
Analyzing and Improving Clustering Based Sampling for

Microprocessor Simulation

Yue Luo, Ajay Joshi, Aashish Phansalkar, Lizy John, and Joydeep Ghosh

Department of Electrical and Computer Engineering

University of Texas at Austin

{luo, ajoshi, aashish, ljohn, ghosh}@ece.utexas.edu

Abstract
*

We propose a set of statistical metrics for making a

comprehensive, fair, and insightful evaluation of

features, clustering algorithms, and distance measures

in representative sampling techniques for

microprocessor simulation. Our evaluation of

clustering algorithms using these metrics shows that

CLARANS clustering algorithm produces better

quality clusters in the feature space and more

homogeneous phases for CPI compared to the popular

k-means algorithm. We also propose a new micro-

architecture independent data locality based feature,

Reuse Distance Distribution (RDD), for finding phases

in programs, and show that the RDD feature

consistently results in more homogeneous phases than

Basic Block Vector (BBV) for many SPEC CPU2000

benchmark programs.

1. Introduction

Cycle-accurate microarchitecture simulation is one

of the most important tools in computer architecture

research. However, it is often prohibitively time-

consuming. Researchers have proposed taking

advantage of the well-observed phase behavior in

program execution to reduce simulation time. A phase

can be defined as a portion of dynamic execution of a

program for which most of the performance metrics

such as Cycle Per Instruction (CPI), show very little

variance. Because the performance metrics remain

stable in a phase, simulating only one chunk of

instructions from each phase to represent the execution

of the whole program can greatly reduce simulation

time with little loss of simulation information. We

call this type of technique phase based representative

sampling, or representative sampling hereafter. Three

recently proposed schemes fall into this category

*
 This research is supported by the National Science Foundation

under grant numbers 0429806 and 0307792, the IBM Center for

Advanced Studies (CAS), an IBM SUR grant, and by Intel and

AMD Corporations.

[2][3][4]. These techniques estimate some target

metric (e.g. CPI, energy per instruction, or cache miss

rate) by taking advantage of the phase behavior. To

identify phases, they divide the dynamic instruction

stream into chunks of instructions, and for each chunk,

measure a feature vector that is distinguishable

between phases. We refer to such a feature vector as a

phase classification feature vector, or simply a feature

as it is often called in the data mining community.

Then, cluster analysis is performed to group the

chunks into clusters. Each cluster corresponds to a

phase because the chunks in the same cluster exhibit

very similar phase classification feature.

The major characteristics of the three representative

sampling techniques are summarized in Table 1. Out

of the three techniques, SimPoint [2] is the most

popular. It uses Basic Block Vector (BBV) as the

phase classification feature. BBV is a vector whose

elements are frequencies of dynamic execution of

static basic blocks in the program. Because of its

popularity and BBV’s advantage of microarchitecture

independence, we base our study mainly on the

approach of SimPoint
1
.

Table 1. Recently proposed phase based

representative sampling techniques

Technique Target

Metric

Phase

classification

feature

Clustering

algorithm

Chunk size

(million

instructions)

SimPoint IPC BBV k-means 100

SPEClite

[3]

29

Performance

Metrics

Performance

Counter Data

k-means 1

Lafage and

Seznec [4]

Data Cache

Miss-Rate

Data Reuse

Distance

Hierarchical 1

Although representative sampling is becoming

popular for microprocessor simulation, the design

space has not been well explored and many questions

are still unanswered. This research addresses the

following important questions:

1 Variance SimPoint and Early SimPoint [11] extended the original

SimPoint, but they require explicit warm-up. In this paper we focus

on the original SimPoint, but our methodology is applicable to all

representative sampling techniques.

 2

Choice of clustering algorithms and distance

measures: It is well known in the data mining

community that no single clustering algorithm or

distance measure is well suited for all applications.

Many clustering algorithms (k-means, hierarchical

etc.) and distance measures (Euclidean distance,

Manhattan distance, cosine distance etc.) have been

proposed for different application domains. However,

previous research does not compare the quality of

various clustering algorithms and distance measures

for identifying simulation points using representative

sampling.

Evaluation methodology: How to fairly evaluate the

effectiveness of new clustering algorithms, new

distance measures, and new phase classification

features in representative sampling is another question

that has not been studied previously. Of course, the

final error in target metric can be used to compare

different approaches. However, as we will show in

Section 2, this is not a reliable method. A fair and

comprehensive evaluation methodology for

representative sampling is needed.

