VRM: A Failure-Aware Grid
Resource Management
System

Lars-Olof Burchard, Hans-Ulrich Heiss,

Barry Linnert, Joerg Schneider
Technische Universitaet Berlin, GERMANY
{baron,heiss,linnert,komm} @cs.tu-berlin.de

Cesar A. F. De Rose
PUCRS, Porto Alegre, BRASIL
derose@inf.pucrs.br

Keywords: Grid Computing, Failure Recovery, Advance Reservation

Reference to this paper should be made as follows: L.-O. Burchard, C. A. F. De Rose,
H.-U. Heiss, B. Linnert, J. Schneider (xxxx) ‘VRM: A Failure-Aware Grid Resource
Management System’, Int. J. High Performance Computing and Networking, Vol. x,
No. X, pp-XXX—XXX.

Biographical notes: Lars-Olof Burchard received his diploma in computer science
from Paderborn University, Germany, in 1999. From October 1999 to February 2001,
he was a member of the research staff and PhD student at the Paderborn Center
for Parallel Computing. In March 2001, he joined the communication and operating
systems group at Berlin University of Technology, Germany, where he received his doc-
torate degree in August 2004. His research interests include distributed multimedia
systems, resource management in computer networks and Grid computing.

Cesar De Rose is an Associate Professor in the Computer Science Department at the
Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
His primary research interests are parallel and distributed computing and parallel archi-
tectures. He is currently conducting research on a variety of topics applied to clusters
and Grids, including resource management, resource monitoring and distributed allo-
cation strategies. Dr. De Rose received his doctoral degree in Computer Science from
the University Karlsruhe, Germany, in 1998. He currently leads the Research Center
in High Performance Computing (CPAD - PUCRS/HP) at PUCRS.

Hans-Ulrich Heiss received his diploma and doctorate degrees in computer science from
the University of Karlsruhe (Germany) in 1979 and 1987, respectively. 1988-1989 he
was a post-doc fellow at IBM T.J. Watson Research in Yorktown Heights (NY), and in
1990 a visiting professor at the University of Helsinki (Finland). After appointments at
the universities in Ilmenau and Paderborn (both Germany) he has been a full professor
for communication and operating systems at the Berlin University of Technology since
2001. His interests include operating systems, distributed systems, Grid computing,
resource management, self-organization, and performance evaluation.

Barry Linnert received his diploma in computer science from the Berlin University of
Technology, Germany, in 2000. He works as a research assistant at the communication
and operating systems group at the Berlin University of Technology. His interests in-
clude operating systems, high performance computing, cluster and Grid computing.

Joerg Schneider received his diploma in computer science from the Berlin University
of Technology (Germany) in 2004. His research interests include resource managment
in the Grid, complex co-allocations and especially, Grid workflows. He is currently an
research assistant at the communication and operating systems group at the Berlin
University of Technology.

1 Introduction

Currently, Grid research moves its focus from the basic in-
frastructure that enables the allocation of resources in dy-
namic and distributed environments in a transparent way
to more advanced management systems that accept and
process complex jobs and workflows consisting of numerous
sub-tasks and, e.g., provide guarantees for the completion
of such jobs. In this context, the introduction of service
level agreements (SLA) provides flexible mechanisms for
agreeing on the quality-of-service (QoS) provided by vari-
ous resources, including mechanisms for negotiating SLAs
(1). The introduction of SLAs envolves prices for resource
usage and also implies fines that must be paid when the as-
sured QoS is not met. Depending on the scenario, this may
be, e.g., a missed deadline for the completion of a sub-job
in a workflow. Consequently, the definition of SLAs de-
mands for control over each job and its required resources
at any stage of the job’s life-time from the request negoti-
ation to the completion.

To achive this level of control and reliability next gener-
ation Grid management systems have to rely on advance
reservation mechnisms. Advance reservations are a way
of allocating resources in distributed systems before the
resources are actually required, similar to flight or hotel
booking. This provides many advantages, such as im-
proved admission probability for sufficiently early reser-
vations and reliable planning for clients and operators of
the resources. Grid computing in particular uses advance
reservations, which besides reliability of planning simplifies
the co-allocation of very different resources and resource
types in a coordinated manner. For example, the resource
management integrated in the Globus toolkit (2) provides
means for advance reservations on top of various local re-
source management systems.

An example for a resource management framework
covering these aspects is the Virtual Resource Manager
(VRM) architecture described in (3). This planning based
Grid management system uses advance reservation mecha-
nisms not only to provide improved admission probability
and reliability, but to introduce support for workflows of
Grid jobs, too. The functionalities coming with the plan-
ning based approach distinguishes the VRM from batch
job based management systems.

A typical example for a complex workflow in a Grid is
depicted in Fig. 1. The workflow processed in the dis-
tributed environment consists of five sub-tasks which are
executed one after another in order to produce the final
result, in this case the visualization of the data. This in-
cludes network transmissions as well as computations on
two cluster computers.

One important aspect in this context is the behavior of
the management system in case of failures. While cur-
rent research mainly focused on recovery mechanisms for
those jobs that are already active, in advance reservation
environments it is also necessary to examine the impact of
failures to admitted but not yet started jobs or sub-jobs.
In contrast to the sophisticated and difficult mechanisms

1. satellite
transmission

3. data processing,
(filtering, database access, etc.)
=

2. bulk trans_fer L
(non real-time)

3. data processing

Internet

4. streaming (real-time)

5. post-processing, visualization

Figure 1: Example: Grid application with time-dependent
tasks.

needed to deal with failures for running jobs, e.g., check-
pointing and migration mechanisms, jobs not yet started
can be dealt with in a transparent manner by remapping
those affected jobs to alternative resources.

As previous work in this area showed (4), it is necessary
to deal with these affected but not yet active jobs. Conse-
quently, we enhanced the VRM as our prototype for next
generation Grid management systems with such failure re-
covery functionalities.

In this paper, we present the novel, load-based approach
that has been developed for our VRM framework and has
the advantage of adapting to the actual load situation and
remapping affected jobs accordingly. The adaptiveness is
an important feature as estimations of the failure duration
are unreliable.

