
Function Outlining and Partial Inlining

Peng Zhao
IBM Toronto Laboratory
Markham, ON, Canada

José Nelson Amaral∗

Department of Computing Science,
University of Alberta, Edmonton, Canada

Abstract

Frequently invoked large functions are common in
non-numeric applications. These large functions present
challenges to modern compilers not only because they
require more time and resources at compilation time,
but also because they may prevent optimizations such
as function inlining. However, usually it is the case that
large portions of the code in a hot function fhost are
executed much less frequently than fhost itself. Partial
inlining is a natural solution to the problems caused by
including cold code segments that are seldom executed
into hot functions that are frequently invoked. When ap-
plying partial inlining, a compiler outlines cold state-
ments from a hot function fhost . After outlining, fhost

becomes smaller and thus can be easily inlined. This
paper presents a framework for function outlining and
partial inlining that includes several innovations: (1) an
abstract-syntax-tree-based analysis and transformation
to form cold regions for outlining; (2) a set of ¤exible
heuristics to control the aggressiveness of function out-
lining; (3) several possible function outlining strategies;
(4) alias agent, a new technique that overcomes nega-
tive side-effects of function outlining. With the proper
strategy, partial inlining improves performance by up to
5.75%. A performance study also suggests that partial
inlining is not effective on enabling more aggressive in-
lining. The performance improvement from partial in-
lining actually comes from better code placement and
better code generation.

1 Introduction

Algorithms used in optimizing compilers are often
applied to the scope of a function. Many of these al-
gorithms have super-linear time and spatial complex-
ity on their inputs. Thus compiling a program with
large functions demands large memory storage and is

∗This research was supported by the Natural Science and Engineer-
ing Research Council (NSERC) of Canada.

time-consuming. Large functions also impose limita-
tions on other optimizations such as function inlining
and code placement. The inlining heuristics used in
most compilers avoid inlining call sites that target large
callees. The goal of such heuristics is to prevent ex-
cessive code growth, also referred to as the code bloat
problem [2, 3, 16].

There are many examples of large but infrequently
executed code in hot functions [7, 8]. For instance, only
8.1% of the code in the BSD version of the TCP network
protocol implementation is hot[8]. Function outlining is
a technique that splits a region into a new, independent
function fout and replaces the region with a function call
to fout. Outlining has obvious performance potential be-
cause it might enable more inlining and improve code
locality. A negative performance impact of outlining is
that extra function calls are introduced to transfer con-
trol between the outlined region and the other parts of
the program unit. This cost must be taken into consider-
ation when deciding to apply the outlining transforma-
tion. This paper makes the following contributions:

• An abstract-syntax-tree-based analysis and a set of
heuristics to form and identify cold regions in hot
functions. A performance study indicates that this
region formation method is successful.

• Unlike previous outlining work, the outlining anal-
ysis presented in this paper happens very early in
the backend. Early optimizations may negatively
impact existing downstream optimizations. A ma-
jor negative impact of outlining is on the alias anal-
ysis of the new parameters passed to the outlined
functions. A novel technique, explicit variable dis-
ambiguation, prevents the spilling variables in hot
paths.

• A performance study of two orthogonal outlining
strategies (collective VS. independent splitting and
splitting with VS. without explicit disambiguation)
reveals that choosing the correct strategy is crucial.
While combining independent splitting and alias

1

agent improves performance, other strategy combi-
nations may signi£cantly deteriorate performance.

• Partial inlining improves benchmarks in the
SPEC2000 integer suite by up to 5.75%. These im-
provements are due to better code placement and
better code generation. The effect of partial inlin-
ing on aggressive inlining is much less pronounced
than was expected by many in the optimizing com-
piler community.

Section 2 introduces WHIRL, the intermediate repre-
sentation used in the Open Research Compiler (ORC).
The Section 3 presents the design and implementation
of outlining and partial inlining. Section 4 discusses the
experimental study. Related work is discussed in Sec-
tion 5.

