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Abstract—Deep Neural Networks (DNNs) have gained consid-
erable attention in the past decades due to their astounding
performance in different applications, such as natural language
modeling, self-driving assistance, and source code understand-
ing. With rapid exploration, more and more complex DNN
architectures have been proposed along with huge pre-trained
model parameters. A common way to use such DNN models in
user-friendly devices (e.g., mobile phones) is to perform model
compression before deployment. However, recent research has
demonstrated that model compression, e.g., model quantization,
yields accuracy degradation as well as output disagreements
when tested on unseen data. Since the unseen data always
include distribution shifts and often appear in the wild, the
quality and reliability of models after quantization are not
ensured. In this paper, we conduct a comprehensive study
to characterize and help users understand the behaviors of
quantization models. Our study considers four datasets spanning
from image to text, eight DNN architectures including both feed-
forward neural networks and recurrent neural networks, and 42
shifted sets with both synthetic and natural distribution shifts.
The results reveal that 1) data with distribution shifts lead to
more disagreements than without. 2) Quantization-aware training
can produce more stable models than standard, adversarial,
and Mixup training. 3) Disagreements often have closer top-1
and top-2 output probabilities, and Margin is a better indicator
than other uncertainty metrics to distinguish disagreements. 4)
Retraining the model with disagreements has limited efficiency
in removing disagreements. We release our code and models as
a new benchmark for further study of model quantization.

I. INTRODUCTION

Thanks to the massively available data released and pow-
erful hardware devices supported, Deep Learning (DL) gains
considerable attention and achieves ever better performance
than humans on different tasks [1]. Many security-critical DL
systems have been deployed in recent years, e.g., self-driving
car [2] and face recognition application [3]. Besides, inspired
by the usage of DNNs for natural language processing, re-
searchers also employ DNNs for source code-related tasks,
e.g., code summarization [4] and problem classification [5].
As the backbone of DL systems, Deep Neural Networks
(DNNs) follow the data-driven paradigm to learn knowledge
from the labeled data automatically and make predictions for
incoming unlabelled ones. Correspondingly, the study of the
development of DNNs into DL systems, which is a key step
in MLOps [6], is interesting to both security and software
engineering communities.

However, a factor that limits the development of DNNs is
that DNNs are usually large-size and require strong computing
resources. For example, the famous language prediction model
GPT-3 [7] has 175 billion parameters, which is hard to be
deployed in our daily used devices. For code tasks, the
recently released model GraphCodeBERT [8] occupies 124M
of storage memory, which is also difficult to be plugged into
the generally used IDEs. Furthermore, with the rapid research
progress, more and more complex DNNs are being developed,
which makes DNN deployment even more challenging.

To solve the above deployment issue, instead of directly
migrating DNNs to devices, one typical process is to reduce
the size of DNN models by model compression techniques
for lighter and easier deployment. There are different ways
to perform model compression, e.g., model pruning which
removes useless parameters from the model, and model quan-
tization which degrades float-level parameters to lower-level
parameters (integer-level). In general, the compression process
is important and must preserve the performance of original
models as much as possible. The reason is that after compres-
sion, it is hard to further change the model when unexpected
problems occur, e.g., retraining a model deployed on a mobile
device is impractical because this model is packaged.

Unfortunately, recent research has revealed two problems
with model compression. First, [9] shows that a compressed
model could have a big accuracy difference (more than 5%)
compared to its original model on the newly synthesized
data (by using fuzzing techniques). Second [10], [11] demon-
strate that it is common to find inputs that trigger different
predictions by a compressed model and its original model.
As these studies reveal, it remains unclear to what extent
model compression preserves prediction performance and un-
der which conditions. However, although some studies have
been conducted, the existing literature 1) only focuses on
studying the compressed model on the artificially generated
unseen data, the real-world unseen data are missed; 2) lacks
a detailed analysis of the characteristics of data that cause the
performance difference and disagreements; 3) ignores the ex-
ploration of how to fix the disagreements. These lacks, in turn,
impede the reliable application of compression techniques.

