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Abstract 
*
 

We propose a set of statistical metrics for making a 

comprehensive, fair, and insightful evaluation of 

features, clustering algorithms, and distance measures 

in representative sampling techniques for 

microprocessor simulation. Our evaluation of 

clustering algorithms using these metrics shows that 

CLARANS clustering algorithm produces better 

quality clusters in the feature space and more 

homogeneous phases for CPI compared to the popular 

k-means algorithm. We also propose a new micro-

architecture independent data locality based feature, 

Reuse Distance Distribution (RDD), for finding phases 

in programs, and show that the RDD feature 

consistently results in more homogeneous phases than 

Basic Block Vector (BBV) for many SPEC CPU2000 

benchmark programs. 

 

1. Introduction 
 

Cycle-accurate microarchitecture simulation is one 

of the most important tools in computer architecture 

research. However, it is often prohibitively time-

consuming.  Researchers have proposed taking 

advantage of the well-observed phase behavior in 

program execution to reduce simulation time.  A phase 

can be defined as a portion of dynamic execution of a 

program for which most of the performance metrics 

such as Cycle Per Instruction (CPI), show very little 

variance.  Because the performance metrics remain 

stable in a phase, simulating only one chunk of 

instructions from each phase to represent the execution 

of the whole program can greatly reduce simulation 

time with little loss of simulation information.  We 

call this type of technique phase based representative 

sampling, or representative sampling hereafter.  Three 

recently proposed schemes fall into this category 
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[2][3][4].  These techniques estimate some target 

metric (e.g. CPI, energy per instruction, or cache miss 

rate) by taking advantage of the phase behavior.  To 

identify phases, they divide the dynamic instruction 

stream into chunks of instructions, and for each chunk, 

measure a feature vector that is distinguishable 

between phases. We refer to such a feature vector as a 

phase classification feature vector, or simply a feature 

as it is often called in the data mining community. 

Then, cluster analysis is performed to group the 

chunks into clusters.  Each cluster corresponds to a 

phase because the chunks in the same cluster exhibit 

very similar phase classification feature.   

The major characteristics of the three representative 

sampling techniques are summarized in Table 1.  Out 

of the three techniques, SimPoint [2] is the most 

popular.  It uses Basic Block Vector (BBV) as the 

phase classification feature. BBV is a vector whose 

elements are frequencies of dynamic execution of 

static basic blocks in the program.  Because of its 

popularity and BBV’s advantage of microarchitecture 

independence, we base our study mainly on the 

approach of SimPoint
1
. 

 
Table 1. Recently proposed phase based 

representative sampling techniques 

Technique Target 

Metric 

Phase 

classification 

feature 

Clustering 

algorithm 

Chunk size 

(million 

instructions) 

SimPoint IPC BBV k-means 100 

SPEClite 

[3] 

29 

Performance 

Metrics 

Performance 

Counter Data 

k-means 1 

Lafage and 

Seznec [4] 

Data Cache 

Miss-Rate 

Data Reuse 

Distance 

Hierarchical 1 

 

Although representative sampling is becoming 

popular for microprocessor simulation, the design 

space has not been well explored and many questions 

are still unanswered.  This research addresses the 

following important questions:   

                                                           
1 Variance SimPoint and Early SimPoint [11] extended the original 

SimPoint, but they require explicit warm-up. In this paper we focus 

on the original SimPoint, but our methodology is applicable to all 

representative sampling techniques. 
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Choice of clustering algorithms and distance 

measures: It is well known in the data mining 

community that no single clustering algorithm or 

distance measure is well suited for all applications. 

Many clustering algorithms (k-means, hierarchical 

etc.) and distance measures (Euclidean distance, 

Manhattan distance, cosine distance etc.) have been 

proposed for different application domains.  However, 

previous research does not compare the quality of 

various clustering algorithms and distance measures 

for identifying simulation points using representative 

sampling. 

Evaluation methodology: How to fairly evaluate the 

effectiveness of new clustering algorithms, new 

distance measures, and new phase classification 

features in representative sampling is another question 

that has not been studied previously.  Of course, the 

final error in target metric can be used to compare 

different approaches.  However, as we will show in 

Section 2, this is not a reliable method.  A fair and 

comprehensive evaluation methodology for 

representative sampling is needed. 