2 WHIRL Trees

Outlining on very-high WHIRL bene£ts from high-
level, structured, control-¤ow constructs — such as if,
loop and switch. In contrast at lower level control ¤ow
is represented by ¤at constructs —- such as conditional
branches and gotos. Thus, high-level outlining can iden-
tify cold code segments in a single pass through the
WHIRL tree. The contrived function shown in Fig-
ure 1, HOTPU, illustrates the WHIRL-tree representa-
tion. Statements are annotated with their execution fre-
quency obtained from runtime pro£ling. Assume that
HOTPU is frequently invoked. The shaded code seg-
ments or nodes are the cold parts of HOTPU. In very
high WHIRL, three control-¤ow constructs may lead to
cold code in a hot function:

if statement. An if node in a WHIRL tree has two chil-
dren: a then block and an else block. These nodes
are annotated with execution frequency. For exam-
ple, in Figure 1 both if statements have skewed ex-
ecution frequency.

switch statement. In Figure 1, each CG node corre-
sponds to an enumerated case in a switch statement.
If the switch expression (or key) equals to n, the
CGn node is executed and the program jumps to
the An node that contains the action code for case
n. If the switch expression is not equal to any of
the enumerated cases, the program jumps to the Ad

node that contains the default action through the
DG node. Feedback information indicates the ex-
ecution frequency of each case. Often large switch
statements have skewed execution frequency distri-
bution [18]. In Figure 1, only two of the cases in the
switch statement are hot.

Early return. Early return occurs when the return
statement or an exit function call appears early in a
function. Each return statement is annotated with
its execution frequency. Usually a hot early return
implies that the rest of the function is cold. In Fig-
ure 1, there are three early returns at lines 12, 15
and 18 that correspond to nodes return0, return1
and return2 in the WHIRL tree. However, only
return2 at line 18 is hot.

2.1 Region

In this paper, a region is a sequence of code in the pro-
gram that is guarded by a high-level control-¤ow con-
struct such as if and loop statements (see Figure 1). For
instance, for an if-then-else statement, the code executed
under the then branch consists of a region and the code
executed under the else branch forms another region.
Likewise, the loop body of a while statement is a region.

An early return statement short-circuits the rest of
the current function. However, the short-circuited code
might reside in different levels and different regions in
the WHIRL tree. For example, return2 leads to three
non-executed print statement: printf1 in region3; printf2
and printf3 in FUNC Region . The code short-circuited
by an early return er in region R, SC(er,R), is:

SC(er, R) = {s | A = NCA(er, s) ∧
Pos(s,A) > Pos(er,A)}

where NCA(er, s) is the nearest common ancestor of
er and s, and Pos(s,A) is the position of s, or one of its
ancestors, in A. For a formal de£nition refer to [15].
In the example, SC(return2, region3) includes printf1
and SC (return2 , FUNC Region) includes printf2 and
printf3.

3 Function Outlining

There are three phases in function outlining optimiza-
tion: region reorganization transforms the WHIRL tree
to split cold and hot code into separated regions; candi-
date identi£cation identi£es regions for which outlining
is bene£cial; function splitting generates a new function
from a candidate region and replaces the region with a
call to the new function.

In biased if statements, the hot code and the cold code
are well structured in two separate sub-regions. How-
ever, for switch statements and early returns, hot and
cold codes are mixed with each other. The splitting of
switch statements is described in [18].

2

HOTPU //1000
1. switch (key)
2. case 1: ... break; // 500

3. case 2: ... break; // 0
4. case 3: ... break; // 500

5. case 4: ... break; // 0

6. default: ... // 0
7. endswitch
8. if (i > 100) // 1, if1

9. while (1) // 2

10. ... // loop body

11. end while

12. return 0; // 1, ER(Early Return)

13. else // 999
14. if (i == 101) // 0, if2

15. return 1; // ER
16. else // 999
17. i - -;
18. return 2; //999, frequent ER
19. endif
20.

21. printf(”1. not touched”); // 0

22. endif
23.

