
ar
X

iv
:h

ep
-la

t/0
30

80
05

v1
 8

 A
ug

 2
00

3

Parallel implementation of a lattice-gauge-theory code:
studying quark confinement on PC clusters

Attilio Cucchieri, Tereza Mendes, Gonzalo Travieso
Instituto de Fı́sica de São Carlos, Universidade de São Paulo

C.P. 369, 13560-970 São Carlos, SP, Brazil
attilio@if.sc.usp.br, mendes@if.sc.usp.br, gonzalo@if.sc.usp.br

Andre R. Taurines
Instituto de Fı́sica, Universidade Federal do Rio Grande doSul

Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 PortoAlegre, RS, Brazil
taurines@if.ufrgs.br

Abstract

We consider the implementation of a parallel Monte
Carlo code for high-performance simulations on PC clus-
ters with MPI. We carry out tests of speedup and efficiency.
The code is used for numerical simulations of pureSU(2)
lattice gauge theory at very large lattice volumes, in order
to study the infrared behavior of gluon and ghost propaga-
tors. This problem is directly related to the confinement of
quarks and gluons in the physics of strong interactions.

1. Introduction

The strong force is one of the four fundamental interac-
tions of nature (along with gravity, electromagnetism and
the weak force). It is the force that holds together protons
and neutrons in the nucleus. The strong interaction is de-
scribed by Quantum Chromodynamics (QCD), a quantum
field theory with localSU(3) gauge invariance [27]. QCD
states that a baryon (e.g. a proton or a neutron) is not an el-
ementary particle but is instead made up of building blocks
calledquarks, interacting through the exchange of mass-
less particles calledgluons(equivalent to the photons in the
electromagnetic interaction). A unique feature of the strong
force is that the particles that feel it directly — quarks and
gluons — are completely hidden from us, i.e. they are never
observed as free particles. This property is known ascon-
finement and makes QCD much harder to handle theoret-
ically than the theories describing the weak and electro-
magnetic forces. Indeed, it is not possible to study the con-
finement problem analytically and physicists must therefore
rely on numerical simulations performed on supercomput-
ers. These studies are done using thelattice formulation

of QCD [28], which is based on field quantization through
Feynman integrals and discretization of space-time on a
four-dimensional (Euclidean) lattice. In this formulation —
introduced by Wilson in 1974 [32] — the theory becomes
equivalent to a model in statistical mechanics and can be
studied numerically by Monte Carlo simulations [22]. After
over two decades [7] of developments in the methodology
for the numerical study of QCD and with present-day com-
puters in the teraflops range, lattice-QCD simulations are
now able to provide quantitative predictions with errors of
a few percent. This means that these simulations will soon
become the main source of theoretical results for compari-
son with experiments in high-energy physics [15], enabling
a much more complete understanding of the physics of the
strong force.

The study of lattice QCD constitutes aGrand Chal-
lengecomputational problem [14]. Consequently, lattice-
QCD physicists are natural users of high-performance com-
puting and have contributed to the development of super-
computer technology itself. In fact, several research groups
have built QCD-dedicated computers, using parallel archi-
tecture. Examples are theHitachi/CP-PACS machine
at the University of Tsukuba in Japan [21], theQCDSP
andQCDOC machines at Columbia University in the USA
[26, 5], and theAPE machines [3, 2] at various research
centers in Italy and Germany. These computers range from
about 1 to 10 teraflops. In addition to these large projects,
many groups base their simulations on clusters of work-
stations or personal computers (PC’s) [25], since costs are
much lower and maintenance is simpler.

In Brazil, the first PC cluster dedicated to lattice-QCD
studies was installed in 2001 at the Physics Department of
the University of São Paulo in São Carlos (IFSC–USP),
as part of a FAPESP project. The group is currently in-

http://arxiv.org/abs/hep-lat/0308005v1

vestigating the behavior of gluon and ghost propagators in
Landau gauge [13, 4], with the goal of verifying Gribov’s
proposed mechanism for quark confinement [19, 33]. This
study requires careful consideration of the infrared behav-
ior of these propagators, i.e. their behavior at small momen-
tum p (typically p ≪ 1 GeV). Since the smallest non-zero
momentum that can be considered on a lattice is given by
pmin ≈ 2π/L — whereL is the size of the lattice in phys-
ical units — it is clear that one needs to simulate at very
large lattice sizes in order to probe the small-momentum
limit. For example, to havepmin ≈ 0.06 GeV with a lat-
tice spacing of about0.17 fm (i.e. physically relevant values
for small momentum and fine enough lattice1), one needs
to simulate on a lattice with140 sites in each direction.
This is considerably more than what can be currently done
in QCD simulations. On the other hand, Gribov’s predic-
tions are also valid for simpler cases of lattice gauge theo-
ries [33], such as three-dimensional two-color QCD with in-
finitely massive quarks, i.e. (pure)SU(2) lattice gauge the-
ory in three dimensions. This corresponds to considering
theSU(2) [instead of theSU(3)] gauge group [31], tak-
ing three (instead of the usual four) space-time dimensions
and making the so-called quenched approximation [28]. In
this case it was possible to simulate on1403 lattices and
to see clear evidence of Gribov’s predicted behavior for the
gluon propagator [12]. This represents the largest number of
points per direction ever considered in lattice-gauge-theory
simulations. The study is currently being extended to even
larger lattices (up to2603) aiming at a more quantitative un-
derstanding of Gribov’s confinement scenario. The consid-
eration of very large lattice sizes requires parallelization and
high efficiency of the code in order to obtain good statistics
in the Monte Carlo simulation. Thus, an optimized paral-
lel code is of great importance.