In this paper, we fill this gap and empirically characterize
the behavior of compressed models under various experimental
settings in order to better understand the limitations of com-



pression techniques. We specifically consider quantization as
this approach is mostly applied in practice [12], and use the
term compressed model to represent the model after quanti-
zation in this paper. We focus our study on the DL models
compressed by TensorFLowLite [13] and CoreML [14] which
are widely adopted in the industry. For example, Google uses
TensorFLowLite for model deployment on Android devices
and Apple applies CoreML for IOS devices. In total, our
experimental settings include four datasets ranging from image
to text, eight different DNNs including both Feed-forward
Neural Networks (FNNs) and Recurrent Neural Networks
(RNNSs), 42 different test sets with both synthetic and natural
distribution shifts. Accompanied by our study, we provide the
first benchmark DNN models for further quantization study.
With this material, we explore four research questions that
existing studies have overlooked:

RQ1: How do compressed models react to distribution
shifts? Real applications of DL systems often witness data
distribution shifts — changes in data distribution that typically
cause drops in model performance [15]. Given the practical
predominance of this phenomenon, research [16]-[18] has
emphasized the need to consider distribution shifts when
evaluating DL models. We, therefore, study the impact of
model quantization in the case of distribution shifts. We eval-
uate the compressed models against two types of distribution
shift datasets: synthetic (based on image transformations) and
natural (reported in the literature). We compare the original
and the compressed models in terms of accuracy difference
and predicted label differences, i.e. disagreements.

RQ2: How does the training strategy influence the
behavior of compressed models? We explore the influence
of different training strategies: standard training which is the
basic way to prepare pretrained model, quantization-aware
training [19] which is specifically designed for model quanti-
zation, adversarial training [20] and mixup training [21], which
are the commonly used data augmentation training strategies.
We apply each strategy to train original models and then
quantize these models. We compare the pairs of models in
terms of accuracy differences and disagreements.

RQ3: What are the characteristics of the data on which
original and compressed models disagree? We aim to find
discriminating factors that can help identify the disagreement
inputs. In particular, we investigate whether the most uncertain
data are the most likely to produce disagreements. Based on
different uncertainty metrics, we train simple classifiers based
on logistic regression and evaluate their capabilities to predict
disagreements.

RQ4: Can model retraining reduce disagreements? We
investigate whether retraining — a common approach to im-
prove DL models — can efficiently fix disagreements. Specif-
ically, we explore whether retraining the original model (for
additional epochs) with disagreement inputs can help preserve
the knowledge of these inputs through the quantization pro-
cess, and make the compressed model classify these inputs
correctly.

In summary, the main novel contributions of this paper are:

o We show that synthetic distribution shift has a significant
impact on compressed models; it increases the accuracy
change by up to 3.03% and the percentage of disagreements
by 5.28%.

o We empirically confirm that quantization-aware training is
the best method to alleviate performance loss and disagree-
ments after quantization.

« We demonstrate that data uncertainty — as captured by
the Margin metric — is a suitable factor to discriminate
disagreement data. A simple classifier based on Margin
reaches an AUC-ROC of 0.63 to 0.97.

o We illustrate that retraining on disagreement inputs does not
decrease the total level of disagreements between original
and compressed models because it has the side effect of
introducing new disagreements.

o« We build the first model quantization benchmark mod-
els [22] to support future research on studying and improv-
ing the reliability of model deployment.

II. BACKGROUND
A. Deep Learning

Deep learning [23] is a machine learning technique that uses
intermediate layers to progressively obtain knowledge from
raw data, and deep neural networks form the backbone of deep
learning. A typical deep neural network consists of an input
layer, several hidden layers, and an output layer. Each layer
includes neurons that mimic the neurons in human brains and
undertake specific computations, such as sigmoid and rectifier.
The connections between successive layers establish the data
flow. In brief, training a deep neural network is to tune the
parameters (importance of neurons) of the connections, and
testing is to ensure accuracy and reliability during deployment
in real-world applications.

B. Model Quantization

Model quantization is one of the most used model compres-
sion techniques that aims at transforming the higher-bit level
weights to lower-bit level weights, e.g., from float32 weights to
8-bit integer weights, to reduce the size of the model for easy
model deployment. Multiple quantization approaches [19],
[24]-[26] have been proposed given its importance in DL-
based engineering. An important part of quantization methods
is the mapping between the two parts of weights. This mapping
can be constructed by using a simple linear function to find
the scale for two levels of weights, or by different clustering
metrics (e.g., k-means cluster used in CoreML) to find the
lookup table quantization of weights.