24. printf(”2. not touched”); // 0

25. printf(”3. not touched”); // 0

FUNC_REGION

if1

region1

switch

DGCG1

CG4
CG3
CG2

A1 Ad

A4

A3

A2

region3

while return 0 if2 printf1

printf2

Loop
body

printf3

CG: case goto

DG: default goto
Ad: default action

An: action for nth case

500

0

1, 2

500

500

0

0

500

00

0

2

999

1

00

0

1000

1000

1000

999

region5region4
9990

 return 2
999

 return 1
0

i - -

region2

Figure 1. Example source code & WHIRL tree

HANDLEER (Ser)
1. ReturnFreq ← ReturnFreq + GetFreq(Ser)

2. if
(

ReturnFreq
GetFreq(HostFunc)

� ERThreshold
)

3. return
4. Sloop ← Ser

5. CurParent ← GetParent(Ser)
6. while (CurParent �= ROOT)
7. if (CurParent is a loop construct)
8. Sloop ← CurParent
9. CurParent ← GetParent(CurParent)
10. CurNode ← Sloop

11. while (CurNode �= ROOT)
12. CurParent ← GetParent(CurNode)
13. if (CurParent is a region)

14. EXTRACTCODE
(
SC(CurNode, CurParent)

)

15. CurNode ← CurParent

Figure 2. Handling early returns

3.1 Handling Frequent Early Returns

The algorithm HANDLEER, shown in Figure 2, han-
dles early returns. HANDLEER is called when an early

return statement Ser is encountered during the depth-
£rst traversal of the WHIRL tree. ReturnFreq accu-
mulates the execution frequency of early returns (step 1).
Its value is reset to zero before the scan of a function
starts, and is preserved between calls to HANDLEER.
Unless Ser resides in a loop body, when the ratio be-
tween the accumulated frequency and the frequency of
the host function reaches the ERThreshold, the code
after Ser is cold. If Ser is inside a loop body Sloop, it is
possible that the code in SC(Ser, Sloop) is still hot and
we avoid outlining it. We use an upward traversal from
the early return Ser to £nd its uppermost loop ancestor
Sloop (step 6-9). If there is no loop ancestor, Sloop is set
to be Ser itself. The cold code resulted from frequent
early return is SC(Sloop, FUNC BODY). The cold
code might spread into different levels of the WHIRL
tree (e.g. the three printf statements in our example).
To preserve program correctness, code from different
levels cannot simply be put together in a single region.
Instead, an upward traversal from Ser (step 11-15) ex-
tracts the cold code of every region that it encounters

3

into a new region (step 14).

3.2 Candidates for Outlining

Every region R is annotated with (freqR, sizeR).
The sizeR of a region is the number of WHIRL nodes
in that region and freqR is its frequency. Next the com-
piler identi£es cold regions that are suitable for outlin-
ing.

3.2.1 Hazardous regions for outlining

Some regions are not outlined to prevent performance
degradation or to preserve program correctness. Out-
lining is avoided in two following situations. Outlining
replaces a region in a host function, fhost , with a func-
tion call to a new function, fout . Code patches are often
required, before and after the call to fout , to preserve
correctness. If a region is too small, these patches might
be larger than the outlined region, defeating our pur-
pose of reducing function sizes. Outlining also avoids
regions with escaped alloca-allocated memory. Alloca
allocates memory space in the stack frame of a function.
This memory is automatically freed when the function
returns. When a function uses alloca to allocate memory
in a region and references the allocated memory outside
of the region, the region should not be outlined. This
is because fout would allocate a memory block with al-
loca and pass this block to fhost . It would be dif£cult to
maintain the original semantics of the program because
the memory allocated in fout would be automatically
freed at its exit and would be no longer valid in fhost .

3.2.2 Selective Outlining

The optimal outlining problem can be reduced from a
0-1 knapsack problem, which is NP-hard [15]. There-
fore heuristics to £nd sub-optimal solutions in reason-
able time are required.

An effective greedy algorithm for the knapsack prob-
lem is used to estimate the bene£ts of splitting a region
R out of its host function F . This algorithm uses the
freq ratio and size ratio to model the pro£t and cost
for outlining a region R.

size ratioR =
sizeR

sizeF
(1)

freq ratioR =
freqR

freqF

(2)

benefitR =
size ratioR

freq ratioR

(3)

Essentially, size ratio and freq ratio are the con-
tribution of the cold regions to the total size (sizeF)

and execution frequency (freqF) of the host function.
Therefore, the bene£t heuristics favors large cold re-
gions. Intuitively, the less frequent a region and the
larger its size, the more bene£cial to split it out of the
host function. A region is outlined if its outlining bene-
£t, benefit R, exceeds a carefully chosen Bene£tThresh-
old.