The remainder of this document is organized as fol-
lows: firstly, the general problem is described, including
the properties of the advance reservation environment and
the necessary assumptions and conditions to apply our ap-
proach. Based on these general remarks, the VRM frame-
work is introduced as it is the target application for the
failure recovery mechanism. Following that, the load-based
approach for remapping jobs is presented. In Sec. 5, the
strategies are evaluated using extensive simulations, show-
ing the superiority of our approach compared to estima-
tions. Before the paper is concluded with some final re-
marks, related work important for this paper is outlined.

2 Problem Definition

In this section, the general properties of advance reser-
vation systems are described as well as different aspects
related to the problem of remapping jobs in case of fail-
ures.

Although the VRM architecture is capable of handling
various kinds of resources at the same time, this work fo-
cuses on computing resources. Comparable kinds of re-
sources, e.g., storage space or bandwidth, can be handled
by the mechanism presented in this document as well.

2.1 Properties of the Advance Reservation Envi-

ronment
A request
EEEEEEEA
o8]
g9 — alocated resources
g % — | a—— of admitted requests
ve
ot time
| - _—

-~

book-ahead interval

Figure 2: Advance reservations: status about future uti-
lization

Advance reservations are requests for a certain amount
of resources during a specified period of time. In general,
a reservation can be made for a fixed period of time in the
future, called book-ahead interval (tpa, see Fig. 2). The
book-ahead interval is divided into slots of fixed size, e.g.,
minutes, and reservations can be issued for a consecutive
number of slots (2). The time between issuing a request
and the start time of the request is called reservation time
r. The finishing time or the duration for a given request
must be specified to ensure reliable admission control, i.e.,
to determine whether or not sufficient resources can be
guaranteed for the requested period. As depicted in Fig. 2,
this approach requires to keep the status of each resource,
i.e., information about future requests which are already
admitted, for the whole book-ahead interval.

In this environment, failure recovery not only has to
handle already active jobs, but also those which are ad-
mitted but not yet started, so-called inactive jobs. This
means that the affected inactive jobs have to be remapped
in advance to another matching resource. As the timing
parameters start and stop time were specified during the
admission, e.g., as part of a service level agreement (SLA),
jobs can only be moved to another resource but not shifted
in the temporal dimension.

The general benefits of remapping in advance are shown
in (4) where estimations of the failure duration were used.
As the end of the failure is usually unknown, it is not
easy to decide which active jobs on the resource have to
be taken into account for remapping. This paper presents
a downtime independent approach to decide this question
basing on the actual load situation.

2.2 Implications of the Environment

In order to implement failure recovery mechanisms in ad-
vance reservation environments, it is necessary to consider
the types of available resources, i.e., resource heterogeneity
or homogeneity play an important role. Whenever identi-
cal hardware and software infrastructure is available, in-
cluding a wide range of properties such as processor type,
cache sizes, operating system version, or libraries, mapping

an inactive job to another resource is relatively simple. It
may be even possible to migrate a running job, e.g., with
support from checkpointing mechanisms, as some systems
provide libraries for that purpose (5). For many resource
types, such as cluster systems or parallel computers, such
functionality often lacks completely or has to be imple-
mented explicitly by the application. Consequently, in the
context of this study active jobs are considered to be not
remappable. However, this assumption is not crucial for
the usage of our approach or the success of the remapping
strategy itself.

Besides migration of active jobs, in a heterogeneous envi-
ronment even the task of remapping inactive jobs is much
more complex and difficult. In order to remap inactive
jobs to another resource, e.g., a cluster computer, the dif-
ferences between the resources often have consequences on
the run-time of the respective processes and hence, have
to be considered. For example, mapping a job from a 2
GHz processor to a 1 GHz processor may increase the over-
all execution time. Supposed, the differences between the
heterogenous resources can be quantified, e.g., using some
kind of benchmarks, these different resources can serve as
alternatives for remapping of jobs as well. But in such an
environment, the migration of running jobs is even more
difficult or often impossible.

The Grid environment, our approach is aimed at, inte-
grates a huge amount of resources of the same and dif-
ferent kind. So, a wide range of applications can be sup-
ported, starting from simple non-distributed programs up
to complex parallel jobs, e.g., parallel simulations and par-
allel discretization of differential equations, and even dis-
tributed applications. Although the Grid environment, as
outlined in the following section, may be capable of sup-
porting distributed applications requesting various differ-
ent resources, such as several cluster systems and some net-
work links between them, the focus of this presentation will
be on singleside parallel or non-parallel long-run applica-
tions. This restriction comes only with the actual existing
limitations of the Grid environment. The failure recovery
approach by itself provides flexibility to handle such dif-
ficult tasks as remapping different resources requested by
complex distributed applications. Because of the stated
problems with multisite applications, we also assume in
the following that jobs cannot be split among several re-
sources.

Based on these considerations, we assume a homoge-
neous environment, at least in the stated way, with re-
sources of compatible hardware and software infrastructure
which allows jobs to be executed on any of the available
resources.

An example for an actual application environment of our
approach is given in the following section.

3 Grid Environment

The approach presented here has been developed in the
context of the Virtual Resource Manager (VRM) described

in (3). Since the VRM supports QoS by means of SLAs,
failure recovery is an essential feature. To meet SLAs in
terms of, e.g., guaranteed completion times for complex
compute jobs, the VRM needs to have complete control
over the resources and the jobs during run-time (run-time
responsibility). In the following, we briefly describe the
architecture of the VRM as the environment of our failure
recovery mechanism.

The Administrative Domain Controller (ADC) consti-
tutes the central management component of the VRM ar-
chitecture (see Fig. 3). The ADC is responsible for es-
tablishing so called Administrative Domains (AD) which
consist of a number of underlying local resources and their
local Resource Management Systems (RMS). These man-
agement systems may control arbitrary types of resources,
e.g., cluster systems, parallel computers, or networks and
are connected to the ADC by Active Interfaces. Such an
Active Interface is also available to connect the ADC to an-
other ADC responsible for a subdomain. For example, to
carry out a gradual information hiding strategy, each de-
partment could establish an Administrative Domain and
connect these domains to an enclosing domain. Providing
these features from SLA negotiation, information hiding
and customization up to implementing virtual organisa-
tions by setting up hierarchical structures of ADC compo-
nents the VRM meets next generation Grid requirements.

