

Model reconstruction. The accurate wall geometry is com-

puted for each room by robustly fitting the extracted

planes to the inlier points in 3D. Finally, each room

polyhedron is created by intersecting the reconstructed

wall planes with those of floor and ceiling.

These three steps are described in more detail in the

following sections.

IV. OCCLUSION-AWARE SELECTION OF CANDIDATE

WALLS

In this phase we extract from the input point clouds a

set of planar patches that correspond to candidate walls. We

first grow planar regions in the 3D point cloud. To keep

only segments which potentially correspond to candidate

walls, we select only those regions which are classified as

vertical. A lightweight 3D occlusion check is used to further

prune the vertical patches, discarding those that have a low

unoccluded vertical extent.

A. Low-level segmentation into planar patches

Since our input models are raw and unstructured point

clouds, the very first step of our pipeline must identify some

structured evidence of the architectural shape of interest. A

natural choice for buildings composed of planar elements

is to use planar patches, as done in many previous ap-

proaches [14], [10], [11]. The use of 3D patches, as opposed

to, e.g., 2D line projections [13], [2], is well-suited for

our occlusions-based pruning algorithm. We perform patch

growing on a per-scan basis, so that every patch contains

points that belong to a same scan. This way, when looking

for potential occluders of a patch, we can restrict the search

to the patches extracted from the same scan.

We extract patches using a simple region growing process

based on normal deviation and plane offset. Like Chauve

et al. [10] we have found this scheme to work well; more

robust and elaborate methods [15] were not needed in our

applications. Since a correct choice of the seed points is very

important, we start the growing from the points that have pla-

nar and low-noise neighborhoods. The quality of a candidate

seed is evaluated by fitting a plane to its k-neighbors with

the Least-Median-of-Squares (LMS) algorithm [16] and by

then computing the sum of the residuals.

For the next steps we need a simplified patch represen-

tation, and we found that an oriented bounding box (OBB)

gives us a reasonable trade-off between simplicity and shape

approximation quality. The OBB is aligned with the two

principal components of the xy-plane projection of the patch

and gives a good fit for structures like long and thin walls

that are not aligned with the main axes (see Figure 3).
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Figure 5. An illustration of the recursive clustering process: the input
cell complex (a); first (b) and second (c) levels of partitioning, with the
unlabeled space shown in magenta; final results of the partitioning (d),
with the gray faces representing the outside space and the rooms shown in
color. The white lines indicate the underlying cell complex built from the
representative lines.

are likely to be much closer in the diffusion embedding to

the outside faces than to the faces in other rooms. Hence our

method finishes separating the inside from the outside when

all individual rooms have been detected and put in separate

clusters.

VI. MODEL RECONSTRUCTION

Eventually we reconstruct the 3D polyhedra from the

detected room clusters. For each edge in the boundary

of a cluster, we access the projected candidate walls Ck

associated to the edge (see Section V-A). We then select

the points of the corresponding 3D patches and employ

a LMS fitting scheme (known to have a 50% breakdown

point with respect to outliers) to get the inlier points for

that plane. To get the best possible estimate of the plane

parameters, a standard Principal Component Analysis (PCA)

is additionally performed on the inlier set. We also use

a robust pipeline for reconstructing the floor and ceiling

planes (see below). The polygons of the final polyhedra are

obtained by intersecting pairs of adjacent wall planes with

the floor and ceiling planes. An example of the complete

room polyhedra resulting from a given segmentation can be

seen in Figure 2 (bottom row).

Since we assume that floor and ceiling are planar and

orthogonal to the up-vector, we find during the patches

extraction the two horizontal patches Pfloor and Pceil with

respectively minimum and maximum z value (Section IV-A).

To increase the accuracy and robustness of the estimation,

we employ the following strategy to fit the final planes.

Given Pfloor (respectively Pceil), we take the horizontal

patches whose distance from Pfloor (Pceil) is less than a

Figure 6. We use a synthetic model of an indoor environment to test the
accuracy of our algorithm. The model (top) is re-sampled in software using
ray-casting to simulate the behavior of a 3D laser range scanner. Notice
the large areas in shadow in the bottom pictures.

threshold and use their points as support set for a LMS fit.

Note that throughout this process we only consider patches

whose diagonal is larger than 0.5 meters.