The purpose of the present paper is to describe the imple-
mentation of the code used in the study above, including a
discussion of speedup (at fixed and variable volume) and ef-
ficiency. The algorithms for these simulations and their par-
allelization are briefly reviewed in Section 2. Our PC clus-
ter is described in Section 3, together with the performance
of the code. Finally, in Section 4 we comment on the re-
sults and report our conclusions.

2. The algorithms

Lattice field theories are defined2 by a functional of the
fields — the actionS[U] — which determines the (unrenor-
malized) statistical weighte−S[U] of a given field config-
uration{U}. All quantities of interest, calledobservables,

1 We note that 1 fm =10−13 cm is approximately the size of a proton.
2 One usually considers units such thath̄ = c = 1, wherēh is the Plank

constant andc is the speed of light in vacuum.

are computed as weighted averages over the configurations,
with the weight function above. For a generic observable
O[U] this average is defined as

〈O〉 ≡

∑
U O[U] e−S[U]

∑
U e−S[U]

. (1)

In our case{U} is given by the gluon fieldUµ(x), which is
a matrix defined on each sitex and for each directionµ of
the lattice. The observables we consider are the gluon and
ghost propagators.

The standard Wilson action forSU(2) lattice gauge the-
ory in d dimensions is [32]

S [U] ≡
β

2

d∑

µ,ν=1

∑

x

{
1 −

1

2
TrPµν

}
, (2)

where the plaquettePµν is given by the product of the gluon
fieldsUµ(x) around a closed1× 1 loop:

Pµν ≡ Uµ(x) Uν(x+ eµ) U
−1
µ (x+ eν) U

−1
ν (x) . (3)

Here,Uµ(x) areSU(2) matrices,x (with coordinatesxµ =
1,2, . . . ,Nµ) are sites on ad-dimensional lattice with peri-
odic boundary conditions andeµ is a unit vector in the pos-
itive µ direction. The parameterβ controls the proximity to
the continuum limit. The action in eq. (2) is invariant un-
der the so-calledlocal gauge transformation

Uµ(x) → U (g)
µ (x) ≡ g(x) Uµ(x) g

−1(x+ eµ) , (4)

where g(x) are generalSU(2) matrices. Indeed, gauge
theories are systems with redundant dynamical variables,
which do not represent true dynamical degrees of freedom.
This implies that the objects of interest are not the gluon
fieldsUµ(x) themselves, but rather the classes (orbits) of

gauge-related fieldsU (g)
µ (x). The elimination of such re-

dundant gauge degrees of freedom is often essential for un-
derstanding and extracting physical information from these
theories. This is usually done by a method calledgauge
fixing, in which a unique representative is chosen on each
gauge orbit [18].

For anSU(2) matrix we shall use the parametrization

g ≡ g0 1⊥+ i~σ · ~g =

(
g0 + ig3 g2 + ig1

−g2 + ig1 g0 − ig3

)
, (5)

where the components of~σ ≡ (σ1,σ2,σ3) are the three
Pauli matrices [31] and· stands for scalar product. Then,
the adjoint of a matrixg ∈ SU(2) is given by

g† = g−1 = g0 1⊥− i~σ · ~g . (6)

Also, note that the unitarity conditiondet g = 1 (wheredet
indicates the determinant of a matrix) impliesg20 + g21 +

g22 + g23 = 1, namely anSU(2) matrix can be consid-
ered as a four-dimensional unit vector. For the gluon field
Uµ(x) ∈ SU(2) one usually writes

Uµ(x) = A0,µ(x) 1⊥ + i~σ · ~Aµ(x) . (7)

Our goal is to evaluate numerically the gluon and ghost
propagatorsD(k) andG(k), defined in Section 2.3 [see eqs.
(28) and (29)]. To this end one needs to (i) produce a ther-
malized configuration{Uµ(x)} by Monte Carlo simulation,
(ii) gauge fix this configuration, (iii) evaluate the propaga-
tors using the gauge-fixed configuration. These steps are de-
scribed in detail in Sections 2.1, 2.2, 2.3 and are schemati-
cally represented in the code below:

main()

{

/* set parameters: beta, number of

configurations NC, number of

thermalization sweeps NT, etc. */

read_parameters();

/* {U} is the link configuration */

set_initial_configuration(U);

for (int c=0; c < NC; c++) {

thermalize(U,NT);

gauge_fix(U,g);

evaluate_propagators(U,D,G);

}

}

Note that the gauge-fixing step consists in finding a
gauge transformation{g(x)} [see eq. (4)] leading to a given
gauge condition. In our case, since we are interested in Gri-
bov’s predictions, we employ the so-calledLandau gauge.

The general setup of our simulations is described in Sec-
tion 3.