While the introduction of service level aggreements pro-
vides new quality of service functionalities, the support of
SLAs comes with new challanges. Now, the demand for
failure recovery mechanisms is not only for convenience
reasons, but is based on financial implications. As fees
have to be payed for a SLA that could not be met, all
events affecting the fulfillment of the SLA have to be han-
dled or have to be avoided. As failures are unpredictable
in most of the cases, failure recovery has to be an essential
element of all SLA-aware resource management systems.

The Grid
Administrative Domain
U U f s
| 1
1
1 Administrative Domain Controller 1
1
1
1 v v v .
1| Active Active Active |
1 Interface Interface Interface .
1
L l | '
1 Administrative Domain !
Ve e e e e e i i 1
! RMS RMS | r,
1 | Administrative Domain Controller Y
1 1
I 1
| '} T ¥ !
! 1| Active Active Active Y
1 | Interface Interface Interface 1 .
1 1 1 .
1 1 1
1
1 1 1 .
! 1 RMS RMS RMS M
1 1
1
1 1 1

- e e e e o e e e o e e e e e e e e e e = = e =

Figure 3: Hierarchical Administrative Domain Structure

The failure recovery mechanism proposed in this paper
will be situated in the ADC component. Once any of the
underlying compute resources fails partly or entirely, the
jobs allocated to the failed resource have to be mapped
onto alternative resources within the same domain accord-
ing to our strategy. Partial failures, e.g., of one or more
nodes within a cluster computer, may also require the re-
covery mechanism to act, as the total capacity of a resource
may be exhausted. Within the VRM, inactive jobs can be
transparently mapped without further notification to the
users which is a major advantage compared to other Grid
resource management systems such as Globus (2).

The framework of the VRM provides control over not
only compute resources, but also any other resource re-
quired for the remapping of jobs, i.e., interconnection net-
works. For example, remapping a compute job with large
amounts of input data requires a reasonable amount of
time which must be considered and network transmissions
must be planned accordingly which may include the reser-
vation of network bandwidth. Allocation of network band-
width is often available in dedicated networks for high per-
formance Grid environments, e.g., LambdaGrids (6).

3.1 Using Batch Jobs to Improve the Perfor-
mance

Batch jobs are frequently used also in advance reservation
based planning systems (7). These jobs are not provided
with fixed start and stop times but will be placed in a
queue and are processed as soon as sufficient capacities
are available. In our environment, such batch jobs can be
placed on a failed resource behind the computed remapping
interval as long as the failure persists. The resource man-
agement system then places batch jobs onto the currently
failed resource and once the remapping interval is extended
or the failure persists beyond their anticipated start time,
the batch jobs are simply postponed. Otherwise, they can
be started. The rationale behind this approach is that no
timing guarantees are given for batch jobs and thus, post-
poning these jobs is less costly compared to terminating
planned jobs.

3.2 Discovery of Additional Resources

In case no sufficient resources are available or the accu-
mulation of free resources does not satisfy the additional
requirements arising with the remapping of jobs to differ-
ent computing systems, the VRM is capable of searching
for free resources in a peer-to-peer like network of other
VRMs. For this purpose, knowledge about the job prop-
erties and requirements is essential. The problem of dis-
covering suitable resources in another administrative do-
main or computing environment can be handled using,
e.g., ontology-driven resource discovery as presented in
(8). Interfaces to other resource management systems,
e.g., Globus, are also conceivable. As the VRM starts the
search for alternative resources within its local domain,

time-intensive search for suitable resources is only neces-
sary when the local capacities are exhausted.

4 Load-Based Remapping Algorithm

In this section, our load-based remapping approach used
in the VRM is presented. In case a failure of a specific
resource, e.g., a cluster, is noticed, the management system
has to face two different tasks to minimize the impact of the
failure. First, the management system has to determine all
jobs that have to be taken into account for remapping and,
as a second step, these jobs have to be remapped to other
resources.

The section starts with considerations how the second
step is performed. In the following, the concept of a remap-
ping interval is introduced for selecting the jobs to remap.
Two metrics are presented to measure the performance of
the remapping. Based on this metrics, we describe two
algorithm behaving optimal in terms of one metric and
a theoretical algorithms achieving optimal results in both
metrics. These algorithms are used as a reference for our
approach. After a short overview of the objectives for the
remapping interval and some definitions, the algorithm to
calculate the remapping interval is presented. The section
is concluded with an analysis of the parameter used in the
calculation of the remapping interval.

4.1 Remapping Strategies

All jobs chosen by one of the selection algorithms presented
in the following have to be considered for remapping. Since
usually the termination of at least some jobs may not be
circumvented, it is necessary to carefully select the jobs to
terminate according to some optimization criterion, e.g.,
the amount of successfully remapped jobs. Other optimiza-
tion criteria are also conceivable although not targeted in
this paper, e.g., minimizing fines to be paid for terminated
jobs. In a distributed architecture, the task of selecting
jobs to be remapped or terminated is even more compli-
cated as no information about the amount of free resources
at different locations is available.

N .

| B BN
I B

Figure 4: Without timing constraints, rescheduling allows
the postponing of jobs (left) whereas remapping preserves
the guaranteed start and stop times (right).

The reservations are fixed in time (see Fig. 2). Thus, it is
not possible to shift the jobs to the future on the local sys-
tem or alternative resources. This differs from scheduling

approaches using time as a variable dimension (see Fig.
4). Thus, it is essential to find free resources within ex-
actly the time interval specified during the reservation of
the job which may not be possible for any of the jobs to
be remapped.

Finding feasible alternative resources for a specified set
of jobs is a classical bin packing problem, but in the spa-
tial dimension not in the temporal one (9). Therefore, a
simplified algorithm has to be used to solve the generally
NP-hard problem online during the failure recovery.

Different strategies for remapping a set of affected jobs
were evaluated in (4). As it was shown, the difference
among the individual strategies is rather small. This
means, it may be possible to select a strategy that matches
additional constraints, such as preferring long book-ahead
times leading to FCFS strategy as used in this paper.