To avoid a situation in which the patch code is larger
than the outlined region, there is a threshold for the size
of a region R to be outlined: sizeR > SizeThreshold.

3.3 Function Splitting

The splitting transformation consists of generating a
new function fout from the region Rout to be outlined
and patching the data ¤ow and control ¤ow of both fhost

and fout so that the program’s semantics is left intact.
Function splitting is described in [17].

3.4 Performance Tuning

Proper thresholds for outlining bene£t and cold re-
gion size are important. After experimentation with a
large set of thresholds the values of 1000 for the bene£t
threshold and 10 for the cold region sizes were selected.
This section describes some important performance tun-
ing, based on different strategies, for the outlining opti-
mization.

3.4.1 Independent VS. Collective outlining

Regions to be outlined may be scattered throughout
fhost . The independent outlining strategy splits each
region into separate functions. The collective strategy
moves all the outlining candidates to a single combined
region and splits it into a single function. Some hand-
shaking work is required for both the host function and
the split function. At the beginning of fout, the control
¤ow is dispatched to the correct sub-region according to
a Flag parameter. On the host function, each outlining
candidate is replaced by an initialization of Flag and a
jump to the patch code. Therefore the collective strat-
egy generates a single new call site in the host function.
The changes to the CFG introduced by the collective
strategy may be troublesome for downstream compiler
analysis. On the other hand the collective strategy may
produce smaller patch code because all the sub-regions
now share the same patch code. But this also means that
there would be some unnecessary parameter passing for
each speci£c call to the new function. Section 4 shows
that independent outlining performs better than collec-
tive outlining.

4

3.4.2 Explicit Variable Disambiguation

When the address of a variable x is passed as a param-
eter to fout , imprecise alias analysis will conservatively
assume that x can now be aliased to any other variable
that fout has access to. A consequence of imprecise alias
information is that a variable that was kept in a regis-
ter must now be spilled. This constitutes a performance
hazard in ORC 2.1 because the memory spills is often
placed in a hot path. Our solution is to introduce an
explicit variable disambiguation technique to eliminate
this serious side-effect. Each variable v whose address
is passed to fout has a clone v′ introduced in fhost . Just
before the invocation of fout , the value of v is copied
into v′. Then the address of v′ is passed to fout . Upon
return from fout , the value of v′ is copied into v. Both
copies occur in the same cold basic block that contains
an invocation to fout .

3.4.3 Partial Inlining

In ORC, function outlining occurs before the IPO phase,
which includes function inlining optimization. Function
outlining analysis is conducted on each function and re-
gions are outlined accordingly. After all the functions
are processed, the outlining phase ends and all the source
£les are passed to the IPO phase. Partial inlining is
achieved by enabling both function outlining and inlin-
ing.

4 Results

An experimental investigation on SPEC2000int
benchmarks reveals that:

• Outlining reduces the size of hot functions by up
to 97% and incurs less than 0.21% increase in run-
time function calls.

• Explicit variable disambiguation combined with in-
dependent splitting is the best outlining strategy.
Explicit disambiguation is crucial to avoid perfor-
mance degradation caused by memory spills in hot
paths.

• Surprisingly, function outlining has less effect on
enabling aggressive inlining than previously ex-
pected. Performance improvement from function
outlining alone ranges from -0.62% to 4.1%. When
partial inlining is enabled, performance increases
range from -0.85% to 5.75%.

4.1 Experiment Con£guration

Experimental results were obtained on an HP
ZX6000 workstation with a 1.3GHz Itanium-2 proces-
sor, 1 GB of main memory, 32KB of L1 cache, 256KB
of L2 Cache, and 1.5MB of on-die L3 cache. The oper-
ating system is Red Hat Linux 7.2 with a 2.4.18 kernel.
This experimental study is based on SPEC2000 integer
benchmarks.1 All the pro£ling information is obtained
by using standard SPEC2000 training data set and the re-
ported run-time data is from the standard reference data
set. Time is measured by the Linux time command and
micro-architectural benchmarking is obtained with pf-
mon. All reported run times are the average of 5 consec-
utive identical runs.