Choice of phase classification feature: The third

question we study is which phase classification feature

to use in representative sampling. For modern

microprocessors, the data access latency is one of the

most important factors that determine the

performance. Therefore, is it possible to get better

result by designing a data locality based feature?

The contributions of this paper are three-fold:

1) We propose a systematic method to fairly evaluate

new clustering algorithms, new distance

measures, and new phase classification features

for representative sampling. Our methodology

also helps the user to gain better understanding of

the sampling technique.

2) We investigate the effectiveness of using different

clustering algorithms and different distance

metrics.

3) We propose a new microarchitecture-independent

data locality based feature, Reuse Distance

Distribution, for identifying phases in a program.

We show that for a set of benchmarks it

consistently produces more homogenous phases

than BBV.

The paper is structured as follows. Our evaluation

methodology is proposed in Section 2. Different

clustering algorithms and distance measures are

evaluated in Section 3. In Section 4 we propose our

new phase feature, RDD, and compare it with BBV.

In Section 5 we draw conclusions from this study.

2. Evaluation Methodology

The accuracy of a representative sampling based

simulation technique depends on the correlation

between the phase classification feature and the target

metric, the clustering algorithm, and the choice of the

data point used to represent the phase.

Therefore, our evaluation methodology consists of

three components in both the feature and target metric

space. First, we examine the cohesiveness of clusters

in the phase classification feature space. Then, we

measure the homogeneity of target metric in each

phase. And lastly, we look at the final sampling error.

In this study, we present results for all cluster numbers

between 4 and 10, which covers most of the range of

the number of clusters used in SimPoint.

In the phase feature space, the cohesiveness of

clusters can be measured by the Average Distance

(AD) from each data point to the representative data

point of the cluster it belongs to.

ncxdistanceAD i

x

/),(∑= ,

where x is a data point and ci is the representative data

point for the cluster that x belongs to and n is the total

number of data points. This metric can be used to

compare different clustering algorithms with the same

phase classification feature and the same distance

measure. A better clustering algorithm will give

tighter clusters and thus a smaller average distance.

We use the Normalized Standard Deviation (NSD)

metric, defined as follows, to evaluate the

homogeneity of phases in the target metric space.

SS
n

n
NSD i

k

i

i /)(2

1

∑
=

=
,

where ni is the size of cluster i. Si is the standard

deviation of the target metric in cluster i, n is the total

number of data points, and S is the standard deviation

of the target metric for all data points. NSD reflects

the tightness of the cluster in the target metric space.

NSD measures the benefit of doing cluster analysis as

compared to simple random sampling (see [6][13] for

details). The lower the normalized standard deviation

gets, the more homogeneous the phases are. A value

much smaller than 1 and close to 0 is desirable. Since

the calculation of NSD only involves the target metric,

it can be used to compare different clustering

algorithms, different distance measures, and different

phase classification features.

We also examine the final Relative Error (RE) in

target metric compared to full cycle-accurate

simulation, which is defined as,

yyy
n

n
RE

k

i

i
i /

1

∑
=

−= ,

 3

where yi is the target metric of the representative data

point in cluster i. y is the true target metric of the

benchmark. The relative error is determined not only

by the quality of the clustering and the correlation

between the feature and target metric, but also by how

close the target metric for the representative data point

is to the mean target metric of a cluster. Therefore, the

error in a representative sampling based simulation

technique is the result of several factors lumped

together, and provides little insight into the relative

advantages and disadvantages of each technique.

RE is the final metric that the user cares about. But

unlike NSD, which is calculated from all n data points,

the relative error is affected by only k representative

data points. Since k<<n, it is far less stable than NSD.

Consider, for example, bzip2-source from SPEC

CPU2000 benchmark suite. Figure 1b shows NSD in

CPI for two distance measures, Euclidean distance

with random projection and cosine distance. As

expected, when we divide the data points into more

clusters, the overall homogeneity improves. In

contrast, Figure 1a shows the relative error for CPI of

the simulation using representative sampling. The

error curve does not have a clear trend and is much

more “messy”, making comparison very difficult.

representative sampling

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4 5 6 7 8 9 10
number of clusters

re
la

ti
v

e
 e

rr
o

r

kmeans.projected_euclidean kmeans.cosine

(a) Relative Error in CPI for representative sampling

normalized standard deviation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

4 5 6 7 8 9 10
number of clusters

kmeans.projected_euclidean kmeans.cosine

(b) Normalized Standard Deviation in CPI for
representative sampling

Figure 1. Comparing projected Euclidean distance
with cosine distance for bzip2-source.