4.2 Downtime-Independent Remapping

Former work showed, that using predictions of the ac-
tual downtime to perform the selction of the jobs to be
remapped is critical, as the downtime cannot be accu-
rately anticipated (4). In the case of underestimating the
downtime, the number of terminated jobs increases dras-
tically. The mechanism integrated in the VRM does not
rely on predictions and is independent of the actual down-
time. The general approach used in the VRM is to identify
and remap jobs which are unlikely to be safely remapped
at any later point in time. For that purpose, in each time
slot throughout the duration of the failure a remapping in-
terval is calculated. The length of this remapping interval,
computed as described in the following sections, is inde-
pendent of the actual downtime, which is usually unknown
to the Grid resource management system. As described
before, we do not deal with the mechanisms to recover al-
ready active jobs on the broken resource. So we assume,
that either an adequate migration mechanism is available
that handles all jobs that are already running, or—which is
more likely—those running jobs are simply terminated.

All remaining jobs using the broken resource within the
remapping interval are considered for remapping. The
management system searches for an alternative resource
with sufficient free capacities for every job. If the remap-
ping is not successful, the job remains on the failed system
until its start time since the failure may have ended un-
til then, otherwise the job will be terminated. All other
jobs, i.e. those outside the remapping interval, are not
remapped, even if they are assigned to the currently bro-
ken resource.

The failed resource is blocked for the remapping interval
only. This means, new reservations for time slots after the
remapping interval may be booked on the currently broken
resource and may be remapped later if necessary.

Fig. 5 is an illustration of the approach based on the
remapping interval. For the first situation at ¢, this means
that the dark gray jobs are handled by the failure recovery
for active jobs (in the simplest case just terminated) as
they were active when the failure occurred. The light gray

Situation t1
current time £1
3 TTTTT
I NN
§ HHH J13 712
e
L T J10 3
R 7
JI1 |
time
remapping interval
J
v
downtime
Situation to
current time to
E SRS
B

I
W%

J11

time

remapping inter\jal

Y.
downtime

@ processed . terminated D remapped new job D remains on resource

Figure 5: Examples for the usage of the remapping interval
during a resource downtime for two different time slots ¢,
(above) and to (below).

jobs are considered for remapping and will be assigned to
other resources if possible. The white jobs stay on the
broken resource also if they reside within the—currently
unknown—downtime. The time slots after the remapping
interval are available for new jobs.

Due to the recalculation of the remapping interval in
each of the following time slots, more and more jobs
mapped to the broken resource will be remapped. Jobs
submitted after the failure occurs are also remapped if they
are within the remapping interval, as can be seen in the
second situation at t9 in Fig. 5. Since the downtime is
unknown to the management system, also those jobs are
remapped that will start after the downtime (J16). This
remapping and the recalculation of the remapping interval
is done until the resource is recovered.

4.3 Optimal Remapping Algorithms

For the evaluation of the remapping approach, two metrics
are introduced, which reflect the success of the remapping
on the one hand and the impact on the system on the
other hand. For each metric an algorithm is given achiev-
ing optimal results in respect to the metric. This section
concludes with a theoretical, optimal algorithm.

The main goal of remapping in advance is to save as
many jobs as possible. In order to measure the perfor-
mance in this respect the termination ratio is used, show-
ing the number of unsuccessfully terminated jobs, i.e., as
no remapping was possible due to resource shortage, com-
pared to the number of jobs affected by the failure.

Remapping a job to another resource reduces the avail-
able capacity of the whole system, as these resources can-
not be used for new jobs. While this behavior is not avoid-
able during the downtime of the resource, each job which is
remapped after the resource recovers unnecessarily blocks
additional resources. The number of jobs remapped after
the end of the downtime is referred to as overhead. Re-
ducing the overhead is crucial in SLA-aware environments,
i.e., if fees must be paid for the allocation of alternative re-
sources. In addition, failure recovery of sub-jobs in work-
flows may also affect subsequent sub-jobs — resulting in
higher complexity of the remapping task — and should be
kept to a minimum.

In order to achieve optimal remapping results, two basic
algorithms are conceivable, each optimizing either of the
two metrics overhead and termination ratio. In advance
reservation environments the probability to successfully al-
locate resources increases with the reservation time and in
the same way the probability to successfully remap with
longer distances to the start time (4).

Thus, jobs must be remapped as soon as possible to
achieve the optimal termination ratio. The first possible
point in time is at failure detection. Hence, the first al-
gorithm Ag,; remaps all jobs at the moment the failure
is detected. The algorithm is easy to implement and can
even be performed manually by the administrator. How-
ever, remapping this way leads to a high overhead.

The algorithm A; — achieving the minimal overhead of
zero — remaps only those jobs starting in the next time
slot as these jobs are surely affected by the failure. As
described before, short reservation times lead to a higher
probability of rejection and thus, to a high termination
ratio. This algorithm can be implemented in an actual
resource management system in a straightforward manner.

To achieve the optimal results with respect to both met-
rics an oracle is needed, which provides the exact length of
the downtime in the moment the failure occurs (Aoptimai)-
Using this information only the jobs within the downtime
will be considered for remapping. As the remapping is
done at the same time as in Ay, the optimal termination
ratio is achieved. Using the exact downtime length, no job
will be unnecessarily remapped and the overhead is opti-
mal, too. However, it is not possible to use this algorithm
in real systems as the downtime of a resource is usually
unknown. Substituting the exact knowledge of the down-
time by vague estimations leads to a significantly worse
performance (4).

The previously described algorithms are used as a refer-
ence to assess the performance of our downtime indepen-
dent approaches.

4.4 Objectives for the Remapping Interval

In order to design a well performing failure recovery strat-
egy with respect to both the amount of terminated jobs
and the overhead (see Sec. 4.3), it is essential to carefully
choose the length of the remapping interval.

Similar termination ratio as with A,; can be theoreti-

cally achieved, if the length of the remapping interval is
set such that each job is remapped just in the time slot ¢
such that not enough free resources are available one time
slot later t + 1. However, this is not practicable since the
calculation of the remapping interval is done for the whole
system rather than on a per-job basis, and an accurate pre-
diction of future availability of capacities is usually not pos-
sible. Generally, a higher probability for successful remap-
ping is achieved using a longer remapping interval. It was
shown in (10) that in advance reservation environments a
”critical time” can be determined from where on the prob-
ability of successful admission increases significantly. In
order to realize a low termination ratio, the remapping in-
terval should be at least as long as the critical time and as
long as possible.