Choice of phase classification feature: The third 

question we study is which phase classification feature 

to use in representative sampling. For modern 

microprocessors, the data access latency is one of the 

most important factors that determine the 

performance.  Therefore, is it possible to get better 

result by designing a data locality based feature? 

 

The contributions of this paper are three-fold: 

1) We propose a systematic method to fairly evaluate 

new clustering algorithms, new distance 

measures, and new phase classification features 

for representative sampling.  Our methodology 

also helps the user to gain better understanding of 

the sampling technique. 

2) We investigate the effectiveness of using different 

clustering algorithms and different distance 

metrics.   

3) We propose a new microarchitecture-independent 

data locality based feature, Reuse Distance 

Distribution, for identifying phases in a program.  

We show that for a set of benchmarks it 

consistently produces more homogenous phases 

than BBV. 

 

The paper is structured as follows.  Our evaluation 

methodology is proposed in Section 2.   Different 

clustering algorithms and distance measures are 

evaluated in Section 3.  In Section 4 we propose our 

new phase feature, RDD, and compare it with BBV.  

In Section 5 we draw conclusions from this study. 

 

2. Evaluation Methodology 
 

The accuracy of a representative sampling based 

simulation technique depends on the correlation 

between the phase classification feature and the target 

metric, the clustering algorithm, and the choice of the 

data point used to represent the phase.   

Therefore, our evaluation methodology consists of 

three components in both the feature and target metric 

space.  First, we examine the cohesiveness of clusters 

in the phase classification feature space.  Then, we 

measure the homogeneity of target metric in each 

phase.  And lastly, we look at the final sampling error.  

In this study, we present results for all cluster numbers 

between 4 and 10, which covers most of the range of 

the number of clusters used in SimPoint. 

In the phase feature space, the cohesiveness of 

clusters can be measured by the Average Distance 

(AD) from each data point to the representative data 

point of the cluster it belongs to. 

ncxdistanceAD i
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where x is a data point and ci is the representative data 

point for the cluster that x belongs to and n is the total 

number of data points.  This metric can be used to 

compare different clustering algorithms with the same 

phase classification feature and the same distance 

measure.  A better clustering algorithm will give 

tighter clusters and thus a smaller average distance. 

We use the Normalized Standard Deviation (NSD) 

metric, defined as follows, to evaluate the 

homogeneity of phases in the target metric space.  
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where ni is the size of cluster i. Si is the standard 

deviation of the target metric in cluster i, n is the total 

number of data points, and S is the standard deviation 

of the target metric for all data points. NSD reflects 

the tightness of the cluster in the target metric space.  

NSD measures the benefit of doing cluster analysis as 

compared to simple random sampling (see [6][13] for 

details).  The lower the normalized standard deviation 

gets, the more homogeneous the phases are. A value 

much smaller than 1 and close to 0 is desirable. Since 

the calculation of NSD only involves the target metric, 

it can be used to compare different clustering 

algorithms, different distance measures, and different 

phase classification features.  

We also examine the final Relative Error (RE) in 

target metric compared to full cycle-accurate 

simulation, which is defined as, 
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where yi is the target metric of the representative data 

point in cluster i. y is the true target metric of the 

benchmark.  The relative error is determined not only 

by the quality of the clustering and the correlation 

between the feature and target metric, but also by how 

close the target metric for the representative data point 

is to the mean target metric of a cluster.  Therefore, the 

error in a representative sampling based simulation 

technique is the result of several factors lumped 

together, and provides little insight into the relative 

advantages and disadvantages of each technique.  

RE is the final metric that the user cares about.  But 

unlike NSD, which is calculated from all n data points, 

the relative error is affected by only k representative 

data points.  Since k<<n, it is far less stable than NSD.  

Consider, for example, bzip2-source from SPEC 

CPU2000 benchmark suite.  Figure 1b shows NSD in 

CPI for two distance measures, Euclidean distance 

with random projection and cosine distance.  As 

expected, when we divide the data points into more 

clusters, the overall homogeneity improves.  In 

contrast, Figure 1a shows the relative error for CPI of 

the simulation using representative sampling.  The 

error curve does not have a clear trend and is much 

more “messy”, making comparison very difficult.   
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(a) Relative Error in CPI for representative sampling 

normalized standard deviation
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(b) Normalized Standard Deviation in CPI for 
representative sampling 

Figure 1.  Comparing projected Euclidean distance 
with cosine distance for bzip2-source. 