Based on the above analysis, we use NSD as our

main evaluation metric in the target metric space.

All three metrics (AD, NSD, and RE) are needed to

evaluate a representative sampling technique, and

every metric provides a different insight. Improving

one metric may not automatically make other metrics

better. Suppose we use a better clustering algorithm

and get smaller average distances, but NSD does not

improve, then we know it is because the correlation

between the phase classification feature and the target

metric is not strong enough. We need to search for a

better phase classification feature. If we get more

homogeneous CPI in each phase (i.e. smaller NSD)

but the final error remains large, then it indicates that

the error introduced by picking the central data point

dwarfs our improvement in homogeneity.

3. Evaluation and analysis of clustered

 sampling using BBV

3.1 Comparing clustering algorithms and

 distance measures

Although k-means clustering algorithm is popular

in representative sampling, it is very sensitive to

outliers and performs well only on clusters that are

spherical and have the same variance. In addition, the

centroid of a cluster rarely coincides with a real data

point. Therefore, we would like to evaluate a different

algorithm against the k-means algorithm. We choose

k-medoid method because it overcomes two

limitations of k-means. First, k-medoid methods are

less strict about the distribution of the data points and

are robust to the existence of outliers. Second, in k-

medoid methods, the medoid, which is a real data

point, naturally represents the cluster. There are

several k-medoid methods. We choose to use

CLARANS algorithm, proposed by Ng and Han

[7][8], because of its lower computation cost, which is

basically linearly proportional to the number of data

points.

In all three representative sampling techniques we

reviewed, Euclidean is used to measure the

dissimilarity between the chunks of instructions. In

this study the cosine distance is of special interest. It

has been successfully used in automatically clustering

documents into different topics. Documents are often

represented as vectors, where each element is the

frequency with which a particular term occurs in the

document. If we compare BBV with a text document

vector, we can see their similarity. An element in BBV

is the number of times a specific static basic block is

executed, which corresponds to the number of times a

specific word occurs in a document. In addition, both

are very high dimensional vectors (thousands to more

than a hundred thousand dimensions). Therefore, it is

very interesting to see whether cosine distance can be

applied to representative sampling. If p and q are two

vectors, then the cosine distance is defined as

 4

cosine_distance(p, q)=
qp

qp

.
1

•
− ,

where • indicates vector dot product, and p is the

length of vector p. Because the result is divided by the

norm of the vectors, the cosine distance is really a

measure of the angle between p and q. If the angle is

0°, then the two vectors are the same except for the

magnitude. The cosine distance will be 0, which is the

minimum value. If the angle is 90°, then the two

vectors do not share any elements. In other words, the

code in the two chunks of instructions are complete

different because they do not share any basic blocks.

In this case, the cosine distance reaches the maximum

value of 1.

3.2 Experiment setup

We use 8 programs with the reference data set from

the SPEC CPU2000 benchmark suite. The programs

and the number of instructions are listed in Table 2.

Table 2. Number of instructions and simulation time of
selected SPEC CPU 2000 benchmarks with reference

data set. The data set name is appended to the
benchmark name.

Following SimPoint, we divide the instruction

stream of each program into intervals of 100 million

instructions. In all our experiments we use CPI as the

target metric. To evaluate the result in the target

space, we simulate all 8 benchmarks in sim-outorder

[1] to collect CPI for each chunk. The processor

configuration used in the simulation is shown in Table

3. The same configuration has been used in study on

cache warm-up [9] and in validation of SimPoint [10].

K-means and CLARANS clustering algorithms are

each evaluated using projected Euclidean and cosine

distance measures. Because clustering algorithms are

less effective at high dimensional Euclidean space, the

dimensionality of BBV is reduced to 15 through

random projection just as in SimPoint. Thus it is given

the name “projected Euclidean distance”. Both k-

means and CLARANS may give different results with

different random seeds. Therefore, we run each

experiment 5 times with different random seeds and

the data shown below are the average results.

Table 3. Processor configuration.