The algorithm A; equals the proposed remapping pro-
cess with a constant interval length of one. If the remap-
ping interval is longer than one time slot, it is possible that
more jobs than necessary are remapped to other resources.
This happens even if the resource recovers during the next
time slot. In this case, jobs are remapped which could run
on the no longer broken resource and thus block free ca-
pacities on other resources. As the broken resource is also
blocked for the duration of the remapping interval, no new
jobs are mapped on the resource for this period. The com-
bination of both effects leads to a reduction of the number
of accepted jobs, especially after the failure of the resource
has ended. Remapping a job causes extra costs, e.g., for
network transmissions of the job and its related data, and
these costs are another reason to reduce the number of jobs
to remap. Hence, it is necessary to determine the remap-
ping interval as short as possible to keep the overhead low.

As both requirements are contrary, a trade-off must be
made between both metrics. In SLA-aware environments
this trade-off is designated by the fine to pay for a termi-
nated job and the prices to pay for the alternative resources
used for the remapped jobs.

4.5 Definitions

Before we give a formal description of the calculation of
the remapping interval some notations are introduced.

As we assume that all resources consist of comparable
nodes, the resource usage of jobs, the load and the capacity
of the resources is measured in number of nodes. Most val-
ues will be normalized by the total number of nodes ¢ of all
resources within the Grid. For other kinds of resources our
algorithm is also applicable if an adequate measurement is
given.

The load situation in the Grid of a time slot ¢y is de-
scribed by the load profile l;,(t), with t € N, which is
defined as the normalized total number of allocated nodes
on all resources for each future time slot tg + ¢.

The capacity lost due to the breakdown of a resource is
denoted by c¢*, while the load profile consisting only of jobs
allocated to the broken resource is denoted by I} (t). Using
this definition, the load profile of the not affected jobs can
be defined as Iy, (t) = I, (t) — If (t). Accordingly, the set of

jobs admitted to the system is denoted by J, whereas the
set of jobs allocated to the broken resource is denoted by
J*, and the set of unaffected jobs by J = J\J*.

The booking behavior is described by the average book-
ing profile. The booking profile b;_ (t), with ¢t € N, of a time
slot t, denotes the normalized number of booked nodes per
future time slot ¢, + ¢ of all incoming reservations during
this time slot. The average computed over all previous
booking profiles is denoted by the average booking profile

b(t). These profiles are illustrated in Fig. 6.

4.6 Calculation of the Remapping Interval

For the calculation of the remapping interval ¢, the load
situation in the Grid is taken into account.

For each time slot ¢ this calculation has to be repeated.
Initially, t; is the moment the failure occurs, but later
on the calculation is repeated for each time slot until the
resource recovers.

weighted load profile Clzo (t)
of broken ressource

total capacity normalized to 1

threshold 7

capacity

average booking profile b

iﬁo»(

to

remapping interval

Figure 6: Determination of the remapping interval based
on the combination of the weighted current load profile
and the average booking profile.

First, a weighted combined profile lAth(t) is created for
the current time slot ¢y based on the current load profile of
the unaffected jobs Iy, (t) combined with the weighted load
profile of the affected jobs ¢ - I} (t) (with ¢ > 1) and with
the average booking profile b(¢). This profile is some kind
of expectation of the load after this time slot, as it sums up
the currently booked load and the average incoming load
during one time slot. Weighting the load of the affected
jobs higher than the load of the unaffected jobs results in
a narrower profile for small or underloaded resources and
in a higher profile in case a heavily loaded, large resource
is broken. A threshold n with n € [0,1] is used to deter-
mine the remapping interval [to, to+in,¢(to)] on the base of
the weighted combined profile. The remapping interval is
defined by the time after which all values of the weighted
combined profile are lower than 7 (see Fig. 6):

inc(to) = i {Z (Vt>1i:m> lto,c(t)} if >1 .
1 otherwise
lio,c(t) = Iy (t) + I (8) + b(t)

The length of the remapping interval has the lower
bound of 1 to ensure, that at least all jobs which are sup-
posed to start within the current time slot are remapped;
otherwise they will fail. How the parameters n and ¢ must
be set is analyzed in the following section. An algorithmic
overview of this calculation is given in Fig. 7.

resource failed at tg
// terminate all active jobs
for each job j € J* do
if j.start <ty do
terminate j
while resource down do
// calculate the profiles
init Iy,
for each job j € J* do
for each t € [j.start, j.stop] do
I, (£)+ = ¢jnumberOfNodes
for each job j € J do
for each t € [j.start, j.stop] do
I, (£)+ = jnumberOfNodes
add average booking profile b to profile ito
// calculate 4
for i =tpq to 1 do
if not Iy, (i) < 1 break
// remap jobs within remapping interval
for each j € J* do
if j.start < to+1i do
remap j if possible
wait for next time slot: tg =to + 1

Figure 7: Algorithmic overview on the calculation of the
remapping interval and the downtime independent remap-

ping.

4.7 Analysis of the Parameters

The calculation of the remapping interval depends on two
parameters: n and ¢, with 7 being the threshold used to
determine the remapping interval based on the combined
profile, whereas ¢ determines the weight of the affected
load profile within the combined profile. Both parameters
are used to balance the behavior and structure of the actual
used Grid. In the ideal case both values are 1: The affected
load will be included unweighted in the combined profile
and only if the combined profile reach the total capacity
(normalized to one) a remapping is needed.

In a realistic system there are a number of reasons why
this ideal parameter setting does not work. The major rea-
son is the fragmentation: Even if there are sufficient nodes
available to handle the job, these may not belong to the
same resource and hence, are not usable for the given job
as in this work we do not consider multi-side jobs (see Sec.
2.2). There is also another kind of fragmentation in the
temporal dimension. As the jobs use the needed number
of nodes for a number of time slots, it is not only necessary

to have the needed nodes on the same machine but also to
have the same nodes for the whole job duration. Besides
the fragmentation among resources and temporal dimen-
sion, the reliability of the prediction of incoming reserva-
tions plays a role. This prediction is based on the average
booking behavior in previous time slots and hence cannot
predict the arrival of a job size above average.