 

Based on the above analysis, we use NSD as our 

main evaluation metric in the target metric space.   

All three metrics (AD, NSD, and RE) are needed to 

evaluate a representative sampling technique, and 

every metric provides a different insight.  Improving 

one metric may not automatically make other metrics 

better.  Suppose we use a better clustering algorithm 

and get smaller average distances, but NSD does not 

improve, then we know it is because the correlation 

between the phase classification feature and the target 

metric is not strong enough.  We need to search for a 

better phase classification feature.  If we get more 

homogeneous CPI in each phase (i.e. smaller NSD) 

but the final error remains large, then it indicates that 

the error introduced by picking the central data point 

dwarfs our improvement in homogeneity.   

 

3. Evaluation and analysis of clustered   

    sampling using BBV 
 

3.1 Comparing clustering algorithms and   

      distance measures 
    

Although k-means clustering algorithm is popular 

in representative sampling, it is very sensitive to 

outliers and performs well only on clusters that are 

spherical and have the same variance. In addition, the 

centroid of a cluster rarely coincides with a real data 

point. Therefore, we would like to evaluate a different 

algorithm against the k-means algorithm.  We choose 

k-medoid method because it overcomes two 

limitations of k-means.  First, k-medoid methods are 

less strict about the distribution of the data points and 

are robust to the existence of outliers.  Second, in k-

medoid methods, the medoid, which is a real data 

point, naturally represents the cluster.  There are 

several k-medoid methods.  We choose to use 

CLARANS algorithm, proposed by Ng and Han 

[7][8], because of its lower computation cost, which is 

basically linearly proportional to the number of data 

points.  

In all three representative sampling techniques we 

reviewed, Euclidean is used to measure the 

dissimilarity between the chunks of instructions.  In 

this study the cosine distance is of special interest.  It 

has been successfully used in automatically clustering 

documents into different topics.  Documents are often 

represented as vectors, where each element is the 

frequency with which a particular term occurs in the 

document.  If we compare BBV with a text document 

vector, we can see their similarity. An element in BBV 

is the number of times a specific static basic block is 

executed, which corresponds to the number of times a 

specific word occurs in a document.  In addition, both 

are very high dimensional vectors (thousands to more 

than a hundred thousand dimensions).  Therefore, it is 

very interesting to see whether cosine distance can be 

applied to representative sampling.  If p and q are two 

vectors, then the cosine distance is defined as  
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cosine_distance(p, q)=
qp

qp

.
1
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− , 

where •  indicates vector dot product, and p is the 

length of vector p.  Because the result is divided by the 

norm of the vectors, the cosine distance is really a 

measure of the angle between p and q.  If the angle is 

0°, then the two vectors are the same except for the 

magnitude.  The cosine distance will be 0, which is the 

minimum value.  If the angle is 90°, then the two 

vectors do not share any elements. In other words, the 

code in the two chunks of instructions are complete 

different because they do not share any basic blocks.  

In this case, the cosine distance reaches the maximum 

value of 1. 

 

3.2 Experiment setup 
 

We use 8 programs with the reference data set from 

the SPEC CPU2000 benchmark suite.  The programs 

and the number of instructions are listed in Table 2.   

 
Table 2.  Number of instructions and simulation time of 
selected SPEC CPU 2000 benchmarks with reference 

data set.  The data set name is appended to the 
benchmark name. 

 

 

Following SimPoint, we divide the instruction 

stream of each program into intervals of 100 million 

instructions.  In all our experiments we use CPI as the 

target metric.  To evaluate the result in the target 

space, we simulate all 8 benchmarks in sim-outorder 

[1] to collect CPI for each chunk.  The processor 

configuration used in the simulation is shown in Table 

3.  The same configuration has been used in study on 

cache warm-up [9] and in validation of SimPoint [10]. 