Pipeline

Issue Width

Decode Width

Register Update Unit

Load-Store Queue

Commit Width

8 instructions/cycle

8 instructions/cycle

128 entries

32 entries

8 instructions/cycle

Cache Hierarchy

L1 Data

L1 Instruction

L2 Unified

Memory Access

Latency

16KB; 4-way assoc., 32B lines, 2-cycle hit

8KB; 2-way assoc., 32B lines, 2-cycle hit

1MB; 4-way assoc., 64B lines, 20-cycle hit

151 cycles

Combined Branch Predictor

Bimodal

PAg

Return Address Stack

Branch Target Buffer

Misprediction Latency

8192 entries

8192 entries

64 entries

2048 entries; 4-way assoc.

14 cycles

3.3 Experiment results

Following the evaluation methodology proposed in

Section 2, we first evaluate the two clustering

algorithms in the BBV space. Since average distance

metric cannot be compared between different

distances, the result for projected Euclidean distance

and cosine distance are drawn separately. Figure 2

compares the average distance of k-means and

CLARANS algorithms for projected Euclidean

distance for 2 program-input pairs (see [13] for

complete graphs for Euclidean distance and cosine

distance). CLARANS clearly produces tighter clusters

than k-means in most cases. For some benchmarks,

such as equake and gcc-166 the reduction in average

distance is significant. At 10 clusters, for projected

Euclidean distance, CLARANS reduces the distance

by over 50%, while for cosine distance the reduction is

almost 90%.

We then examine the normalized standard

deviation, which is shown in Figure 3 (the graphs for

remaining 6 programs can be found in [13]). The

NSD shows a downward trend. Therefore, as we

increase the number of phases, the CPI in each phase

shows lesser variance. In general, CLARANS

algorithm produces more homogeneous CPI phases in

most cases. Table 4 shows the clustering algorithm

and distance measure with the overall lowest

normalized standard deviation. In 5 (or 6) out of 8

benchmarks, CLARANS is better than k-means. The

cosine distance we experimented with, on the other

hand, does not seem to perform better than the

projected Euclidean distance. Cosine distance is the

best for only vortex-1.

Benchmark-

Input Pair

Number of instructions

(million)

art-110 41,798

bzip2-source 108,878

equake 131,518

gcc-166 46,917

lucas 142,398

mcf 61,867

vortex-1 118,976

vpr-route 84,068

 5

equake

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

4 5 6 7 8 9 10
number of clusters

d
is

ta
n
c
e

kmeans.projected_euclidean clarans.projected_euclidean

gcc-166

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4 5 6 7 8 9 10
number of clusters

d
is

ta
n

c
e

kmeans.projected_euclidean clarans.projected_euclidean

Figure 2. Average distance for different clustering
algorithms and distance measures

Normalized Stdev (gcc-166)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

4 5 6 7 8 9 10
number of clusters

kmeans.projected_euclidean kmeans.cosine

clarans.projected_euclidean clarans.cosine
Normalized Stdev (equake)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 5 6 7 8 9 10
number of clusters

kmeans.projected_euclidean kmeans.cosine

clarans.projected_euclidean clarans.cosine

Figure 3. Normalized standard deviation for different
clustering algorithms and distance measures

Figure 4 shows the relative error of representative

sampling using different clustering algorithms and

distance measures. For brevity, only two benchmarks

are shown, the complete set of graphs can be found in

[13]. Since the normalized standard deviation

decreases as more phases are identified, the errors are

expected to follow suit. However, they do not show a

general trend and vary a lot, crossing each other

multiple times, making it almost impossible to identify

the one with consistently lowest error. If we only

focus on projected Euclidean distance (used in

SimPoint), then CLARANS consistently results in

smaller error for equake and vortex-1. For the

remaining 6 benchmarks, they are comparable.

Error (bzip2-source)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

4 5 6 7 8 9 10
number of clusters

kmeans.projected_euclidean kmeans.cosine

clarans.projected_euclidean clarans.cosine

Error (art-110)

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

4 5 6 7 8 9 10
number of clusters

kmeans.projected_euclidean kmeans.cosine

clarans.projected_euclidean clarans.cosine

c

Figure 4. Relative error in the CPI from representative

sampling for different clustering algorithms and
distance measures for bzip2-source and art-110

programs.