4.2 Function Outlining Performance

Figure 3 shows the performance changes caused by
the four strategies described in Table 1. Combining
explicit variable disambiguation with independent split-
ting, D-I, usually outperforms the other strategies. No-
ticeable performance improvements are observed on
gap(1.1%), gcc(1.2%), and perlbmk(4.1%). When
local variables are not disambiguated from their clones
passed as parameters (N-I and N-C) signi£cant perfor-
mance degradation occurs. Inspection of binaries indi-
cates that the imprecision of the ORC 2.1 alias analysis
results in many additional memory spills in hot paths.
Collective splitting (N-C and D-C) also degrade perfor-
mance because of the adverse effects of sharing patch
code.

4.3 Outlining Statistics

Table 2 presents static measurements for D-I. The
£rst row shows that function outlining occurs in many
places in gap, gcc, perlbmk and vortex. Small
benchmarks such as bzip2, gzip and mcf, have fewer
regions split. If statements are the major source of cold
regions in hot functions. The Function Size Reduction
row shows that outlining reduces function sizes drasti-
cally (up to 97%). When the patching code is larger than
the split code, outlining enlarges functions. The number
of parameters needed for the outlined functions ranges
from 2 to 19.

Function outlining increases the number of run-time
function calls by at most 0.21%. This indicates that (1)
the heuristics successfully avoid outlining hot regions
and (2) the SPEC2000int training data set is represen-
tative of the reference data set.

1We don’t include eon because our compiler cannot compile it
successfully.

5

Short Explanation
D-I Explicit variable disambiguation and independent splitting.
N-I No explicit variable disambiguation and independent splitting.
D-C Explicit variable disambiguation and collective splitting.
N-C No explicit variable disambiguation and collective splitting.

Table 1. Strategy Combinations

Benchmarks b
z
i
p
2

c
r
a
f
t
y

g
a
p

g
c
c

g
z
i
p

m
c
f

p
a
r
s
e
r

p
e
r
l
b
m
k

t
w
o
l
f

v
o
r
t
e
x

v
p
r

Number of Regions Split 5 59 192 388 1 3 36 415 4 410 61
Control if 5 54 186 354 1 3 36 374 3 398 61

Flow switch 0 5 0 12 0 0 0 33 0 7 0
Construct early exit 0 0 6 22 0 0 0 8 1 5 0
Function min (%) -14 1 -63 -37 35 7 -5 -23 3 -35 26

Size max(%) 17 1 97 84 35 15 26 89 23 71 55
Reduction avge(%) 1.5 9.8 19.7 15.6 34.5 11.0 16.1 21.6 9.6 18.2 7.0
Number of min 2 2 2 2 2 3 2 2 3 2 2
Parameters max 2 6 8 19 2 5 6 16 5 18 9

Passed average 2.0 4.8 5.5 8.5 2.0 4.3 3.7 9.8 3.8 7.3 4.1

Table 2. Statistics of Outlining

bzip2 crafty gap gcc gzip mcf parser perlbmk twolf vortex vpr
−20

−15

−10

−5

0

5

Benchmarks

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
%

)

D−I
N−I
D−C
N−C

Figure 3. D-I is the only outlining strategy
that does not degrade performance.

4.4 Partial Inlining

D-I is also the best strategy for partial inlining. Fig-
ure 4 shows the performance improvements due to D-
I partial inlining.2 perlbmk and gap improved by
5.75% and 3.90% because of partial inlining. vpr and
parser have minor performance degradation (0.86%
and 0.51%).

Surprisingly, very few additional call sites are inlined
due to function outlining. The only benchmarks that
have extra call sites inlined are: gap (10), gzip (5),
parser (3), and perlbmk (5). These call sites con-
tribute a very small percentage of the run-time function
calls (less than 0.6%).