K-means and CLARANS clustering algorithms are 

each evaluated using projected Euclidean and cosine 

distance measures.  Because clustering algorithms are 

less effective at high dimensional Euclidean space, the 

dimensionality of BBV is reduced to 15 through 

random projection just as in SimPoint. Thus it is given 

the name “projected Euclidean distance”.  Both k-

means and CLARANS may give different results with 

different random seeds.  Therefore, we run each 

experiment 5 times with different random seeds and 

the data shown below are the average results. 

 
Table 3. Processor configuration. 

Pipeline 

Issue Width 

Decode Width 

Register Update Unit 

Load-Store Queue 

Commit Width 

8 instructions/cycle 

8 instructions/cycle 

128 entries 

32 entries 

8 instructions/cycle 

Cache Hierarchy 

L1 Data 

L1 Instruction 

L2 Unified 

Memory Access 

Latency 

16KB; 4-way assoc., 32B lines, 2-cycle hit 

8KB; 2-way assoc., 32B lines, 2-cycle hit 

1MB; 4-way assoc., 64B lines, 20-cycle hit 

151 cycles 

Combined Branch Predictor 

Bimodal 

PAg 

Return Address Stack 

Branch Target Buffer 

Misprediction Latency 

8192 entries 

8192 entries 

64 entries 

2048 entries; 4-way assoc. 

14 cycles 

 

3.3 Experiment results 
 

Following the evaluation methodology proposed in 

Section 2, we first evaluate the two clustering 

algorithms in the BBV space.  Since average distance 

metric cannot be compared between different 

distances, the result for projected Euclidean distance 

and cosine distance are drawn separately.  Figure 2 

compares the average distance of k-means and 

CLARANS algorithms for projected Euclidean 

distance for 2 program-input pairs (see [13] for 

complete graphs for Euclidean distance and cosine 

distance).  CLARANS clearly produces tighter clusters 

than k-means in most cases.  For some benchmarks, 

such as equake and gcc-166 the reduction in average 

distance is significant.  At 10 clusters, for projected 

Euclidean distance, CLARANS reduces the distance 

by over 50%, while for cosine distance the reduction is 

almost 90%. 

We then examine the normalized standard 

deviation, which is shown in Figure 3 (the graphs for 

remaining 6 programs can be found in [13]).  The 

NSD shows a downward trend.  Therefore, as we 

increase the number of phases, the CPI in each phase 

shows lesser variance.  In general, CLARANS 

algorithm produces more homogeneous CPI phases in 

most cases.  Table 4 shows the clustering algorithm 

and distance measure with the overall lowest 

normalized standard deviation.  In 5 (or 6) out of 8 

benchmarks, CLARANS is better than k-means.  The 

cosine distance we experimented with, on the other 

hand, does not seem to perform better than the 

projected Euclidean distance.  Cosine distance is the 

best for only vortex-1. 

Benchmark-

Input Pair 

Number of instructions 

(million) 

art-110 41,798 

bzip2-source 108,878 

equake 131,518 

gcc-166 46,917 

lucas 142,398 

mcf 61,867 

vortex-1 118,976 

vpr-route 84,068 
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Figure 2. Average distance for different clustering 
algorithms and distance measures 
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Figure 3. Normalized standard deviation for different 
clustering algorithms and distance measures 

 

Figure 4 shows the relative error of representative 

sampling using different clustering algorithms and 

distance measures.  For brevity, only two benchmarks 

are shown, the complete set of graphs can be found in 

[13].  Since the normalized standard deviation 

decreases as more phases are identified, the errors are 

expected to follow suit.  However, they do not show a 

general trend and vary a lot, crossing each other 

multiple times, making it almost impossible to identify 

the one with consistently lowest error.  If we only 

focus on projected Euclidean distance (used in 

SimPoint), then CLARANS consistently results in 

smaller error for equake and vortex-1.  For the 

remaining 6 benchmarks, they are comparable. 
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Error (art-110)
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Figure 4. Relative error in the CPI from representative 

sampling for different clustering algorithms and 
distance measures for bzip2-source and art-110 

programs. 

 
Table 4. Clustering algorithm and distance measure 

with the lowest normalized standard deviation (i.e. the 
most homogeneous phases). 