The effects of the fragmentation in the capacity dimen-
sion is mainly handled by the factor (. By weighting the
load on the broken resources the probability is increased
that enough nodes on the same resource are free. The fac-
tor C is upper bounded by the number of resources, e.g.,
the number of cluster computers building the Grid. In this
case, so many nodes are claimed by the weighted load, that
there is at least one resource with sufficient nodes available.

The threshold n deals with the problems of temporal
fragmentation and the reliability of the prediction. It is
used to decrease the assumed amount of available capacity
in the Grid, as on the one hand, the Grid will never be used
up to its full capacity and on the other hand the threshold
provides a buffer for unpredictably large sized incoming
reservations.

In Sec. 5, the behavior of our algorithm with different
parameter sets is evaluated and it is shown how to choose
n and ¢ adequately.

5 Evaluation

In this section, the results of our load-based approach are
outlined. In particular, the impact of various choices for n
and ¢ on the number of unsuccessfully terminated jobs as
well as on the overall resource utilization is examined in a
simulation environment.

5.1 Simulation Environment

The simulations were made assuming an infrastructure of
several cluster and parallel computers with homogeneous
nodes, i.e., each job is capable of running on any of the
machines involved with exactly the same speed. If an ad-
equate metric to compare the machines is given our algo-
rithm could cover inhomogeneous Grids as well.

The simulations only serve the purpose of showing the
general impact of failures and since according to (11) the
actual distribution of job sizes, job durations etc. do not af-
fect the general quality of the results generated even when
using simple models, the simulations were made using a
simple synthetic job and failure model.

The simulations were done using the simulation mode
of the VRM framework. A simulated user reserved the
resources in advance with the reservation time being expo-
nentially distributed with a mean of 100 slots. The dura-
tion of the jobs were uniformly distributed in the interval
[250,750] and each job demanded for 2¥ nodes with k uni-
formly distributed in the interval [1, 8].

Furthermore, a central administrative domain controller
(ADC) instance was simulated controlling an infrastruc-

ture that consisted of different parallel computers with
varying number of compute nodes. In total there were
eight machines with 512, 256, 256, 128, 128, 96, 32, and 32
nodes. Obviously, some jobs can only be executed on the
larger machines. For each resource a local resource man-
agement system capable to support advance reservations
was simulated together with an active interface (Al) com-
municating with the simulated ADC. In our model, all jobs
were submitted to the ADC and no additional jobs were
submitted to the local resource management systems.

An additional component simulated the failures to oc-
cur periodically every 1500 slots with a failure duration of
always 500 slots. The resource to break down completely
was chosen randomly among the 8 machines. To simulate
varying load situations we chose different values for the
average reservation time r. Each simulation run had a du-
ration of 20,000 slots and the simulations were repeated
until a sufficiently small confidence interval (within £5%
of the mean with 95% confidence) was reached.

In order to assess the performance of the load-based
approach, two metrics were chosen that reflect both the
amount of jobs that were affected but could not be suc-
cessfully remapped onto alternative resources and the num-
ber of jobs that had to be rejected because resources are
blocked due to the failure recovery. The first metric is the
termination ratio, which is defined as follows:

termination ratio := ——,
Al

with A being the set of affected jobs and A* C A C J* (see
Sec. 4.5) being the set of unsuccessfully terminated jobs.
To measure the overhead a second metric called request
blocking ratio is defined as

|1E|
S|’

with S denoting the set of all submitted requests and R
denoting the rejected requests.

As described in previous sections, for the simulations
we assume that running jobs cannot be migrated which is
the usual case in a high performance computing scenario.
However, our model is general enough to cover also the
migration of running jobs, in particular this is discussed in
Sec. 5.4.

request blocking ratio :=

5.2 Performance of the Load-Based Remapping
Approach

In Fig. 8, the termination ratio is depicted for different
choices of and . In general, it can be seen that the im-
pact of 7 is relatively high, whereas ¢ can only be used for
fine-tuning. In this setting, the best results are obtained
for ¢ = 2 with n = 0.775. As (is related to the fragmenta-
tion caused by resource boundaries, using larger values of
¢ does not improve the overall performance. Consequently,
the following examinations were conducted using ¢ = 2.
In Fig. 9, the termination ratio of the load-based remap-
ping approach is depicted only in dependence of 1. The

r=300

n =0.775,¢ =2

termination ratio (%)

Figure 8: Termination ratio for different choices of n and
¢ (r =300).

r=300 r 1000

[N

Q

=3

[

8
|

termination ratio (%)
~
ul

termination ratio (%)
88583388

.................... 50 T T
050 060 070 080 090 1.00 050 060 070 080 090 1.00

n n
|—e— zeta=2 - - = exact knowledge 50% undereﬁimatior{

Figure 9: Termination ratio for different average reserva-
tion times.

different choices of the reservation time r were selected to
create load situations where the average reservation time
is shorter (r = 300) or longer (r = 1000) than the fail-
ure duration (500). To compare our novel approach with
the estimations done in (4) as well as with the reference
algorithms defined in Sec. 4.3, in Fig. 9 the termination
ratio using the exact failure duration to identify the jobs
to be remapped (which is a priori unknown, Agptimar) and
an underestimation of the failure duration by 50% are de-
picted.

It can be observed, that for » = 300, the termination
ratio shows a minimum at 7 ~ 0.8 and from thereon rises.
The curve for 7 = 1000 reaches its minimum earlier and
then remains stable. As already described in (4), underes-
timations of the failure duration result in a considerable
increase of the termination ratio. The reason that the
exact knowledge performs worse than the load-based ap-
proach results from the fact that the failed resource cannot
be locked for the whole duration of the failure using the
load-based approach. Hence, additional jobs which must

be remapped may be placed onto the resource. When this
remapping is successful, it contributes positively to the ter-
mination ratio. In contrast, when a resource is locked at
the occurrence of the failure for the entire failure time,
such jobs will never be placed onto the failed resource.

400

350 h
300 _QQ“—W,_
250
200 (3
150
100

remapping interval length

0 4 8 12 16 20 24 28

time

Figure 10: Snapshot of the remapping interval lengths
computed during a single failure (n = 0.8, r = 300).