2.1. Thermalization

In (dynamic) Monte Carlo simulations [22] the weighted
configuration-space average defined in (1) is substituted by
a time average over successive realizations (i.e. configura-
tions) of the considered system, which evolves according to
a Markov process in the so-called Monte Carlo time. Usu-
ally, the system is updated by sweeping over all sites of the
lattice and generating a new value for the field at each site
based on the conditional probability distribution obtained
by keeping all other field variables fixed. In theheat-bath
update, for example, this single-site distribution is sampled
exactly. In QCD simulations one considers only effectively
independent field configurations. This means that one fol-
lows the system’s evolution for a large enough number of
time steps such that a statistically independent new config-
uration is generated, discarding the intermediate steps. Per-

forming the Monte Carlo iterations to obtain such indepen-
dent field configurations is calledthermalization.

To thermalize the fields{Uµ(x)} we use a standard heat-
bath algorithm [6] accelerated byhybrid overrelaxation[1].
This corresponds to doingn micro-canonical(or energy-
conserving) update sweeps over the lattice, followed by one
local ergodic update (a heat-bath sweep). As explained be-
low, the micro-canonical sweeps are important for a more
efficient sampling of the configuration space. For the heat-
bath update, one considers the contribution of a single link
variableUµ(x) to the Wilson action (2). This single-link ac-
tion is given by

SSL = −
β

2
Tr [Uµ(x)Hµ(x)] + constant , (8)

where the “effective magnetic field”Hµ(x) is defined as

Hµ(x) ≡
∑

ν 6=µ

[
Uν(x+ eµ)U

−1
µ (x + eν)U

−1
ν (x)

+U−1
ν (x− eν + eµ)U

−1
µ (x− eν)Uν(x − eν)

]
. (9)

Since the matrixHµ(x) is proportional to anSU(2) matrix,
we can write it as

Hµ(x) ≡ Nµ(x) H̃µ(x) , (10)

with H̃µ(x) ∈ SU(2) andNµ(x) ≡
√
detHµ(x). Then,

by using the invariance of the group measure under group
multiplication, one obtains the heat-bath update [6]

Uµ(x) → V H̃−1
µ (x) , (11)

where theSU(2) matrixV = v01⊥+ i~σ ·~v must be gener-
ated by choosingv0 according to the distribution

√
1 − v20 exp [βNµ(x) v0] dv0 (12)

and the vector~v (which is normalized to
√
1 − v20) point-

ing along a uniformly chosen random direction in three-
dimensional space.

The vector~v can be easily generated. For example, if we
use cylindrical coordinates we may take

v1 =
√
(1− ρ2) (1− v20) cosφ (13)

v2 =
√
(1− ρ2) (1− v20) sinφ (14)

v3 =
√
1− v20 ρ (15)

with ρ uniformly distributed in[−1,1] andφ uniformly dis-
tributed in [0,2 π]. On the contrary, the problem of gener-
ating v0 according to the distribution (12) is considerably
more involved. Three different rejection methods for this
purpose are considered in [17, Appendix A]. Here, we use
their algorithms called method 1 and method 2, with a cut-
off value of2.0 for the quantityβNµ(x), namely method 1

is used whenβNµ(x) < 2.0 and method 2 is used other-
wise.

In order to implement the heat-bath method one also
needs a (parallelized) random number generator. Here we
adopt theRANLUX generator, which is based on chaos the-
ory [24]. More precisely, we use a double-precision imple-
mentation ofRANLUX (version 2.1) with luxury level set to
2.

Let us now consider the (deterministic) micro-canonical
update, used in the hybrid overrelaxed algorithm:

Uµ(x) → H̃−1
µ (x)Tr

[
Uµ(x) H̃µ(x)

]
− Uµ(x) . (16)

From formulae (8) and (10) it is easy to see that this update
does not change the value of the actionSSL. On the other
hand, the step in (16) represents a large move in configu-
ration space [1]. Thus, one can alternate micro-canonical
sweeps of the lattice and heat-bath updates in order to re-
duce the problem of critical slowing-down, which afflicts
Monte Carlo simulations of critical phenomena [30]. The
efficiency of the hybrid overrelaxed algorithm may be op-
timized by tuning the value ofn, i.e. the number of micro-
canonical sweeps between two heat-bath sweeps.

2.2. Landau gauge fixing

For a given thermalized lattice configuration{Uµ(x)},
Landau gauge fixing is obtained by looking for a gauge
transformation{g(x) ∈ SU(2)} that brings the functional

EU [g] ≡ −
d∑

µ=1

∑

x

Tr
[
g(x) Uµ(x) g

†(x+ eµ)
]

(17)

to a local minimum, starting from randomly chosen{g(x)}
[18]. Thus, from the numerical point of view, fixing the lat-
tice Landau gauge is a minimization problem. Here, we
consider three different (iterative) gauge-fixing algorithms
[8, 9]: the so-calledCornell (COR) method, thestochas-
tic overrelaxation(SOR) algorithm and theFourier accel-
eration (FA) algorithm. Let us notice that the first two al-
gorithms are based on local updates for the matricesg(x)
and have dynamic critical exponentz = 1. This means that
the number of iterations required to achieve a given accu-
racy in the minimization of the functionalEU [g] grows as a
function of the lattice sideN asNd+1, when considering a
symmetric lattice ind dimensions. On the other hand, the
FA algorithm is based on a global update and hasz = 0 [at
least for sufficiently smooth field configurations{Uµ(x)}].
Its computational work grows roughly asNd. Thus, even
though the CPU time necessary to update a single-site vari-
ableg(x) is much smaller for the two local methods than for
the FA method, the latter should clearly be used when con-
sidering very large values ofN .