Benchmark Best clustering algorithm and distance 

measure 

art-110 Kmeans with projected Euclidean distance 

bizp2-source CLARANS with projected Euclidean distance 

equake CLARANS with projected Euclidean distance 

gcc-166 CLARANS with projected Euclidean distance 

lucas No clear winner 

mcf CLARANS with projected Euclidean distance 

vortex-1 CLARANS with cosine distance 

vpr-route Tie between k-means and CLARANS with 

projected Euclidean distance 

 

4. Reuse Distance Distribution - A new 

feature for phase classification 
 

Due to the gap between processor and memory 

performance, data access latency is one of the most 

important factors that determine program performance 

in modern day microprocessors.  Data access latency 

is a function of the inherent locality in the data address 

stream of a program.  Therefore, we feel that a feature 

based on the data locality of a program will be able to 

find phases in a program that have similar data 

locality, and that show similar performance.  It is 

important that the locality feature should be 

microarchitecture independent.  This increases the 

confidence that the phases identified by the feature 

will be valid across different microarchitectures. 

The BBV feature does not capture the properties of 

the data locality of the program.   Therefore, it is 
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possible that a static section of code in a program has 

different memory reference patterns at different points 

of time in its execution.  A feature based on the data 

locality in a program will be able to capture this 

behavior, and may therefore perform better than BBV 

in finding more homogeneous phases. 

 

4.1 Reuse Distance Distribution (RDD) 

definition 
 

Reuse distance is the number of memory addresses 

accessed between the accesses to the same memory 

line.  A memory line is analogous to a cache block.  

We define the RDD feature as the relative frequencies 

of the different reuse distances in the data address 

stream of a program.  The reuse distances can have a 

large number of unique values.  To make the 

distribution more manageable, we group similar reuse 

distances together. The width of each interval in the 

histogram is exponentially distributed – i.e. a reuse 

distance of r is classified into interval 
┌ 

log e r 
┐
.  In 

general, interval i consists of reuse distances from e
i-1

 

to e
i
.  We can represent the RDD feature as a vector 

with n elements, where element i is the relative 

frequency of the number of reuse distances for interval 

i.  For a given memory line size, the RDD feature 

characterizes the temporal locality of the data memory 

address stream.  Information about the spatial locality 

of a memory address stream can be characterized by 

measuring the RDD feature for a range of different 

memory line sizes. The example in Section 7.1 of our 

technical report [13] is a simple illustration of how the 

RDD feature is calculated for an address stream.   

Similar concepts based on reuse distance of 

memory accesses have been used in many areas such 

as cache warm-up [9] and program execution and 

performance modeling [14][15]. Our definition of 

reuse distance is a little different than the one in [15]. 

In [15], reuse distance is equal to number of unique 

addresses accessed between the accesses to the same 

memory address. But this reuse distance measure is 

very computation intensive so we use the one 

described earlier in this section. Two pervious works 

were in representative sampling.  Lau et al. [5] 

extensively examined different phase features based 

on data accesses.  Their features are related to the 

access patterns, but do not directly measure the data 

locality.   Since it is the data locality that impacts 

program performance, these phase features may not be 

a strong enough indicator of the program performance.  

Lafage et al. [4] used average memory reuse distance 

(RDI) to identify phases for simulation for the data 

cache miss-rate.  We experimented with the average 

reuse distance and found that BBV performed better in 

all the benchmarks we considered.  By measuring the 

distribution of the reuse distance instead of the 

aggregated average, we have greatly improved the 

accuracy over RDI. 

 

4.2 Comparing RDD and BBV features for 

phase classification 
 

As described in Section 2, normalized standard 

deviation is a more reliable and insightful metric than 

the final error in CPI for comparing two phase 

classification features.  We therefore used normalized 

standard deviation as the performance metric for 

comparing the RDD and BBV features.  We used the 8 

programs listed in Table 1.  RDD feature (for memory 

line sizes of 16, 64, 256, and 4096 bytes) and the BBV 

features are measured for every interval of 100 million 

instructions.  For clustering the points in the RDD 

feature space, we used the CLARANS and k-means 

clustering algorithm each with Euclidean and cosine 

distance measures.  The processor configuration in 

Table 3 was simulated. 

In order to make a meaningful comparison between 

the two features, for every program, we selected the 

best (smallest NSD in CPI) algorithm-distance pair for 

the RDD feature, and compared it with the best 

algorithm-distance pair for the BBV feature.  Figure 5 

shows a plot of the best algorithm-distance pair for 

RDD and BBV features for the 8 program-input pairs 

used in this study.  