The self-adaptiveness of our approach can be seen more
clearly when investigating the development of the actual
remapping interval lengths during a single failure. This is
depicted in Fig. 10. The diagram shows the length of the
computed remapping intervals during a single failure for a
sample period of 32 slots using n = 0.8.

5.3 Impact on the Amount of Accepted Jobs and

Utilization
r=300 r=1000
21 22+
° 2
T 20 T
2 2
= =
E 8
2 19 2 20
g g
3 =]
& g
18 -+ 19
050 060 070 080 090 1.00 050 060 070 080 090 1.00
n n

Figure 11: Request blocking ratio for r = 300 and r =
1000.

The impact of our approach on the amount of rejected
jobs can be observed in Fig. 11: The amount of rejected
jobs decreases with growing 7. Therefore, the request
blocking ratio behaves opposite to the termination ratio.
Failure situations are considered as exceptions from the
normal operation and hence the impact on the overall re-
quest blocking ratio is limited. In particular, selecting a
small value for 1 does not impact the request blocking ra-
tio and hence, selecting 17 < 0.6, as also indicated in the
previous section, can be considered as a reasonable choice.

10

5.4 Comparison with Job Migrations

Although not assumed for the previous examinations, mi-
gration of running jobs is an interesting feature, allowing
the management system to provide an almost completely
transparent failure recovery. In the most extreme case,
jobs may be repeatedly migrated throughout their life-
time. One possibility to support job migration is check-
pointing. In this case, the failure recovery also needs to
take care of the transfer of the checkpointed data to the
backup resource and of the correct restart of the job at
the new location. Moreover, since checkpointing is only
performed at certain intervals, the required rollback to the
last checkpoint increases the run-time of the job.

r=300

80

70 »
60

50 Vi
40

30 ’ﬁwz
20

10 ,w

0\\\\\\\\\\\\\\\\\\\\
050 0.60 070 0.80 0.90 1.00

termination ratio (%)

eta

‘ —&— no job migration —— job migration ‘

Figure 12: Performance benefit using checkpointing and
migration

In Fig. 12, the possible benefit of checkpointing and job
migration is outlined. The diagram shows the common ap-
proach, i.e., jobs can only be transferred as a whole and
active jobs cannot be remapped. In contrast, providing
means for migration of running jobs has a significant ben-
efit as the termination ratio can be significantly reduced,
i.e., around 50% more jobs can be successfully remapped
to other resources. The diagram shows an idealized and
unrealistic situation where data transfer over the network
and rollbacks to previous checkpoints do not require time.
However, the potential of using job migrations is apparent.

6 Related Work

Advance reservations are an important allocation strategy,
widely used, e.g., in Grid toolkits such as Globus (12), as
they provide simple means for planning of resources and
in particular co-allocations of different resources. In (13),
several algorithms for supporting advanced reservation of
resources in supercomputing scheduling systems are pro-
posed and evaluated. It was shown that the best perfor-
mance is achieved when applications can be terminated
and restarted, backfilling is performed, and relatively ac-
curate run-time predictions are used. In (14) the concept

of laxity is used in the reservation window of an advanced
reservation to improve the scheduling performance. The
paper proposes and analyses an algorithm for the schedul-
ing of advanced reservations with laxities.

Besides flexible and easy support for co-allocations, e.g.,
in case complex workflows need to be processed, advance
reservations also have other advantages such as an in-
creased admission probability when reserving sufficiently
early, and reliable planning for users and operators. Sup-
port for advance reservations has been integrated into sev-
eral management systems for distributed and parallel com-
puting (2; 15). In (3), advance reservations have been
identified as essential for a number of higher level services,
such as SLAs. To implement end-to-end quality of service
(QoS) guarantees in emerging network-based applications,
(16) proposes the Globus Architecture for Reservation and
Allocation (GARA) to address dynamic discovery and ad-
vance reservation of resources that will often be hetero-
geneous in type and implementation and independently
controlled and administered.

Failure recovery mechanisms are also particularly im-
portant in the context of Grid computing, as the dis-
tributed nature of the environment requires more sophisti-
cated mechanisms than needed in a setting with only few
resources that can be handled by a central management
system.

In general, failure detection and recovery mechanisms
focus on the requirements to deal with applications that
are already active. The Globus heartbeat monitor HBM
(2) provides mechanisms to notify applications or users
of failures occurring on the used resources. The recovery
mechanisms described in this paper can be initiated by the
failure detection of the HBM. In (17), a framework for han-
dling failures in Grid environments was presented, based
on the workflow structure. The framework allows users to
select different failure recovery mechanisms, such as sim-
ply restarting jobs, or - more sophisticated - checkpointing
and migration to other resources if supported by the appli-
cation to be recovered. The different recovery mechanisms
are discussed and compared. However, the framework can
only be used for the recovery of active applications, in-
active applications that are already assigned to resources
but not yet started are not taken into account. This is the
same in (18) where a user-level software designed to pro-
vide automatic detection and restart of corrupted or early
terminated tasks called ReGS is presented. ReGS allows
the automatic detection of job dependencies through a task
management language. We consider user-level solutions to
failure recovery not as transparent and efficient as system
level mechanisms.

In (4), the basic requirements and opportunities for fail-
ure recovery in planning based resource management sys-
tems were examined. In particular, it was shown that
remapping of admitted but not yet active jobs is essential
in order to reduce the number of unsuccessfully terminated
jobs. It was also shown that the best results in terms of
termination probability and overall resource utilization are
achieved, when exact knowledge of the actual duration of

11

a failure is available and any jobs commencing during this
interval are remapped. However, estimations of the actual
downtime are a questionable approach as these estimations
are inherently unreliable and underestimations lead to a
significantly higher termination ratio than possible with
exact knowledge.

In (19), we extended the approach of remapping in ad-
vance from (4) and introduced the concept to repeatedly
calculate the remapping interval. This approach is ex-
tended here again to be applicable in the Virtual Resource
Manager (VRM)(3).

7 Conclusion and Future Work

In this paper, the novel load-based failure recovery strategy
used in the VRM framework was presented. The mecha-
nism is applicable in any environment where distributed
resources must be managed and failures of the system are
critical, e.g., SLAs are given for the correct and complete
execution of a job. In particular, co-allocation environ-
ments such as Grids are target environments for our strat-
egy.