The updateg(x) → gnew(x) for the COR and the SOR
methods can be written in terms of local quantities — i.e.
quantities defined only in terms of the sitex — and of the
matrix

h(x) ≡
d∑

µ=1

[
Uµ(x) g

†(x+ eµ)

+U †
µ(x − eµ)g

†(x− eµ)
]

. (18)

On the contrary, for the FA method one needs to evaluate

~u(x) =
[
(−∆)

−1
~w
]
(x) , (19)

wherew(x)≡ g(x)h(x), the three-dimensional vector~w is
given by [see eq. (5)]

2 i ~σ · ~w(x) ≡ w(x) − w†(x) (20)

and−∆ is (minus) the lattice Laplacian, defined for a gen-
eral vector field~f(x) as

(
−∆~f

)
(x) ≡

d∑

µ=1

[
2~f(x)− ~f(x+eµ)− ~f(x−eµ)

]
.

(21)
From eq. (19) it is evident that the FA method is actually a
Laplacian preconditioning algorithm.

Traditionally the inversion of the lattice Laplacian is
done using a fast Fourier transform (FFT), after writing

(−∆)
−1

= F̂−1 1

p2
F̂ , (22)

whereF̂ indicates the Fourier transform,̂F−1 is its inverse
andp2 is the squared magnitude of the lattice momentum.
Alternatively [10], the inversion of the Laplacian may be
done using a multigrid (MG) algorithm or a conjugate gra-
dient (CG) method, avoiding the use of the FFT, which has
high communication costs in a parallel implementation. In-
deed, one obtains [10, 11] the same convergence as for the
original algorithm (based on FFT), when using an accuracy
of about10−3 for the MG or CG (iterative) inversion. At
the same time, the computational cost of the new imple-
mentations is smaller than that of the FFT-FA method when
considering large lattice volumes. This is true even for a
non-parallelized code. Moreover, the MG-FA and CG-FA
algorithms are well suited for vector and parallel machines
and they make the FA method more flexible, i.e. it works
equally well with any lattice side.3 Here we do the inver-
sion of the Laplacian using a CG method preconditioned
with red/black ordering [16]. As stopping criterion we con-
siderrt/r0 ≤ 10−3, wherert is the magnitude of the CG

3 We note that the FFT is slightly less efficient for lattice sidesN that
are not powers of 2 [34].

residual after t iterations. We note that, with this stopping
criterion, one can do the inversion in single precision, even
though the rest of the code is written in double precision.
This corresponds to a speed-up of almost a factor 2 in the
inversion.

Let us stress that the three algorithms considered above
require the tuning of a free parameter in order to attenu-
ate critical slowing-down, or equivalently in order to reduce
the computational work. Notice however that the CPU time
necessary to update a single-site variableg(x) is essentially
independent of the value of the tuning parameter.

2.2.1. Convergence of the gauge fixingSeveral quanti-
ties have been introduced in order to check the convergence
of Landau-gauge-fixing algorithms [8]. We consider here

(∇A)2 ∝
∑

x

3∑

b=1

[
(∇ ·Ab) (x)

]2
, (23)

which is commonly used in numerical simulations, and

ΣQ ≡
1

d

d∑

µ=1

1

3Nµ

3∑

b=1

Nµ∑

xµ=1

[
Qb,µ(xµ)−Qb,µ

]2
[
Qb,µ

]2 ,

(24)
which provides a very sensitive test of the goodness of the
gauge fixing. Let us recall that

(∇ ·Ab) (x) ≡
d∑

µ=1

[Ab,µ(x)−Ab,µ(x− eµ)] (25)

is the lattice divergence ofAb,µ(x) [see eq. (7)]. We also
define

Qb,µ ≡
1

Nµ

Nµ∑

xµ=1

Qb,µ(xµ) , (26)

where the quantities

Qb,µ(xµ) ≡
∑

ν 6=µ

∑

xν

Ab,µ(x) µ = 1, . . . ,d

(27)
are constant (i.e. independent ofxµ) if the Landau-gauge-
fixing condition is satisfied. The two quantities(∇A)2 and
ΣQ are expected to converge to zero exponentially (and
with the same exponent) as a function of the number of
gauge-fixing sweeps, even though their sizes may differ
considerably.

2.3. Evaluation of the propagators

A propagator of a field is a two-point function, i.e. a cor-
relation function between values of the field at two different
points in space-time [23]. In quantum mechanics, the prop-
agator determines the evolution of the wave function of a
system and, for a particle, it gives the probability amplitude

of going (i.e. propagating) from a point in space-time to an-
other [29]. More generally, Green’s functions (i.e.n-point
functions) carry all the information about the physical and
mathematical structure of a quantum field theory. From this
point of view, two-point functions (propagators) are a the-
ory’s most basic quantities and the gluon propagator may
be thought of as the most basic quantity of QCD. The ghost
propagator appears in the theory as a consequence of the
gauge-fixing procedure described above.

The gluon propagator is conveniently defined in momen-
tum space as

D(k) ∝
∑

µ, b
〈 |
∑

x

Ab,µ(x) exp (2πik · x) |2 〉 . (28)

Here, b goes from1 to 3 [when considering theSU(2)
gauge group],µ goes from1 to d (d = 3 for three-
dimensional space-time),k has componentskµ taking val-
ueskµ Nµ = 0,1, . . . ,Nµ − 1 and the fieldAb,µ(x) is de-
fined in eq. (7). Note that· stands for scalar product and
| . . . | indicates the norm of a complex number.

