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‖Foundation For Research & Technology - Hellas (FORTH), Heraklion, Greece, Email: {maraz, nkallima}@ics.forth.gr

Abstract—Various servers with different characteristics and
architectures are hitting the market, and their evaluation and
comparison in terms of HPC features is complex and multi-
dimensional. In this paper, we share our experience of evaluating
a diverse set of HPC systems, consisting of three mainstream
and five emerging architectures. We evaluate the performance
and power efficiency using prominent HPC benchmarks, High-
Performance Linpack (HPL) and High Performance Conjugate
Gradients (HPCG), and expand our analysis using publicly
available specialized kernel benchmarks, targeting specific system
components. In addition to a large body of quantitative results,
we emphasize six usually overlooked aspects of the HPC plat-
forms evaluation, and share our conclusions and lessons learned.
Overall, we believe that this paper will improve the evaluation
and comparison of HPC platforms, making a first step towards
a more reliable and uniform methodology.

Index Terms—HPC, emerging and mainstream architectures,
energy efficiency, weak vs. strong cores, memory latency and
bandwidth, Byte/FLOP ratio

I. INTRODUCTION

Each year we see a greater variety of HPC systems in the
market. In addition to mainstream x86 architectures, emerging
architectures based on POWER, ARM, SPARC and others
are steadily appearing and catching attention [1]. Instead of
hosting a single type of platform, supercomputing centers
already provide a diverse set of systems. Making the right
choice of architecture is critical, but evaluating and comparing
HPC systems is hard.

Our study evaluates and compares three generations of
mainstream x86 architectures: Intel Nehalem, Sandy Bridge
and Haswell, and five emerging architectures: Intel Knights
Landing (KNL), IBM Power8, Cavium ThunderX, and Applied
Micro (APM) X-Gene 1 and X-Gene 2. In addition to presenting
a large body of quantitative results, we emphasize six usually
overlooked aspects of HPC platform evaluation, and share our
conclusions and lessons learnt.

First, we show that a platform’s performance and energy-
efficiency depend significantly (n-fold) on the characteris-
tics of the target applications. For example, the ThunderX
platform has 50% better energy efficiency than Haswell when
running memory-bound HPCG, but Haswell shows 3.6× better

efficiency for the compute-intensive HPL. We strongly advocate
that any comparison between the platforms should start with
the performance and energy-efficiency of HPL and HPCG as
the boundaries of the compute-intensive and memory-intensive
HPC applications. However, most of the previous studies [2]–
[4] that compare emerging and mainstream HPC platforms do
not include these results.

Second, our performance-per-watt results show that emerging
ARM-based platforms generally show much lower energy
efficiency than the KNL and mainstream Intel platforms. This
finding opposes the conclusions of previous studies [2], [4] that
report or estimate high energy-efficiency of the ARM platforms
(reasons for this are discussed in detail in Section IV).

Third, it is important to understand whether HPC systems
should be based on strong or weak CPU cores. ARM-based
platforms typically use weak cores that are slower than
x86, KNL and POWER8 servers in terms of floating-point
performance and memory bandwidth. The ARM approach can
still be used to build massively parallel systems that reach the
target performance by using a larger number of cores. However
this scale-out approach may cause significant performance and
energy-consumption penalties [5], and it is important to confirm
that it is indeed a viable alternative.

Forth, we detect a significant range in the main memory
access latency, with a factor of three difference between the
fastest and slowest platforms under study (90 ns–285 ns). Since
memory latency has a direct performance impact for many
applications [6], it should be minimized in HPC servers, and any
increment above about 100 ns should be analysed and justified.

Fifth, we also analyse the Byte/FLOP ratio and detect
a huge difference of up to 21× among the platforms under
study. The Byte/FLOP ratio is one of the most important
design decisions, and we hope that our results will resurface a
discussion on its desired range.