There are two major reasons that impede more ag-
gressive inlining in the SPEC2000 integer benchmaks.
More aggressive inlining is prevented by hot functions
that cannot be inlined because they are too large even
after outlining. To make matters worse, because few
of them are leaf functions in the call graph, they often
absorb other functions during function inlining and be-
come even larger. Moreover, benchmarks that tend to
bene£t from partial inlining are often large benchmarks,
such as perlbmk and gap, where run-time function
calls are distributed among many call sites and there is
no dominating call sites. Thus, a small increase in the

2Partial inlining uncovered a bug elsewhere in ORC that prevents
us from obtaining results for gcc and vortex.

6

bzip2 crafty gap gzip mcf parser perlbmk twolf vpr
−1

0

1

2

3

4

5

6

Benchmarks (Baseline: O3+IPO)

P
er

fo
rm

an
ce

 In
cr

ea
se

 (
%

)

Figure 4. Outlining followed by inlining im-
proves performance.

number of inlined sites is unlikely to yield signi£cant
changes in performance.

bzip2 crafty gap gzip mcf parser perlbmk twolf vpr
−2

0

2

4

6

8

10

Benchmarks

In
st

ru
ct

io
n/

S
ta

ll
R

ed
uc

tio
n

(%
)

stalls
retired instructions

Figure 5. Effects on Stalls and Instructions

Thus, where is the the performance improvement of
partial inlining coming from? First, function outlin-
ing segregates regions with heterogeneous execution fre-
quency into separate functions and improves code place-
ment and cache ef£ciency. Second, our outlining in-
cludes better switch optimization and explicit memory
disambiguation, which might help the compiler to do a
better job in other optimizations, such as code schedul-
ing and register allocation. Figure 5 shows the changes
in the number of processor stalls and retired instructions
when partial inlining is enabled. There is a positive
correlation between the number of retired instructions
and/or processor stalls and improvements from partial
inlining. For example, the processor stalls and retired
instructions in perlbmk are reduced by about 5.9%

and 9.3%, respectively. In other benchmarks, process
stalls are signi£cantly reduced in crafty, gap, and
twolf. bzip2 also shows reduction in retired instruc-
tions (around 2%).

5 Related Work

The design and implementation of the outlining re-
lates to previous work as follows.
Function Splitting. In their famous code positioning
work[10], Pettis and Hansen separate the frequently ex-
ecuted code and the infrequently executed code in a pro-
gram unit to optimize code layout. In their work transi-
tions between hot and cold code is achieved by explicit
jump instructions. Their control ¤ow patching method
breaks the address integrity of a function and is dif£cult
to implement and maintain in high-level optimizations.
Castelluccia et al. and Mosberger et al. use the idea of
outlining to increase the code density of network pro-
tocol code[1, 7]. They only handle if statements —
we found that switch statements and early returns are
also important. Muth et al. proposed to implement par-
tial inlining in a link-time optimizer called ALTO [8].
Their outlining and partial inlining occur too late to ben-
e£t from other code transformations. Way et al. exper-
imented with partial inlining in early phases of a com-
piler backend [12, 13, 14]. Their inlining is an enabling
technique to build inter-procedural regions and reduce
optimization costs. They achieved less than 1% perfor-
mance improvement from partial inlining.
Region Formation Algorithm. Hank’s intra-
procedural region formation method [4] is a gener-
alization of the runtime feedback-based trace selection
algorithm implemented in the IMPACT compiler [9].
The CFG-based region formation in the work of
Suganuma et al. tries to identify cold regions in a hot
function [11].
Semantics Preserving in Splitting. Komondoor et al.
use function splitting to abstract repetitive code seg-
ments into a new function so that the program becomes
easier to understand and maintain [5, 6]. Their splitting
candidates are limited to single-entry regions while our
splitting framework can handle side-entries to a region.

6 Conclusion

Our function outlining features a novel region for-
mation approach that takes full advantage of high-level
control-¤ow constructs, a set of heuristics to control the
aggressiveness of outlining, and a solid patching method
to maintain the correct semantics of the program. Our
experimental study shows that both function outlining

7

and partial inlining improve the performance of some
benchmarks in the SPEC2000 integer suite.