The numerical evaluation of the ghost propagator (in mo-
mentum space) is considerably more involved. In fact, one
has to calculate

G(k) ∝
∑

x,y
e−k·(x−y)

∑

b

〈
(
M−1

)
b b

(x,y;U) 〉, (29)

where the matrixMab(x, y;U) is a sparse matrix that de-
pends on the gluon fieldUµ(x). (For an explicit definition
of this matrix see eq. (B.18) in [33].) Note that, since the
color indicesa andb go from1 to 3 [for theSU(2) group]
and if there areNd lattice sites, the size of this matrix is
3Nd × 3Nd.

The inversion of the matrixMab(x,y;U) can be done
using a CG method with red/black ordering, as in the case
of the lattice Laplacian considered above for gauge fixing.
This part of our code has not been parallelized yet, but we
expect to obtain a speedup comparable to the one obtained
for the lattice-Laplacian case.

2.4. Parallelization

As said above, we need a parallelized code in order to
simulate at very large lattice sizes. We have started by con-
sidering theQCDMPI package [35], which is based on the
work of Hioki [20]. The advantages of this package are its
portability and the efficient way of evaluating the effective
magnetic fieldHµ(x) — also called thestaple— defined in
eq. (9). In particular, the extra memory space required for
communication is considerably reduced with respect to pre-
vious implementations. The originalQCDMPI code is writ-
ten for pureSU(3) lattice gauge theory ind dimensions
(d ≥ 2) and performs only the (heat-bath) thermalization
step of the simulation. We have adapted the original code

to theSU(2) case and improved the generation ofv0 ac-
cording to the distribution (12). More precisely (see Sec-
tion 2.A), we have added method 1 and a more efficient ver-
sion of method 2. At the same time, we have introduced the
micro-canonical step, the various Landau-gauge-fixing al-
gorithms discussed in Section 2.B (i.e. the COR, SOR and
CG-FA methods), the calculation of the quantities(∇A)2

andΣQ for checking the convergence of the gauge fixing,
and the evaluation of the gluon propagator. (As mentioned
above, we have not yet parallelized the evaluation of the
ghost propagator.)

For the parallelization, we divide the lattice equally
among the nodes, i.e. we placev = V/M sites of the lat-
tice in each node, whereV is the lattice volume and we use
M nodes. Each node gets a contiguous block of lattice sites.
We will refer to this block of sites as thelocal lattice in a
node. Note that, in general, not all directionsµ of the lat-
tice are divided between different nodes and that, in order
to use a red/black ordering, the number of sitesv in each
node must be even.

Let us stress that communication is required for the eval-
uation of the stapleHµ(x), for the calculation ofh(x) [see
eq. (18)] and (in the CG-FA method) for the inversion of
the lattice Laplacian [see eq. (21)]. Also, the evaluation of
the quantities(∇A)2 andΣQ (see Section 2.B.1) requires
some level of communication in a parallel code, while for
the gluon propagator [see eq. (28)] one has to perform only
a sum over the whole lattice. Since the expressions to be
parallelized involve at most quantities at lattice sites that are
nearest neighbors, communication is required only for sites
on the boundary of the local lattice in a node. Moreover,
simulations are usually done in three or four dimensions,
leading to a high granularity due to the surface/volume ef-
fect.

All communications in [20] are carried out using just two
subroutines. The first (calledsetlink) sends data from a
node to the previous one in a given direction. The second
subroutine (calledslidematrix) sends data from a node
to the next one (in a given direction). Clearly, these two rou-
tines are all we need in order to perform the communica-
tions required in our code.

3. Performance

As mentioned in the Introduction, our simulations were
done on a PC cluster at the IFSC-USP. The system has 16
nodes and a server, all with 866 MHz Pentium III CPU. The
nodes have 256 MB RAM memory (working at 133 MHz)
and the operating system isDebian GNU/Linux (ver-
sion 3.0r0). The machines are connected with a 100 Mbps
full-duplex network through a3COM switch. All user direc-
tories are located on the server, which has twoSCSI disks,

and are mounted by the nodes (usingNFS). The server is
not used for the computations.

Our code (as well as theQCDMPI package) is writ-
ten inFORTRAN 77 making use ofMPI for communica-
tion. The code may be run for a general lattice dimension
d ≥ 2. As said before, we consider hered = 3. We use
MPICH (version 1.2.1-16) and the compilerg77 (version
0.5.24). The compilation has been done with the follow-
ing four options -march=pentiumpro -fomit-frame-pointer
-mpreferred-stack-boundary=2 -O3.

Table 1: Average CPU-time (inµs) to update a link vari-
ableUµ(x) using heat-bath (thb) or micro-canonical update
(tmc). Errors are one standard deviation.