Sixth, our measurements show significant, up to 70%
differences between theoretical and sustained performance,
especially for emerging platforms. Therefore, we note the
importance of measuring performance using specialized kernel
benchmarks rather than relying on theoretical numbers from



datasheets, even for the first order evaluation of the system.
Also, hopefully these results will motivate further development
of the emerging HPC compilers and scientific libraries.

In summary, given the substantial investment of time and
money to deploy an HPC system, it is important to carefully
evaluate and compare the available mainstream and emerging
architectures. The conclusions of such an analysis depend
significantly on the applied methodology, and the previous
studies report the findings based on different experimental set-
up, statistics of interest and benchmarks. Overall, we believe
that this paper will improve the evaluation and comparison of
HPC platforms, making first steps towards more reliable and
uniform methodology.

II. EXPERIMENTAL ENVIRONMENT

In this section, we explain efforts in evaluation of HPC
systems, together with workloads and experimental platforms
we used in our analysis.

A. HPC benchmarks
HPC benchmarks are important for bounding the sustainable

performance of different components in a system.
High-performance Linpack (HPL) [7] has been the only

metric for ranking HPC systems for a long time. It measures
the sustained floating-point rate (GFLOPs/s) for solving
a dense system of linear equations using double-precision
floating-point arithmetic.

High-performance Conjugate Gradients (HPCG) [8] is
based on an iterative sparse-matrix conjugate gradient kernel.
The performance of HPCG largely depends on the available
memory bandwidth [9].

HPC Challenge (HPCC) [10] is a benchmark suite that is
designed to approximately bound computations of high and low
spatial and temporal locality. We used DGEMM and STREAM
benchmarks from HPCC suite. DGEMM is a floating-point
intensive benchmark that represents the corresponding Level
3 Basic Linear Algebra Subprograms (BLAS) routine. The
benchmark calculates the product of dense double precision
matrices: C ← αA×B + β. It is used for measuring the
sustainable FLOP performance, at the per-core or per-node
level. The STREAM benchmark performs operations on arrays
that are several times larger than the last level cache, effectively
measuring the system’s sustained memory bandwidth [11]. It
comprises four kernels: Copy, Add, Scale and Triad. In our
analysis, we report the results of the Triad operation, since
it is the most similar to kernels used in HPC applications.

LMbench suite [12] contains several benchmarks which
measure performance of different hardware and software
components in a system. We used the memory read latency
benchmark in order to measure access latencies of different
levels in memory hierarchy. The benchmark reads the input
dataset in a random order to mitigate the impact of the data
prefetching. By varying the input load size, we measure access
latency to all memory hierarchy levels.1

1The measured latency comprises not only the latency of the hardware
components (caches, memory controller, main memory), but also the latency
of the system software such as virtual-to-physical memory translation.

B. HPC platforms

For the last decade, the dominant HPC architectures have
been Intel architectures such as Nehalem, Sandy Bridge and
Haswell. Apart from these, many-core systems, of which Intel’s
KNL is an example, are becoming popular, while other vendors
are also emerging architectures that are promising for HPC. For
our study, we included mainstream HPC architectures which
have been predominantly used in HPC systems so far, as well
as emerging architectures which have been recently introduced
to the market and are set to be used in future HPC systems.
The architectures under study with their most important
features and used system software are summarized in Table I.

Comparing different HPC architectures under study is
challenging. Architectures developed by different vendors
essentially have different Instruction Set Architectures (ISAs)
and therefore different system software such as compilers and
scientific libraries. For each platform, we identified system
software that provided the best performance. It has been used
as is, and has not been tuned for each of the platforms. Hence,
our conclusions should not be understood as a comparison
between different hardware (CPUs and memory only), but a
comparison of the platforms (systems) that also include the
corresponding system software.