Table 4. Clustering algorithm and distance measure

with the lowest normalized standard deviation (i.e. the
most homogeneous phases).

Benchmark Best clustering algorithm and distance

measure

art-110 Kmeans with projected Euclidean distance

bizp2-source CLARANS with projected Euclidean distance

equake CLARANS with projected Euclidean distance

gcc-166 CLARANS with projected Euclidean distance

lucas No clear winner

mcf CLARANS with projected Euclidean distance

vortex-1 CLARANS with cosine distance

vpr-route Tie between k-means and CLARANS with

projected Euclidean distance

4. Reuse Distance Distribution - A new

feature for phase classification

Due to the gap between processor and memory

performance, data access latency is one of the most

important factors that determine program performance

in modern day microprocessors. Data access latency

is a function of the inherent locality in the data address

stream of a program. Therefore, we feel that a feature

based on the data locality of a program will be able to

find phases in a program that have similar data

locality, and that show similar performance. It is

important that the locality feature should be

microarchitecture independent. This increases the

confidence that the phases identified by the feature

will be valid across different microarchitectures.

The BBV feature does not capture the properties of

the data locality of the program. Therefore, it is

 6

possible that a static section of code in a program has

different memory reference patterns at different points

of time in its execution. A feature based on the data

locality in a program will be able to capture this

behavior, and may therefore perform better than BBV

in finding more homogeneous phases.

4.1 Reuse Distance Distribution (RDD)

definition

Reuse distance is the number of memory addresses

accessed between the accesses to the same memory

line. A memory line is analogous to a cache block.

We define the RDD feature as the relative frequencies

of the different reuse distances in the data address

stream of a program. The reuse distances can have a

large number of unique values. To make the

distribution more manageable, we group similar reuse

distances together. The width of each interval in the

histogram is exponentially distributed – i.e. a reuse

distance of r is classified into interval
┌

log e r
┐
. In

general, interval i consists of reuse distances from e
i-1

to e
i
. We can represent the RDD feature as a vector

with n elements, where element i is the relative

frequency of the number of reuse distances for interval

i. For a given memory line size, the RDD feature

characterizes the temporal locality of the data memory

address stream. Information about the spatial locality

of a memory address stream can be characterized by

measuring the RDD feature for a range of different

memory line sizes. The example in Section 7.1 of our

technical report [13] is a simple illustration of how the

RDD feature is calculated for an address stream.

Similar concepts based on reuse distance of

memory accesses have been used in many areas such

as cache warm-up [9] and program execution and

performance modeling [14][15]. Our definition of

reuse distance is a little different than the one in [15].

In [15], reuse distance is equal to number of unique

addresses accessed between the accesses to the same

memory address. But this reuse distance measure is

very computation intensive so we use the one

described earlier in this section. Two pervious works

were in representative sampling. Lau et al. [5]

extensively examined different phase features based

on data accesses. Their features are related to the

access patterns, but do not directly measure the data

locality. Since it is the data locality that impacts

program performance, these phase features may not be

a strong enough indicator of the program performance.

Lafage et al. [4] used average memory reuse distance

(RDI) to identify phases for simulation for the data

cache miss-rate. We experimented with the average

reuse distance and found that BBV performed better in

all the benchmarks we considered. By measuring the

distribution of the reuse distance instead of the

aggregated average, we have greatly improved the

accuracy over RDI.

4.2 Comparing RDD and BBV features for

phase classification

As described in Section 2, normalized standard

deviation is a more reliable and insightful metric than

the final error in CPI for comparing two phase

classification features. We therefore used normalized

standard deviation as the performance metric for

comparing the RDD and BBV features. We used the 8

programs listed in Table 1. RDD feature (for memory

line sizes of 16, 64, 256, and 4096 bytes) and the BBV

features are measured for every interval of 100 million

instructions. For clustering the points in the RDD

feature space, we used the CLARANS and k-means

clustering algorithm each with Euclidean and cosine

distance measures. The processor configuration in

Table 3 was simulated.

In order to make a meaningful comparison between

the two features, for every program, we selected the

best (smallest NSD in CPI) algorithm-distance pair for

the RDD feature, and compared it with the best

algorithm-distance pair for the BBV feature. Figure 5

shows a plot of the best algorithm-distance pair for

RDD and BBV features for the 8 program-input pairs

used in this study.