From these graphs we observe that, irrespective of 

the number of clusters, the RDD feature gives lower 

normalized standard deviation in CPI than the BBV 

feature for gcc-166, lucas, mcf, vpr-route, and art-110 

programs. For lucas, the normalized standard 

deviation for 4 clusters formed using the RDD feature 

is even smaller than the normalized standard deviation 

from forming 10 clusters using the BBV feature.  This 

shows that lucas benefits far more from the RDD 

feature than from the BBV feature. Forming more than 

4 clusters using the BBV feature does not significantly 

benefit mcf.  The normalized standard deviation given 

by the BBV feature for 4 to 10 clusters is not very 

different, showing that the benefit from increasing the 

number of clusters is minor.  However, the normalized 

standard deviation for mcf using RDD feature is not 

only smaller than that of BBV, but also drops from 

0.45 to 0.33 as the number of clusters are increased 

from 4 to 10.  The normalized standard deviation for 

art-110 is very small (0.25 for BBV feature and 0.22 

for RDD feature) even when only 4 clusters are 

fromed.  This shows that art-110 substantially benefits 

from clustering using the BBV or RDD feature.  

Although the normalized standard deviation for art-

110 is small for the BBV feature, the RDD feature 

approximately improves it by additional 14%  
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irrespective of the number of clusters.  For bzip2-

source, the graphs for both the features cross each 

other and hence we conclude that neither of the 

features clearly outperforms the other. However, for 

vortex-1 and equake, the BBV feature always gives a 

lower normalized standard deviation in CPI than the 

BBV feature.   

For this processor configuration, the RDD feature 

is consistently better than the BBV feature for 5 out of 

the 8 benchmark programs. However, it is possible 

that the RDD feature is better than BBV just for the 

microarchitecture configuration selected for this 

experiment.  Therefore, we felt that it is important to 

evaluate RDD and BBV features on more 

microarchitectures.  We selected two additional 

configurations, same as those used for evaluation of 

SMARTS sampling methodology [12].  The complete 

results can be found in [13].  We again observe that 

the RDD feature gives lower normalized standard 

deviation in CPI than the BBV feature for the same 

five programs, gcc-166, art, lucas, mcf, and vpr-route.  

For bzip2-source, neither of the feature clearly 

outperformed the other. The validation using three 

different microarchitecture configurations has 
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Figure 5. Normalized standard deviation in CPI for BBV and RDD feature for 8 program-inputpairs 
from SPEC CPU2000 benchmark suite. 
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increased our confidence that the results are 

independent of the microarchitecture and are generally 

applicable.  

We also evaluated the effectiveness of different 

clustering algorithms and distance measures for RDD.  

The results agree with our observation in Section 3.  In 

the feature space, CLARANS clustering algorithm 

shows a lower AD and generally produces more 

homogeneous phases in CPI. 

 

5. Conclusions 
 

In this paper, we proposed a set of statistical 

metrics for evaluating representative sampling 

techniques, and showed that these metrics are reliable, 

insightful, and provide a deeper understanding of the 

quality of clustering in representative sampling.  We 

used these metrics to evaluate the benefit from using 

CLARANS clustering algorithm and the cosine 

distance measure.  We proposed and evaluated a new 

data locality based microarchitecture independent 

feature, RDD, for phase classification in a program.   

Our experiments showed that in the feature space 

for both BBV and RDD features, for all benchmarks, 

CLARANS produces more cohesive clusters than the 

k-means clustering algorithm.  CLARANS algorithm 

also results in more homogeneous phases in CPI for 

many, but not all, benchmarks. Therefore, a better 

clustering algorithm can improve the quality of 

clustering in the feature space, but the benefit obtained 

in the target metric space also depends on the 

correlation between the feature and the target metric. 

The new feature that we propose, RDD, is 

consistently better than BBV for phase classification 

in 5 out of 8 programs on three different 

microarchitectures. Therefore, the best feature for 

finding phases is program dependent, but often holds 

true on different microarchitecture configurations.  

This helps the user to choose the best feature for more 

efficient microprocessor simulation.  The user can 

select the best feature for a program using one 

microarchitecture, and apply the same feature on 

different microarchitectures. 
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