To our knowledge, there are no studies which analyze this
many platforms, three mainstream and five emerging ones.
Unlike some of the previous studies [2], [13], [14] which
performed first-order evaluation of the emerging platforms by
using their developer kits, all the platforms under study are
fully-fledged production servers that could be used in an HPC
system. We argue that it is important to compare fully-fledged
servers since their performance features and power consumption
differ significantly from the corresponding developers kits.

C. Power measurements

For all platforms under study we measure the power
consumption at the server level, which may comprise multiple
sockets, as detailed in Table I. The power measurements are
performed with on-board or external power meters, that account
for the overall server consumption including CPUs, memory,
power supply, and so on. We also used power measurements
to calculate the power efficiency of the platforms under study
for HPL and HPCG benchmarks.

III. RESULTS

In this section, we present results from the evaluation
of multiple HPC architectures with different benchmarks.
We start with the most prominent HPC benchmarks, HPL
and HPCG, and later expand the analysis to include other
benchmarks, which together give a more complete picture of
a system’s performance.

A. HPL and HPCG benchmarks

This section gives insights on the performance and power
efficiency of platforms under study, while executing the
HPL and HPCG benchmarks.2 Figures 1a and 1b show the

2For X-Gene 1 platform, we could not obtain power measurements.



TABLE I: Summary of the most important features and used system software of the platforms under study

Mainstream architectures Emerging architectures

Platforms Nehalem
X5560

Sandy Bridge
E5-2670

Haswell
E5-2698v3

Knights Landing
Xeon Phi 7250 Power8 ThunderX X-Gene 2 X-Gene 1

Manufacturer Intel Intel Intel Intel IBM Cavium APM APM
Architecture Nehalem Sandy Bridge Haswell 2nd gen. MIC POWER8 ARMv8-A ARMv8-A ARMv8-A

Released 2009 2012 2014 2016 2014 2014 2015 2013
Sockets 2 2 2 1 2 2 1 1

Cores per
Socket 4 8 16 68 10 48 8 8

CPU freq. [GHz] 2.8 2.6 2.3 1.4 3.49 1.8 2.4 2.4
Out-of-order Yes Yes Yes Yes Yes No Yes Yes
DP Flops per

cycle, per core 4 8 16 32 8 2 2 2

L1i 32kB 32kB 32kB 32kB 32kB 48kB 32kB 32kB
L1d 32kB 32kB 32kB 32kB 64kB 32kB 32kB 32kB
L2 256kB 512kB 256kB 1MB 512kB 16MB 256kB 256kB
L3 8MB 20MB 40MB / 80MB / 8MB 8MB

Memory conf.
per socket

3 chann.
DDR3-1333

4 chann.
DDR3-1600

4 chann.
DDR4-2133

8 chann. MCDRAMa

+ 6 chann.
DDR4-2400

4 chann.
DMI 28.8GBps

4 chann.
DDR3-1600

4 chann.
DDR3-1600

4 chann.
DDR3-1600

Memory
capacity
per node

24GB 32GB 128GB 16GB MCDRAM
+ 192GB DDR4 256GB 128GB 128GB 64GB

Operating
system (OS) Ocean OSb SUSE Linux

Enterprise Server 11 Ocean OS Ocean OS Ubuntu 16.04 Ubuntu 14.04 Ubuntu 14.04 Ocean OS

Compiler Intel compiler
17.0

Intel compiler
13.0.1

Intel compiler
17.0

Intel compiler
17.0 IBM XL 13.01 GCC 6.1.0 GCC 6.1.0 GCC 4.8.5

MPI implementation Intel MPI Intel MPI Intel MPI Intel MPI Open MPI Open MPI Open MPI Open MPI

Scientific
libraries Intel MKL Intel MKL Intel MKL Intel MKL ESSLc

ARM
Performance

Libraries

ARM
Performance

Libraries
OpenBLAS

a KNL system has been set to flat mode, therefore both memories, MCDRAM and DDR4, are exposed as separate NUMA nodes, and the user can choose in
which memory the workload executes.
b Ocean OS is a customized CentOS 7.2 Linux distribution used in Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA).
c ESSL stands for Engineering and Scientific Subroutine Library.