VII. RESULTS AND DISCUSSION

All results were computed on an Intel Core i7 960

processor clocked at 3.2 GHz. The computation is performed

entirely on the CPU, using OpenMP directives to parallelize

some processing stages, including planar regions growing

and weighting of the cell complex.

We have tested our algorithm on three real-world datasets.

These datasets were acquired by LIDAR laser scanning

with a sampling resolution of 24mm at 10 meters. The first

dataset, which we denote as ROOM, corresponds to a single

room. The other two (OFFICE 1 and OFFICE 2) correspond

to corridors with attached rooms acquired in two different

office environments.

We also created and tested a synthetic model (SYN-

THETIC, shown in Figure 6). The model has been generated

manually using a 3D modeling software and has virtually

been scanned from 7 positions to simulate the result of

3D laser scanning. The sampling resolution in this virtual

scanning process was set to the one used in real-world

acquisitions. To make the simulation more realistic, we

corrupted the depth measurements using Gaussian noise with

σ = 0.25cm.

Relevant statistics about the used datasets together with

experimental results and timings are listed in Table I. Beyond

the basic data, the table shows the number of extracted

candidate wall patches (column 4), the number of rooms

in the input data set (column 5), the number of rooms

detected by the method (column 6) and the number of

rooms missed (column 7). Overall we can see that there

is a single misclassification error in all our datasets (the



Dataset Points Scans Walls Rooms Detected Missed Phase 1 Phase 2 Phase 3 Sum

ROOM 8.3M 3 21 1 1 0 6.5s 13.8s 1.4s 21.7s

OFFICE 1 11.1M 4 50 3 3 0 7.1s 25.1s 1.5s 33.7s

OFFICE 2 13.8M 5 57 2 3 0 8.8s 31.7s 1.6s 42.1s

SYNTHETIC 19.4M 7 125 4 4 0 14.1s 47.0s 0.9s 62.0s

Table I
DESCRIPTION OF OUR DATASETS WITH STATISTICS AND RUNNING TIMES. COLUMN Walls CORRESPONDS TO THE NUMBER OF EXTRACTED WALL

PATCHES, Detected AND Missed TO THE NUMBER OF ROOMS RESPECTIVELY DETECTED AND MISSED BY OUR METHOD. Phase 1 CORRESPONDS TO

WALL CANDIDATE DETECTION, Phase 2 TO ROOM SEGMENTATION, AND Phase 3 TO WALL RECONSTRUCTION.

above-mentioned over-segmentation) and that no room was

missed by our method. The timings show that the algorithm

is reasonably fast for up to 20M input points. From the

overall times we deduce that the computation time grows

slightly faster than linearly with respect to the number of

points in the input model.

The ROOM dataset is shown in the first row of Figure 7.

Due to the large window front this is an exceptionally

difficult setting for the laser scanner, resulting in many

reflection artifacts and thus in a huge number of outliers.

Nevertheless, our algorithm is able to correctly extract the

shape of the room. OFFICE 1 (row 2) represents a more

complex environment composed of multiple rooms. Our

algorithm accurately detects the individual rooms and the

associated polyhedra. The highly anisotropic shape of the

corridor in OFFICE 2 (row 3) is also reconstructed well by

our algorithm and correctly separated from the neighboring

room (shown in red). In this case, the corridor is split into

two different clusters (shown in green and blue), resulting

in over-segmentation. However, such an error can be easily

corrected interactively by means of simple user sketching.

SYNTHETIC (row 4) has a complex building structure and

shows a case that does not comply with the Manhattan

World assumption as OFFICE 1. Nevertheless, our algorithm

works flawlessly for this input and can retrieve the bounding

polyhedra of all 4 rooms.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a system for the automatic recon-

struction of complex indoor environments that can correctly

segment the input model into separate rooms. Our method

is robust to clutter and occlusions and performs well in real-

world scenarios. We regard our algorithm as a first step

towards going beyond simple geometric reconstruction to

extract semantic information from the input dataset.

As for all current approaches, our approach has also some

limitations. In particular, we consider only buildings that

have planar, vertical walls as well as horizontal ceilings. We

focus on the robust extraction of basic room shapes, and

do not attempt to recognize fine architectural details. As

a future goal we would like to create a fully parametrized

architectural model that could serve as a basis for the editing

work of a designer. We also plan to incorporate slanted walls,

curved surfaces and other typical architectural structures into

our robust pipeline.
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