M Node topol. thb tmc

1 1× 1× 1 10.341(4) 6.0190(1)
2 2× 1× 1 5.6(2) 3.2099(4)
4 2× 2× 1 2.78(2) 1.6958(3)
4 4× 1× 1 2.898(6) 1.817(3)
8 2× 2× 2 1.435(7) 0.8881(3)
8 4× 2× 1 1.48(2) 0.9125(6)
8 8× 1× 1 1.9(1) 1.236(4)
16 4× 2× 2 0.758(7) 0.4732(3)
16 4× 4× 1 0.75(1) 0.4614(4)
16 8× 2× 1 0.849(8) 0.5677(3)
16 16× 1× 1 1.25(1) 0.6735(5)

We now describe the setup of a complete simulation.
As said in Section 2.A, we generate statistically indepen-
dent field configurations to be used for the evaluation of the
Monte Carlo average of an observable, which provides an
estimate of the average in eq. (1). In order to reduce the sta-
tistical error (i.e. the Monte Carlo error) of this estimate,
one typically needs to produce hundreds of such configura-
tions. For each of them there are two computational steps
involved: the Monte Carlo generation of a new indepen-
dent field configuration and the evaluation of the desired ob-
servables. The first step is the thermalization, which in our
case is done using the hybrid overrelaxed algorithm. This
usually requires hundreds of sweeps of the lattice, corre-
sponding to several hours to produce a new configuration.
The second step is often even more time-consuming. In our
case the evaluation of the observables (i.e. the propagators)
is done only after the new configuration has been gauge-
fixed, by an iterative minimization procedure. One usually
needs thousands of iterations in order to reach a prescribed
accuracy (for exampleΣQ ≤ 10−12, required for a good
quality of the gauge fixing). The actual computation of the
gluon propagator requires a negligible time. (This is not true
for the ghost propagator.) Consequently, for typical values

of lattice volumes, a complete simulation may take several
months. For example, in order to produce the (preliminary)
data reported in [12], the code was running on our PC clus-
ter for almost three months. The production of the corre-
sponding final results is expected to take almost one year of
runs. As an illustration, forV = 1403 andβ = 6.0 the aver-
age CPU-times (per configuration) using 4 nodes are: about
8 hours for thermalization and about 21 hours for gauge fix-
ing (using COR or SOR methods). We note that the total
CPU-time per configuration is not appreciably affected by
changes in the parameterβ. [More precisely, for smaller (re-
spectively larger) values ofβ one spends a little less (resp.
more) time for thermalization and a little more (resp. less)
time for gauge fixing.] We plan to use the CG-FA method
in future production runs, to reduce the percentage of time
spent in gauge fixing.

We report below on some runs performed for testing the
speedup and efficiency of our code.

3.1. Speedup at fixed volume

We did tests for the various algorithms, considering a
fixed lattice volumeV = 643, using 1, 2, 4, 8 and 16 nodes.
Let us note that this lattice size is relatively small. In fact,
it can be simulated on a single node (without paralleliza-
tion) using less than20% of the memory (about24% if one
employs the CG-FA method for gauge fixing). Thus, since
communications are proportional to the surface area of the
local lattice in a node, these tests correspond to a worse sit-
uation than the one we considered for our production runs
in [12].

In Tables 1 and 2 we report the average CPU-time (in
micro-seconds) necessary to update a link variableUµ(x)
using a heat-bath (thb) or a micro-canonical update (tmc),
and the time to update a site variableg(x) using the gauge-
fixing methods COR (tcor), SOR (tstoc) or CG-FA (tcg).
These CPU-times are given for different values of the num-
ber of nodesM and different (three-dimensional) node
topology.

3.2. Speedup at variable volume

We also did tests at variable volume, considering five dif-
ferent node topologies:1 × 1 × 1, 1 × 1 × 2, 1 × 2 × 2,
2 × 2 × 2 and 2 × 2 × 4, corresponding respectively to
M = 1, 2, 4, 8 and 16 nodes. For each node topology we
have simulated using three different lattice volumesV . Re-
sults of these tests are reported in Tables 3 and 4 for dif-
ferent numbers of nodesM and for the various lattice vol-
umes. As can be seen from the first two columns in these ta-
bles, the lattice volumes have been chosen so that the local
lattice volumev = V/M is always given by one of the fol-
lowing cases:43, 163 and643. Let us note that this arrange-

Table 2: Average CPU-time (inµs) to update a site variable
g(x) using gauge-fixing methods COR (tcor), SOR (tstoc)
or CG-FA (tcg). Errors are one standard deviation.
M Node topol. tcor tstoc tcg

1 1× 1× 1 5.606(2) 6.272(2) 253(1)
2 2× 1× 1 2.9659(7) 3.295(1) 136.2(2)
4 2× 2× 1 1.560(1) 1.7232(5) 70.9(3)
4 4× 1× 1 1.6063(5) 1.789(1) 73.6(3)
8 2× 2× 2 0.819(1) 0.9011(4) 37.5(1)
8 4× 2× 1 0.833(1) 0.9175(7) 37.2(1)
8 8× 1× 1 1.0228(5) 1.1133(4) 43.5(1)
16 4× 2× 2 0.4383(3) 0.4771(2) 18.99(5)
16 4× 4× 1 0.4315(4) 0.4706(1) 18.43(5)
16 8× 2× 1 0.4870(6) 0.5296(2) 19.22(6)
16 16× 1× 1 0.5924(4) 0.644(3) 27.29(5)

ment is closer to what is usually considered for production
runs. In fact, when carrying out parallel simulations at in-
creasingly large lattice volumes on a PC cluster, it is prefer-
able to fill up the memory in each node before increasing
the number of nodes. (This reduces the percentage of time
spent in communication.)

Table 3: Average CPU-time (inµs) to update a link vari-
ableUµ(x) using heat-bath (thb) or micro-canonical update
(tmc). Errors are one standard deviation.