HPL and HPCG performance and performance-per-watt of
platforms under study. These measurements are obtained with
multi-threaded version of the benchmarks that use all the
available physical cores.

Figure 1a lists the performance measurements. The KNL
platform shows by far the best performance for HPL, followed
by the Haswell and POWER8 servers, which reach 42% and
18% of the KNL’s HPL performance. Emerging ARM platforms
show significantly lower performance. ThunderX, X-Gene 2 and
X-Gene 1 deliver 5%, 1.3% and 0.1% of the KNL HPL scores,
respectively. The results also show the notable improvement
in the HPL performance over the various generations of main-
stream platforms, from Nehalem to Sandy Bridge and Haswell.

The HPCG results show a slightly different trend. KNL using
MCDRAM is still the highest-ranked platform, followed by
Haswell, POWER8, Sandy Bridge and ThunderX. However,
the gap in performance between these platforms is much lower
for HPCG than for HPL.

Figure 1b lists the performance-per-watt results for the
studied platforms. These measurements are important because
one of the main drivers for research on the feasibility of
the HPC on emerging ARM-based platforms is improved

energy efficiency over mainstream HPC servers. Mainstream
platforms show increasing power efficiency for HPL, with
KNL as the best. POWER8, ThunderX and X-Gene 2 show
significantly lower energy efficiencies, at just 7.6%, 8.3%
and 2.9% of the KNL’s performance-per-watt. HPCG power
efficiency increases from Nehalem to Sandy Bridge and then
stagnates for Haswell and KNL using DDR4. On the other
hand, KNL using MCDRAM achieves the highest power
efficiency. Emerging platforms show a much lower power
efficiency, except for the ThunderX platform, which is the
second best, only 31% lower than KNL using MCDRAM.

The results show that, regarding power efficiency, it is
very important to identify the target application. When
targeting floating-point intensive applications (such as HPL),
using low-power/low-performance cores seems not to be the
best approach for overall energy efficiency. However, when
targeting applications with lower processing requirements (and
higher stress to other resources such as main memory) the
ThunderX approach may deliver the energy efficiency, which
significantly exceeds the x86 and POWER8 platforms.
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Fig. 1: Except for KNL, emerging platforms are generally
behind the mainstream ones.

B. Sustainable FLOP performance and memory bandwidth

In addition to the HPL and HPCG measurements, we also
plot the raw measurements, sustained FLOPS and memory
bandwidths of the studied platforms, at two levels of granularity,
per-node and per-core. For node-level measurements, we
execute the multi-threaded implementations of DGEMM and
STREAM, using all the cores in the system. For core-level
measurements, we execute the DGEMM benchmark on a
single CPU core.

The results are summarized in Figure 2. The position of
each platform in the chart shows the per-node sustained
GFLOPs/s (x-axis) and memory bandwidth (y-axis), while
the size of the marker is proportional to the per-core sustained
GFLOPs/s performance. We also use different hatch patterns
to distinguish between mainstream, ARM-based, POWER8
and KNL platforms. The results correlate with the HPL and
HPCG analysis. Again, we see that the relative difference in the
FLOPs performance (x-axis) is much higher than the memory
bandwidth differences (y-axis). The Figure 2 also indicates that
POWER8, Haswell and KNL platforms with DDRx memory
interfaces reached plateau in terms of the sustained memory
bandwidth, while KNL with MCDRAM provided a huge leap
forward. Finally, the figure clearly shows that the emerging
ARM platforms have lower performance on the server level
(they are clustered in the left bottom corner of the chart) and
their per-core capabilities are n-fold below the capabilities of
the x86, POWER8 and KNL platforms (the size of the marker
is much smaller).