From these graphs we observe that, irrespective of

the number of clusters, the RDD feature gives lower

normalized standard deviation in CPI than the BBV

feature for gcc-166, lucas, mcf, vpr-route, and art-110

programs. For lucas, the normalized standard

deviation for 4 clusters formed using the RDD feature

is even smaller than the normalized standard deviation

from forming 10 clusters using the BBV feature. This

shows that lucas benefits far more from the RDD

feature than from the BBV feature. Forming more than

4 clusters using the BBV feature does not significantly

benefit mcf. The normalized standard deviation given

by the BBV feature for 4 to 10 clusters is not very

different, showing that the benefit from increasing the

number of clusters is minor. However, the normalized

standard deviation for mcf using RDD feature is not

only smaller than that of BBV, but also drops from

0.45 to 0.33 as the number of clusters are increased

from 4 to 10. The normalized standard deviation for

art-110 is very small (0.25 for BBV feature and 0.22

for RDD feature) even when only 4 clusters are

fromed. This shows that art-110 substantially benefits

from clustering using the BBV or RDD feature.

Although the normalized standard deviation for art-

110 is small for the BBV feature, the RDD feature

approximately improves it by additional 14%

 7

irrespective of the number of clusters. For bzip2-

source, the graphs for both the features cross each

other and hence we conclude that neither of the

features clearly outperforms the other. However, for

vortex-1 and equake, the BBV feature always gives a

lower normalized standard deviation in CPI than the

BBV feature.

For this processor configuration, the RDD feature

is consistently better than the BBV feature for 5 out of

the 8 benchmark programs. However, it is possible

that the RDD feature is better than BBV just for the

microarchitecture configuration selected for this

experiment. Therefore, we felt that it is important to

evaluate RDD and BBV features on more

microarchitectures. We selected two additional

configurations, same as those used for evaluation of

SMARTS sampling methodology [12]. The complete

results can be found in [13]. We again observe that

the RDD feature gives lower normalized standard

deviation in CPI than the BBV feature for the same

five programs, gcc-166, art, lucas, mcf, and vpr-route.

For bzip2-source, neither of the feature clearly

outperformed the other. The validation using three

different microarchitecture configurations has

Best Normalized Stdev (art)

0

0.05

0.1

0.15

0.2

0.25

0.3

4 5 6 7 8 9 10

Num ber of clusters

N
o

rm
a
li
z
e
d
 S

td
.
D

e
v
 i
n

 C
P

I

RDD(kmeans.cosine) BBV(kmeans.projected_euclidean)

Best Normalized Stdev (bzip2-source)

0

0.1

0.2

0.3

0.4

0.5

0.6

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i
n

 C
P

I

RDD(clarans.cosine) BBV(clarans.projected_euclidean)

Best Normalized Stdev (equake)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i
n

 C
P

I

RDD(clarans.euclidean) BBV(clarans.projected_euclidean)

Best Normalized Stdev (gcc-166)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i

n
 C

P
I

RDD(clarans.euclidean) BBV(clarans.projected_euclidean)

Best Normalized Stdev (lucas)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i
n

 C
P

I

RDD(clarans.cosine) BBV(kmeans.cosine)

Best Normalized Stdev (mcf)

0

0.1

0.2

0.3

0.4

0.5

0.6

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i
n

 C
P

I

RDDclarans.cosine) BBV(clarans.projected_euclidean)

Best Normalized Stdev (vortex-1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li
z
e
d

 S
td

.
D

e
v
 i
n

 C
P

I

RDD(clarans.cosine) BBV(clarans.cosine)

Best Normalized Stdev (vpr-route)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6 7 8 9 10

number of clusters

N
o

rm
a
li

z
e

d
 S

td
.
D

e
v
 i

n
 C

P
I

RDD(kmeans.cosine) BBV(clarans.projected_euclidean)

Figure 5. Normalized standard deviation in CPI for BBV and RDD feature for 8 program-inputpairs
from SPEC CPU2000 benchmark suite.

 8

increased our confidence that the results are

independent of the microarchitecture and are generally

applicable.

We also evaluated the effectiveness of different

clustering algorithms and distance measures for RDD.

The results agree with our observation in Section 3. In

the feature space, CLARANS clustering algorithm

shows a lower AD and generally produces more

homogeneous phases in CPI.