M V thb tmc

1 43 4.76(1) 1.028(2)
1 163 8.05(6) 4.1821(9)
1 643 10.383(5) 6.0186(1)
2 42 × 8 9.19(2) 7.08(1)
2 162 × 32 4.9(1) 2.7561(9)
2 642 × 128 5.39(7) 3.1184(2)
4 4× 82 8.1(2) 7.4(3)
4 16× 322 2.708(9) 1.6940(9)
4 64× 1282 2.768(3) 1.6175(3)
8 83 5.94(8) 5.02(6)
8 323 1.54(2) 1.0090(2)
8 1283 1.55(8) 0.8447(3)
16 82 × 16 5.8(6) 4.4(2)
16 322 × 64 0.763(2) 0.5111(3)
16 1282 × 256 0.77(1) 0.436(1)

Table 4: Average CPU-time (inµs) to update a site variable
g(x) using gauge-fixing methods COR (tcor), SOR (tstoc)
or CG-FA (tcg). Errors are one standard deviation.
M V tcor tstoc tcg

1 43 1.21(7) 1.60(1) 4.26(3)
1 163 3.90(1) 4.224(6) 19.82(4
1 643 5.606(2) 6.272(2) 253(1)
2 42 × 8 6.41(8) 6.79(4) 117.2(6)
2 162 × 32 2.413(5) 2.679(4) 31.38(6)
2 642 × 128 2.885(1) 3.2329(4) 122(3)
4 4× 82 6.2(2) 6.10(6) 125.1(2)
4 16× 322 1.497(3) 1.571(3) 26.47(5)
4 64× 1282 1.4935(2) 1.6634(3) 63.7(7)
8 83 4.53(6) 4.64(5) 96.1(9)
8 323 0.862(2) 0.927(1) 18.83(8)
8 1283 0.7620(2) 0.8528(1) 31.5(2)
16 82 × 16 3.56(7) 4.4(2) 89.6(7)
16 322 × 64 0.4496(7) 0.480(1) 14.25(4)
16 1282 × 256 0.3942(3) 0.4385(2) 17.6(5)

4. Results and conclusions

The CPU-times reported above indicate that the paral-
lelization is rather good for the five algorithms considered
(the heat-bath and micro-canonical methods for thermaliza-
tion, and the COR, SOR and CG-FA methods for gauge fix-
ing). Also, the values for the speedupS = t1/tM (and the
efficiencyE = S/M) are very similar for the five cases.
We therefore take averages over the five methods and report
them in Table 5. In the fixed-volume case we present results
for node topologies2×2×1, 2×2×2 and4×4×1 respec-
tively for the casesM = 4, 8 and 16. (This corresponds to
the best performance for a given number of nodes.) In the
variable-volume case we consider results obtained using the
largest lattice volume for each node topology. We clearly
see that one obtains a good parallelization even in the fixed-
volume case and using a relatively small lattice volumeV .
Indeed, the efficiency decreases slowly when doubling the
number of nodes and it is still about 0.84 atM = 16. As
expected, the performance is better for the variable-volume
case when considering large values of the local lattice vol-
umev in a node. As said above, this test is closer to the sit-
uation usually considered in production runs, with local lat-
tice sizes using more than50% of the memory of each node.

The data for the speedup at variable volume reported in
Table 5 are well fitted by the functionS(M) = M (1 −
c logM) with c = 0.038 ± 0.001. The corresponding plot
is shown in Figure 1. This would mean a speedup of almost
400 for 512 nodes.

Note that the efficiency loss in going from 1 toM nodes

Table 5: Average speedup and efficiency.
Fixed volume Variable volume
S E S E

1 → 2 1.87(2) 0.937(8) 1.96(2) 0.981(8)
1 → 4 3.61(1) 0.904(3) 3.79(1) 0.948(3)
1 → 8 6.91(2) 0.863(2) 7.31(8) 0.91(1)
1 → 16 13.38(6) 0.836(3) 14.5(3) 0.88(1)

at variable volumeV and smallv is due to the effect of node
communication over the usage of the cache memory.

We conclude that the parallelization of our code works
very well and that simulations of this type are very viable
on a PC cluster. Let us point out again the main results
of the parallel implementation described in this paper. We
have adapted and extended the packageQCDMPI, which
shows good parallelization but performs only thermaliza-
tion of the gluon fields. The resulting code employs a more
efficient thermalization algorithm and also performs gauge
fixing and evaluation of propagators, with essentially the
same parallel performance as the original package.

For the future we plan to (i) parallelize the codes for
the evaluation of the ghost propagator and for the MG-FA
gauge-fixing method, (ii) improve the usage of the cache
memory and (iii) introduce overlap of computation and
communication.

Figure 1: Code speedupS at variable volume as a function
of the number of nodesM .

 1

 10

 100

 1 10 100

M

S

500

Acknowledgements

We thank Martin Lüscher for sending us the latest ver-
sion of the random number generatorRANLUX. The re-
search of A.C. and T.M. is supported by FAPESP (Project
No. 00/05047-5). A.T. thanks CNPq for financial support.

References

[1] S. L. Adler. Algorithms for pure gauge theory.Nucl. Phys.
Proc. Suppl., 9:437–446, 1989.

[2] R. Ammendola et al. Status of the apeNEXT project. http://
arXiv.org/abs/hep-lat/0211031.

[3] A. Bartoloni et al. An overview of the APE mille project.
Nucl. Phys. Proc. Suppl., 60A:237–240, 1998.