This result launches an important discussion: should one
use powerful cores similar to Haswell, POWER8 or KNL
as the building blocks for large-scale HPC systems or use
weaker cores, such as X-Gene or ThunderX? Reaching the
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Fig. 2: Sustainable FLOPS and memory bandwidth: The
position of each platform in the chart shows the per-node
sustained GFLOPs/s (x-axis) and memory bandwidth (y-axis).
The marker size is proportional to the per-core sustained
GFLOPs/s performance.

target performance with weaker cores would require building
of massively parallel systems, using higher number of cores,
sockets and servers. This scale-out approach could indeed show
good HPL and HPCG performance since these benchmarks
have very good scalability and their performance is close to be-
ing proportional to the total system FLOPS or system memory
bandwidth, respectively [15]. However, scale-out approach with
production HPC applications may cause significant performance
penalties. A recent study from Zivanovic et al. [5] analyzes
the scale-out overhead of production HPC applications [16]
running on a large HPC system [17]. Their results show that,
even if the applications are substantially optimized, increasing
the number of application processes to solve a fixed problem
leads to significant increase in both energy and node-hours.

We therefore believe that before claiming that HPC systems
based on weak cores are a viable alternative, it is essential
to perform a profound analysis of the trade-offs between
horizontal and vertical scaling in HPC.

C. Caches and main memory access latency

For decades, the memory system has imposed a fundamental
limitation on system performance. This is recognized by the
HPC community: HPL scores are frequently complemented
by HPCG performance; sustained memory bandwidth is
one of the main HPC performance metrics [10] [18], and
high-bandwidth memory solutions caused a lot of interest
by the HPC users. However, although the community invests
significant effort to understand the memory bandwidth, the
cache and main memory latencies are usually overlooked.
This is surprising because the memory latency has a direct
performance impact, and the memory wall itself was defined
in terms of latency, not bandwidth [6].

In this section, we compare the access time of the caches and
main memory for platforms under study. The results are plotted
in Figure 3. The x-axis of the figures shows the input dataset
size. In Figure 3a the load size ranges from 2 KB to 256 KB,
which focuses on the L1 and L2 caches. In Figure 3b dataset
size reaches up to 1 GB, covering all levels of caches and main
memory. Even for the L1 and L2 caches we detect a significant
difference in the latencies. At the L1 cache (2–32 KB load) the
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Fig. 3: Cache and main memory latency can vary significantly
among the studied platforms. KNL memory access latency
exceeds 3× the latency on other platforms.

latency varies from 1.25 ns (Sandy Bridge, Haswell, POWER8)
to 2.5 ns for KNL. In the L2 cache (128 KB load), the difference
is even more significant, from 3.6 ns (Nehalem, Sandy Bridge,
Haswell, POWER8) to 23 ns (ThunderX). The main memory la-
tency (256 MB load) ranges from 90 ns (Nehalem, Haswell and
POWER8) and 105 ns (Sandy Bridge, ThunderX) up to 250 ns
and 285 ns for KNL using DDR4 and MCDRAM, respectively.

Overall, our measurements show that the cache and main
memory latencies can vary significantly among platforms. Main-
stream platforms and POWER8 perform well on all memory
hierarchy levels. Emerging ARM platforms, ThunderX and
X-Gene, have somewhat higher latency. KNL has significantly
higher latency especially for the datasets that exceed 1 MB.
Since these latencies have a direct performance impact, espe-

cially for the workloads with a high rate of dependent memory
accesses, they are an important parameter to consider. KNL
platform is especially interesting since it incorporates high-
bandwidth MCDRAM, based on 3D-integration. While KNL
delivers memory bandwidth far superior to any other platform
under study, it comes with the cost of the memory access latency
that exceeds 3× the latency on mainstream platforms. Finally, it
is also important to notice that most of the KNL memory access
penalty does not come from the memory device itself. DDR3
and DDR4 modules timing parameters are standardized by
JEDEC [19], and the variation between them (in nanoseconds)
is negligible. Still, KNL DDR4 access is around 150 ns slower
than other platforms. Therefore, the KNL memory access
penalty originates mainly from handling the memory request
between the last-level cache and the memory device, i.e. from
the memory queues and memory controller. It is interesting to
see whether future architectures will succeed in incorporating
3D-stacked memory without a significant latency overhead.