This paper focuses on outlining cold code in hot func-
tions. Therefore it cannot handle cold functions that
contain hot loops, or heavy functions [16]. When a
heavy function is large, the ORC cannot inline the hot
call sites in the loop because of the inlining budget.
Function outlining is still a possible solution. However,
there might be serious performance degradation if the
current patching methods are used to outline hot regions
out of a cold function. For instance, when variables
are modi£ed in the hot region, their addresses would be
passed to the new function. Thus all the related vari-
able accesses would require one extra memory derefer-
ence. Therefore, instead of passing variable addresses,
the new function should be a nested function, which can
access variables in its host function directly.

References

[1] C. Castelluccia, W. Dabbous, and S. O’Malley.
Generating ef£cient protocol code from an abstract
speci£cation. In Conference on Applications, Tech-
nologies, Architectures, and Protocols for Com-
puter Communications, pages 60–72, 1996.

[2] J. W. Davidson and A. M. Holler. A study of a C
function inliner. Software - Practice and Experi-
ence (SPE), 18(8):775–790, 1989.

[3] J. W. Davidson and A. M. Holler. Subprogram in-
lining: A study of its effects on program execution
time. IEEE Transactions on Software Engineering
(TSE), 18(2):89–102, 1992.

[4] R. E. Hank, W. W. Hwu, and B. R. Rau. Region-
based compilation: An introduction and motiva-
tion. In 28th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 158–168,
Dec 1995.

[5] R. Komondoor and S. Horwitz. Semantics-
preserving procedure extraction. In Principles of
Programming Languages (POPL), pages 155–169,
Boston, MA, Jan 2000.

[6] R. Komondoor and S. Horwitz. Effective, auto-
matic procedure extraction. In 11th International
Workshop on Program Comprehension (IWPC),
pages 33–43, Portland, OR, May 2003.

[7] D. Mosberger, L. Peterson, and S. O’Malley. Pro-
tocol latency: MIPS and reality. Technical report,
TR-95-02, Department of Computer Science, Uni-
versity of Arizona, 1995.

[8] R. Muth and S. Debray. Partial inlining. Technical
report, Department of Computer Science, Univer-
sity of Arizona, 1997.

[9] P. P. Chang and W. W. Hwu. Trace selection
for compiling large c application programs to mi-
crocode. In 21st International Workshop on Micro-
programming and Microarchitecture, pages 188–
198, Nov 1988.

[10] K. Pettis and R. C. Hansen. Pro£le guided code po-
sitioning. In Programming Language Design and
Implementation (PLDI), pages 16–27, 1990.

[11] T. Suganuma, T. Yasue, and T. Nakatani. A region-
based compilation technique for a java just-in-time
compiler. In Programming Language Design and
Implementation (PLDI), pages 312–323, 2003.

[12] T. Way. Procedure restructuring for ambitious op-
timization. PhD thesis, University of Delaware,
May 2002.

[13] T. Way, B. Breech, and L. L. Pollock. Region
formation analysis with demand-driven inlining
for region-based optimization. In Conference on
Parallel Architectures and Compilation Techniques
(PACT), pages 24–36, 2000.

[14] T. Way and L. L. Pollock. A region-based partial
inlining algorithm for an ilp optimizing compiler.
In The 2002 International Conference on Parallel
and Distributed Processing Techniques and Appli-
cations, pages 552–556, 2002.

[15] P. Zhao. Code and Data Outlining. PhD thesis,
University of Alberta, Department of Computing
Science, Edmonton, Alberta, Canada, April 2005.

[16] P. Zhao and J. N. Amaral. To inline or not to in-
line, enhanced inlining decisions. In Workshop on
Languages and Compilers for Parallel Computing
(LCPC), pages 405–419, Oct 2003.

[17] P. Zhao and J. N. Amaral. Splitting functions.
Technical Report TR04-18, Department of Com-
puting Sciences, University of Alberta, Edmonton,
Canada, 2004.

[18] Peng Zhao and J. N. Amaral. Feedback-directed
switch-case statement optimization. In 4th Work-
shop on Compile and Runtime Techniques for Par-
allel Computing, Oslo, Norway, June 2005.

8