The load-based algorithm is based on previous work
on this field which showed, that estimations of the ac-
tual downtime of a resource have a particularly negative
impact on the termination ratio. Consequently, our ap-
proach adapts to the actual load situation and determines
a remapping interval accordingly, which diminishes the
danger of underestimating failure durations as any job is
remapped before it is actually endangered of being termi-
nated. Simulations showed how to select appropriate val-
ues for the used parameters to gain the best performance
of the failure recovery.

The strategy presented in this paper is generic, i.e., it
can easily be applied to almost any resource type and any
resource management system. This is particularly impor-
tant for next generation Grid systems, which essentially
need to support higher level quality-of-service guarantees,
e.g., specified by SLAs, as in the context of the VRM (3).

Future work will deal with the possibility to integrate
checkpointing and migration mechanisms into the load-
based approach, which has the potential to dramatically
increase the performance of the failure recovery mecha-
nisms as presented before. This approach will allow to
more efficiently utilize the available resources as gaps due
to temporal fragmentation can be filled. Important issues
in this context are the time required for job migration over
a network. Moreover, a completely automated selection of
both parameters will be developed simplifying the deploy-
ment of the system. However, as the simulations conducted
for this paper indicate, a static choice is also reasonable
and leads to good results.

REFERENCES

[1] Czajkowski, K., I. Foster, C. Kesselman, V. Sander,

EORS)

and S. Tuecke, “SNAP: A Protocol for Negotiat-
ing Service Level Agreements and Coordinating Re-
source Management in Distributed Systems,” in 8th
Intl. Workshop on Job Scheduling Strategies for Par-
allel Processing (JSSPP), Edinburgh, Scotland, UK,
ser. Lecture Notes in Computer Science (LNCS), vol.
2537. Springer, January 2002, pp. 153-183.

“The Globus Project,” http://www.globus.org/.

Burchard, L.-O., M. Hovestadt, O. Kao, A. Keller,
and B. Linnert, “The Virtual Resource Manager: An
Architecture for SLA-aware Resource Management,”
in 4th Intl. IEEE/ACM Intl. Symposium on Cluster
Computing and the Grid (CCGrid), Chicago, USA,
2004.

Burchard, L.-O. and B. Linnert, “Failure Recovery in
Distributed Environments with Advance Reservation
Management Systems,” in 15th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations
and Management (DSOM), Davis, USA, ser. Lec-
ture Notes in Computer Science (LNCS), vol. 3278.
Springer, 2004, to appear.

Litzkow, M., T. Tannenbaum, J. Basney, and
M. Livny, “Checkpoint and Migration of UNIX Pro-
cesses in the Condor Distributed Processing Sys-
tem,” University of Wisconsin - Madison Computer
Sciences Department, Tech. Rep. UW-CS-TR-1346,
April 1997.

DeFanti, T., C. de Laat, J. Mambretti, K. Neg-
gers, and B. S. Arnaud, “TransLight: A Global-Scale
LambdaGrid for E-Science,” Communications of the
ACM, vol. 46, no. 11, pp. 34—41, November 2003.

Keller, A., and A. Reinefeld, “Anatomy of a Resource
Management System for HPC Clusters,” in Annual
Review of Scalable Computing, vol. 3, Singapore Uni-
versity Press, 2001, pp. 1-31.

Heine, F., M. Hovestadt, and O. Kao, “Towards
Ontology-Driven P2P Grid Resource Discovery,” in
5th IEEE/ACM International Workshop on Grid
Computing, 2004.

Garey, M. and D. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

Wischik, D., and A. Greenberg, “Admission Control
for Booking Ahead Shared Resources,” in IEEFE IN-
FOCOM, San Francisco, USA, 1998, pp. 873-882.

Lo, V., J. Mache, and K. Windisch, “A Compara-
tive Study of Real Workload Traces and Synthetic
Workload Models for Parallel Job Scheduling,” in 4th
Workshop on Job Scheduling Strategies for Parallel
Processing, Orlando, USA, ser. Lecture Notes in Com-
puter Science (LNCS), vol. 1459. Springer, 1998, pp.
25-46.

12

[12]

[13]

[16]

[18]

[19]

Foster, I., C. Kesselman, C. Lee, R. Lindell,
K. Nahrstedt, and A. Roy, “A Distributed Resource
Management Architecture that Supports Advance
Reservations and Co-Allocation,” in 7th International
Workshop on Quality of Service (IWQoS), London,
UK, 1999, pp. 27-36.

W. Smith, I. Foster, and V. Taylor, “Scheduling with
advanced reservations,” in 14th International Parallel
and Distributed Processing Symposium (IPDPS), May
2000, pp. 127-132.

U. Farooq, S. Majumdar, and E. Parsons, “Impact
of laxity on scheduling with advance reservations in
grids,” in 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, Sept. 2005, pp. 319 —
324.

Snell, D., M. Clement, D. Jackson, and C. Gregory,
“The Performance Impact of Advance Reservation
Meta-scheduling,” in 6th Workshop on Job Scheduling
Strategies for Parallel Processing, Cancun, Meziko,
ser. Lecture Notes in Computer Science (LNCS), vol.
1911. Springer, 2000, pp. 137-153.

I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrst-
edt, and A. Roy, “A distributed resource management
architecture that supports advance reservations and

co-allocation,” in Seventh International Workshop on
Quality of Service (IWQoS), May 1999, pp. 27 — 36.

Hwang, S. and C. Kesselman, “Grid Workflow: A
Flexible Failure Handling Framework for the Grid,”
in 12th Intl. Symposium on High Performance Dis-
tributed computing (HPDC), Seattle, USA. 1EEE,
2003, pp. 126-138.

J. Sanches, P. Veragas, 1. Dutra, V. Costa, and
C. Geyer, “Regs: User-level reliability in a grid en-
vironment,” in 5th ACM/IEEE Intl. Symposium on
Cluster Computing and the Grid (CCGrid), Cardiff,
UK, May 2005.

L.-O. Burchard, B. Linnert, and J. Schneider,
“A distributed load-based failure recovery mecha-
nism for advance reservation environments,” in 5th
ACM/IEEE Intl. Symposium on Cluster Computing
and the Grid (CCGrid), 2005.