D. Byte/FLOP ratio

Using the node-level measurements of FLOPs and memory
bandwidth, in Figure 4 we show the ratio between sustained
memory bandwidth and FLOPS. This ratio presents the amount
of data (in bytes) which has to be transfered from main memory,
in order to perform one floating-point operation. Platforms
with a low Byte/FLOP ratio are well suited for compute-
intensive applications such as HPL. In these platforms, for
real applications memory bandwidth may easily become a
performance bottleneck. The platforms with a high Byte/FLOP
ratio perform well with applications that put a high pressure on
memory bandwidth, such as HPCG. In this case, floating-point
processing power may limit the performance.

We detect a huge difference in the Byte/FLOP ratio
among the platforms under study. The measured Byte/FLOP
ratio ranges from 0.05 (KNL-DDR4) to 1.07 (X-Gene 1), a
difference of more than 21×. For mainstream HPC systems
(Nehalem, Sandy Bridge and Haswell), the Byte/FLOP ratio is
significantly below 1, and it has the tendency of decreasing [20],
which does not serve well for memory-bound HPC workloads.
As seen in Section III-B, current DDRx technology cannot
keep up with aggressive FLOPs performance increases,
so further progress in memory bandwidth relies on high-
bandwidth memory solutions based on 3D-integration. In this
respect, the KNL platform has a much higher Byte/FLOP ratio
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Fig. 4: Ratio between sustained memory bandwidth and FLOPS
of the platforms under study can differ up to 21×.



using MCDRAM than DDR4. Emerging systems, on the other
hand, show a promising ratio, which is higher than mainstream
platforms. This is mostly because the sustainable memory
bandwidth is currently comparable between mainstream and
emerging platforms, while the FLOPs performance of emerging
systems is significantly below the mainstream ones. If this
ratio keeps up with future developments of emerging platforms,
we could see systems that cope better with memory-bandwidth
intensive HPC workloads. Since HPC system performance
strongly depends on the Byte/FLOP ratio, we advocate for
this ratio to be constrained more precisely for HPC systems.

E. Theoretical vs. sustained FLOPs/s and memory bandwidth

As the final step of our analysis, we compare the maximum
theoretical FLOPS performance and memory bandwidth
from platform datasheets with the sustained values measured
using DGEMM and STREAM. This comparison is important
because sometimes theoretical numbers are used to compare
platforms or estimate large-scale system performance before
they are built. Our results, however, show that the differences
between theoretical and measured numbers may be significant.

The results are displayed in Figure 5. Mainstream HPC
systems based on Sandy Bridge and Haswell deliver sustained
FLOPS performance and memory bandwidth close to theoret-
ical maximums. Some emerging architectures, however, reach
moderate FLOPS and memory bandwidth utilization even when
running the DGEMM and STREAM benchmarks. For example,
X-Gene 1 and KNL reach only 48% and 56% of the maximum
theoretical FLOPS, while X-Gene 2 and POWER8 achieve
similar rates for memory bandwidth. An explanation could be
that the overall system cannot fully utilize SIMD floating-point
execution units or data-transfer mechanisms. By the overall sys-
tem we include both hardware and system software, including
the pipeline, out-of-order (OoO) engine, caches, compilers and
scientific libraries. The HPC system software for emerging plat-
forms is still under development; for example, the first math li-
braries for ARM-based servers were released two years ago [21].
Similar studies confirm that system software stack on emerging
platforms is relatively immature, which limits the achievable
performance [4], [22], [23]. Finally, ThunderX shows very low
FLOPS and memory utilization of 23% and 27%, respectively.
In this case, additional problem is the simplicity of the in-order
core and poor performance of inter-socket communication.