[4] J. C. R. Bloch, A. Cucchieri, K. Langfeld, and T. Mendes.
Running coupling constant and propagators inSU(2) Lan-
dau gauge.Nucl. Phys. Proc. Suppl., 119B:736–738, 2003.

[5] P. A. Boyle, C. Jung, and T. Wettig. The QCDOC supercom-
puter: hardware, software, and performance. http://arXiv.
org/abs/hep-lat/0306023.

[6] M. Creutz. Monte Carlo study of quantizedSU(2) gauge
theory.Phys. Rev., D21:2308–2315, 1980.

[7] M. Creutz. The early days of lattice gauge theory. http://
arXiv.org/abs/hep-lat/0306024.

[8] A. Cucchieri and T. Mendes. Critical slowing-down in
SU(2) Landau gauge-fixing algorithms.Nucl. Phys., B471:
263–292, 1996.

[9] A. Cucchieri and T. Mendes. Study of critical slowing-down
in SU(2) Landau gauge fixing.Nucl. Phys. Proc. Suppl.,
B53:811–814, 1997.

[10] A. Cucchieri and T. Mendes. A multigrid implementation
of the Fourier acceleration method for Landau gauge fixing.
Phys. Rev., D57:R3822–R3826, 1998.

[11] A. Cucchieri and T. Mendes. Critical slowing-down in
SU(2) Landau-gauge-fixing algorithms atβ = ∞. Com-
put. Phys. Commun., 154(1):1–48, 2003.

[12] A. Cucchieri, T. Mendes, and A. R. Taurines.SU(2)
Landau gluon propagator on a1403 lattice. Phys. Rev.,
D67:R091502, 2003.

[13] A. Cucchieri, T. Mendes, and D. Zwanziger.SU(2) running
coupling constant and confinement in minimal Coulomb and
Landau gauges.Nucl. Phys. Proc. Suppl., B106:697–699,
2002.

[14] D. E. Culler, J. P. Singh, and A. Gupta.Parallel computer
architecture: a hardware/software approach. Morgan Kauf-
mann, San Francisco, CA, 1999.

[15] C. T. H. Davies et al. High-precision lattice QCD confronts
experiment. http://arXiv.org/abs/hep-lat/0304004.

[16] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der
Vorst. Solving linear systems on vector and shared memory
computers. SIAM, Philadelphia, PA, 1991.

[17] R. G. Edwards, S. J. Ferreira, J. Goodman, and A. D. Sokal.
Multigrid Monte Carlo. 3. Two-dimensional0(4) symmetric
nonlinear sigma model.Nucl. Phys., B380:621–664, 1992.

[18] L. Giusti, M. L. Paciello, C. Parrinello, S. Petrarca, and
B. Taglienti. Problems on lattice gauge fixing.Int. J. Mod.
Phys., A16:3487–3534, 2001.

[19] V. N. Gribov. Quantization of non-Abelian gauge theories.
Nucl. Phys., B139:1–32, 1978.

[20] S. Hioki. Construction of staples in lattice gauge theory on
a parallel computer.Parallel Comput., 22(10):1335–1344,
1996.

[21] K. Kanaya. Elementary particles on a dedicated parallel
computer.Fortsch. Phys., 50:531–537, 2002.

[22] D. P. Landau and K. Binder.A guide to Monte Carlo sim-
ulations in statistical physics. Cambridge University Press,
Cambridge, 2000.

[23] M. Le Bellac. Quantum and statistical field theory. Oxford
University Press, Oxford, 1995.

[24] M. Lüscher. A portable high quality random number gener-
ator for lattice field theory simulations.Comput. Phys. Com-
mun., 79:100–110, 1994.

[25] M. Lüscher. Lattice QCD on PCs?Nucl. Phys. Proc. Suppl.,
B106:21–28, 2002.

[26] R. D. Mawhinney. The 1 teraflops QCDSP computer.Paral-
lel Comput., 25:1281–1299, 1999.

[27] K. Moriyasu.An elementary primer for gauge theory. World
Scientific, Singapore, 1983.

[28] H. J. Rothe.Lattice gauge theories: an introduction. World
Scientific, Singapore, 1987.

[29] J. J. Sakurai.Modern quantum mechanics. Addison-Wesley,
Boston, MA, (edited by San Fu Tuan) 2nd edition, 1994.

[30] A. D. Sokal. Monte Carlo methods in statistical mechan-
ics: foundations and new algorithms. Cargèse 1996, Inte-
gration: basics and applications, http://citeseer.nj.nec.com/
sokal96monte.html.

[31] W.-K. Tung. Group theory in physics. World Scientific, Sin-
gapore, 1985.

[32] K. G. Wilson. Confinement of quarks.Phys. Rev., D10:
2445–2459, 1974.

[33] D. Zwanziger. Fundamental modular region, Boltzmann
factor and area law in lattice gauge theory.Nucl. Phys.,
B412:657–730, 1994.

[34] http://www.fftw.org/benchfft/results/pii-300-single.html.
[35] http://insam.sci.hiroshima-u.ac.jp/qcdmpi/.

	Introduction
	The algorithms
	Thermalization
	Landau gauge fixing
	Convergence of the gauge fixing

	Evaluation of the propagators
	Parallelization

	Performance
	Speedup at fixed volume
	Speedup at variable volume

	Results and conclusions