5. Conclusions

In this paper, we proposed a set of statistical

metrics for evaluating representative sampling

techniques, and showed that these metrics are reliable,

insightful, and provide a deeper understanding of the

quality of clustering in representative sampling. We

used these metrics to evaluate the benefit from using

CLARANS clustering algorithm and the cosine

distance measure. We proposed and evaluated a new

data locality based microarchitecture independent

feature, RDD, for phase classification in a program.

Our experiments showed that in the feature space

for both BBV and RDD features, for all benchmarks,

CLARANS produces more cohesive clusters than the

k-means clustering algorithm. CLARANS algorithm

also results in more homogeneous phases in CPI for

many, but not all, benchmarks. Therefore, a better

clustering algorithm can improve the quality of

clustering in the feature space, but the benefit obtained

in the target metric space also depends on the

correlation between the feature and the target metric.

The new feature that we propose, RDD, is

consistently better than BBV for phase classification

in 5 out of 8 programs on three different

microarchitectures. Therefore, the best feature for

finding phases is program dependent, but often holds

true on different microarchitecture configurations.

This helps the user to choose the best feature for more

efficient microprocessor simulation. The user can

select the best feature for a program using one

microarchitecture, and apply the same feature on

different microarchitectures.

References

[1] D. Burger, and T. M. Austin. The SimpleScalar tool set,

version 2.0. Technical Report 1342, Computer Sciences

Department, University of Wisconsin-Madson, June

1997.

[2] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically characterizing large scale program

behavior. In Proceedings of the International Conference

on Architectural Support for Programming Languages

and Operating Systems (October 2002), 45-57.

[3] R. Todi. SPEClite: Using Representative Samples to

Reduce SPEC CPU2000 Workload. IEEE 4th Annual

Workshop on Workload Characterization. 2001.

[4] T. Lafage and A. Seznec, “Choosing Representative

Slices of Program Execution for Microarchitecture

Simulations: A Preliminary Application to the Data

Stream”, Kluwer Academic Publishers, pp. 145-163,

September 2000.

[5] Jeremy Lau, Stefan Schoenmackers, and Brad Calder,

Structures for Phase Classification, 2004 IEEE

International Symposium on Performance Analysis of

Systems and Software, March 2004.

[6] W. G. Cochran. Sampling Techniques, 3rd ed. John

Wiley & Sons, 1977.

[7] R. T. Ng and J. Han. Efficient and Effective Clustering

Methods for Spatial Data Mining. Proceedings of the 20th

VLDB Conference. Santiago, Chile. 1994.

[8] Raymond T. Ng, Jiawei Han. CLARANS: A Method for

Clustering Objects for Spatial Data Mining. IEEE

Transactions on Knowledge and Data Engineering

archive Volume 14, Issue 5, 2002. pp. 1003 – 1016.

[9] J. W. Haskins, Jr. and K. Skadron. “Memory Reference

Reuse Latency: Accelerated Warm-up for Sampled

Microarchitecture Simulation.” In Proceedings of the

International Symposium on Performance Analysis of

Systems and Software, Mar. 2003.

[10] Example Error Rates for SimPoint,

http://www.cs.ucsd.edu/~calder/simpoint/error-rates.htm

[11] E. Perelman, G. Hamerly, and B. Calder. Picking

statistically valid and early simulation points. In

Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques (September

2003), 244-255.

[12] R. Wunderlich, T. Wenisch, B. Falsafi, and J.Hoe.

SMARTS: Accelerating microarchitecture simulation via

rigorous statistical sampling. In 30th Annual International

Symposium on Computer Architecture, June 2003.

[13] Y. Luo, A. Joshi, A. Phansalkar, L. John, and J. Ghosh.

Analyzing and Improving Clustering Based Sampling for

Microprocessor Simulation. Technical Report TR-

050301-01, Laboratory for Computer Architecture, The

University of Texas at Austin. March 2005.

http://www.ece.utexas.edu/projects/ece/lca/ps/TR-

050301-01.pdf

[14] V. Phalke and B. Gopinath. An Inter-Reference Gap

Model for Temporal Locality in Program Behavior. 1995

ACM SIGMETRICS Joint International Conference on

Measurement and Modeling of Computer Systems. 1995

[15] C. Ding and Y. Zhong. Predicting Whole-Program

Locality through Reuse-Distance Analysis. ACM

SIGPLAN Conference on Programming Language

Design and Implementation. 2003.