This analysis has two outcomes. Firstly, we would avoid
using maximum theoretical performance even for first-order
provisioning or an early evaluation of the HPC system,
especially for the emerging platforms. Secondly, for some of
the platforms under study, the results also show notable room
for performance improvement, which will hopefully motivate
further development of compilers and scientific libraries for
emerging HPC platforms.

IV. RELATED WORK

In addition to mainstream x86 architectures, emerging
architectures based on POWER, ARM, and SPARC are steadily
appearing and catching the attention of the HPC community.
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Fig. 5: Sustained FLOPS and memory bandwidth show sig-
nificant difference to theoretical maximums, especially for
emerging platforms.

Although making the right choice of architecture is critical for
the HPC infrastructure providers, only few studies evaluate and
compare available emerging and mainstream HPC platforms.

The study of Rajovic et al. [2] is the first to analyze
the suitability of mobile ARM processors for HPC. The
study compares the performance and energy efficiency of
development boards using mobile ARM 32-bit SoCs against
a laptop with a Intel Sandy Bridge CPU. 3 Based on these
measurements, the authors conclude that the performance and
energy efficiency of mobile ARM platforms is competitive to
the mainstream x86 HPC servers.

Abdurachmanov et al. [22] compare an X-Gene 1 develop-
ment board with a dual-socket Intel Sandy Bridge server and
Intel Xeon Phi PCIe add-on card. The authors compare only the
CPU power consumption using on board sensors for X-Gene 1
development kit and Xeon Phi card, and RAPL interface [24]
on the Sandy Bridge CPU. The study analyzes performance
and energy efficiency of a single benchmark, ParFullCMS,
and it concludes that the Sandy Bridge and Xeon Phi CPUs
have similar performance that is 2.5× higher than X-Gene 1.
Performance-per-watt results position Sandy Bridge as the
most efficient platform, followed by X-Gene 1 (approximately
10% lower efficiency) and Xeon Phi (more than 35% lower
efficiency w.r.t. Sandy Bridge).

Early evaluation of emerging platforms using developer
kits is valuable and needed. However, we argue that energy-
efficiency analysis requires measurements on the fully-fledged
production servers, as performed in our study.

Rajovic et al. [3] also deploy a prototype cluster with
nodes based on mobile ARM 32-bit SoCs and compare it
with a production HPC Sandy Bridge cluster. The study also
estimates the performance of the potential successor mobile
SoCs with advanced ARM cores and embedded GPUs. The
authors conclude that emerging ARM-based systems would
offer performance equivalent to mainstream x86 systems, while
saving 40% energy, and achieving higher integration density.
However, these conclusions are based on two non-trivial
HPC application requirements. First, the HPC applications
would have to fully utilize the GPUs embedded into emerging
SoCs, which is not the case for most current production

3In order to reduce the non-essential power consumption the authors switch
off the laptop’s screen.



HPC codes. For the applications that can fully utilize the
GPUs, the CPU+GPU emerging systems should be compared
with similar (CPU+GPU) mainstream platforms, not with
respect to the CPU-only systems. Second, the application
should have perfect parallel efficiency and load balancing
when scaling-out from strong x86 cores to an approximately
4× larger number of weaker ARM cores. However, scale-out
of production HPC applications typically leads to significant
performance penalties [5]. Finally, the authors do not consider
the performance and energy impact of RAS features (RAS:
Reliability, availability and serviceability), such as memory
ECC, available in the contemporary HPC systems, and not
available on the emerging system under study.

Laurenzano et al. [4] compare the performance, power and
energy consumption, and bottlenecks of Sandy Bridge, Atom,
Haswell and X-Gene 1 servers. This analysis is based on
system measurements with a large number of benchmarks and
statistical modeling. The authors conclude that on average,
for all the benchmarks under study, the X-Gene 1 and Atom
servers have comparable performance, which is significantly
below the Haswell and Sandy Bridge systems. Regarding the
energy efficiency, Laurenzano et al. measure similar results for
the X-Gene 1 and Sandy Bridge, somewhat below the Atom
and Haswell servers. For all the platforms under study, the
authors perform server-level measurements, but then extract the
power resulting from executing the application as a subtraction
between the server power executing the application and the idle
server power. Our position is that using this metric to quantify
and compare energy efficiency is misleading and unfavorable
for servers with higher energy proportionality, in which power
consumption is highly correlated to server performance.

The conclusions of the studies that evaluate and compare
emerging and mainstream HPC platforms depend significantly
on the methodology and benchmarks used. Still, the related
work shows there is no unified approach for this analysis, and
that the conclusions are sometimes based on a methodology and
assumptions open to discussion. In addition to a large body of
quantitative results, this paper emphasizes usually-overlooked
and important aspects of the HPC platforms evaluation. We
believe this will improve the evaluation and comparison of
HPC platforms, making a first step towards a uniform and
more reliable methodology.

V. CONCLUSIONS AND FUTURE WORK

In our study, we perform an extensive analysis of HPC
architectures, three mainstream and five emerging ones. To the
best of our knowledge this is the first study to include so many
platforms. In addition to presenting a large body of quantitative
results, we highlight six important features in HPC systems
evaluation that require higher attention by the community.

First, we show a platform’s performance and energy-
efficiency depend significantly (n-fold) on the characteristics
of the target applications, We strongly advocate that any
comparison among platforms should start with measurements
using HPL and HPCG, which form the boundaries of compute-
intensive and memory-intensive HPC applications.

Second, contrary to the conclusions of previous studies [2],
[4], our measurements on fully-fledged HPC servers show that
emerging ARM platforms generally show much lower energy
efficiency than the KNL and mainstream Intel platforms.

Third, we (re-)open a discussion on whether HPC systems
should be based on strong or weak CPU cores. Using weak
cores to deploy a scale-out approach may cause significant
performance and energy-consumption penalties due to the
imperfect scalability of production HPC applications. It is
therefore important to confirm that this approach is indeed a
viable alternative.

Fourth, our results show a huge range of memory access
latencies, from 90 ns to 285 ns for the studied platforms.
While KNL with MCDRAM has the highest mem. bandwidth,
it also has the highest mem. latency, due to complex memory
controller and its handling of memory requests. Since memory
latency has a direct performance impact any increment above
about 100 ns should be analysed and justified.

Fifth, we detect that the Byte/FLOP ratio can differ by a
factor of up to 21× between platforms. While mainstream
platforms show a decreasing tendency, emerging platforms
trend upwards in this metric. We propose for a community
to properly define this ratio for HPC applications, since it has
a direct impact on system performance.

Sixth, our results show that sustainable performance on the
emerging platforms can deviate more than 70% from theoretical
performance. Therefore, we strongly suggest not rely on the-
oretical performance, even in a first-order system provisioning.
These results will hopefully motivate further development of the
compilers and scientific libraries for emerging HPC platforms.

As a part of the future work, we plan to include more recent
mainstream and emerging architectures. They include Intel
Xeon Scalable Processors family, IBM POWER9, Cavium
ThunderX2, and accelerators like Nvidia GPUs or PEZY-SCx
(used in ZettaScaler series of supercomputers). They are more
power efficient than previous generations, use innovative
memory technologies and more mature software ecosystem.
Hence, it would be interesting to evaluate them and compare
with the analysed architectures from this study.

Overall, our study provides a significant body of useful infor-
mation for HPC practitioners and infrastructure providers. Even
more important, we believe it will considerably improve the
future evaluations and comparisons of HPC platforms, making
a first step towards a more reliable and uniform methodology.
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