Figure 1 gives an example of basic linear quantization. We
assume the left side is the float32-level weights, and the range
of these weights is [-1, 1]. We plan to convert the float weights
to 8-bit integer weights ranging in [-128, 127]. Thus, the scale
here is 128 and the compressed weights are calculated by
Round(weights 104t/ scale). Generally, to further reduce the
memory usage of compressed models, the quantization only
keeps positive weights.
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Fig. 1. An example of weights quantization. Each weight in Float32 format
is converted into Int8.

C. Distribution Shift

Distribution shift refers to the change of data distribution
in the test dataset compared to the training dataset. Generally,
benchmark datasets [27], [28] are designed to include training
and test data following the same distribution. However, in real-
world deployments, the test data can be from the same or a
different distribution, which raises the security concern [16]. A
motivating example can be found on our project site [22].

Generally, there are two types of distribution shifts, syn-
thetic and natural [15]. Synthetic distribution shift considers
possible perturbations in the real world. In addition, consid-
ering the severity of corruption, data can have various levels
of noise, which covers many different situations. As a result,
synthetic distribution shift is always taken as a starting point
to evaluate the performance of a DNN under different settings.
A wide range of visual corruptions has been developed in the
image domain [29], [30]. For example, adding motion blur
into an image can mimic the scenario of a moving object, and
inserting the fog effect can simulate the condition of foggy
weather. Different from synthetic shift, natural distribution
shift comes from natural variations in datasets. For instance, in
the widely used text dataset, IMDb [28], data (movie reviews)
are collected from IMDb. When testing, the reviews can be
from another movie review website.

III. OVERVIEW
A. Study Design

Figure 2 gives an overview of our study. Overall, instead of
only analyzing the behavior of compressed models produced
from pre-trained models, we also follow the general MLOps
to explore how the training process affects the compressed
model in the DNN development phase, and if the model
repair process can enhance the compressed model in the DNN
maintenance phase. Specifically, following the common DL
systems development process, we prepare the original model
DNN by standard model training (Section III-D) using the
collected datasets. Then, we use quantization techniques (e.g.,
TensorflowLite, CoreML) to compress the model and prepare
the optimized model DNN’ for further deployment. Afterward,
to study whether the quantization is reliable or not, we prepare
two types of test data, the ID test set, and the OOD test
set. Remark that the ID test set is the original test data
from each dataset, which is in distribution compared to the
training data. The OOD test set is the data with distribution
shifts. We compare the performance of the original DNN and

compressed DNN’ on these two types of test sets and check
the differences to answer RQ1. In our study, we consider two
types of distribution shifts, synthetic and natural.

In the development phase, in addition to standard training,
some other training strategies are often used to prepare pre-
trained models. Thus, it is essential to explore the potential
factor that could influence the behaviors of compressed mod-
els — training strategy. We utilize three additional training
strategies to train models and then analyze the behaviors of
their compressed versions to answer RQ2. Specifically, we
include quantization-aware training [19], which is specifically
designed for solving the problem of accuracy decline after
quantization, adversarial training [20] and Mixup training [21]
which aim to improve the generalization of a DNN model.

After analyzing the behaviors of compressed models, we
obtain multiple models that are waiting for repair with their
disagreements. Before trying to remove the disagreements and
repair the compressed models, the first step should be to
investigate the properties of the data that cause disagreements
between DNN and DNN’. We utilize the uncertainty metric as
an indicator to check if it can represent the properties of dis-
agreements and answer RQ3. Specifically, for each test dataset
(ID/OOD) and model, we collect all the disagreements that
have at least once been predicted differently by the original
model and the compressed model. Then, we randomly select
the same number as the disagreements of normal inputs where
the predictions before and after quantization are consistent.
Afterward, we obtain the output probabilities of these two
(disagreements and normal inputs) sets and calculate their
uncertainty scores by different uncertainty metrics as the input
data of the logistic regression classifier. We assign the label
of disagreement and normal input as 1 and 0, respectively.
We then combine and shuffle the two sets and split them into
training data and test data following the ratio 9:1. Finally, we
train the classifier using the training data and calculate the
AUC-ROC score of the classifiers using the prediction of test
data with a threshold of 95%. The AUC-ROC score is used
to determine the best uncertainty metric that is discriminative
between disagreements and normal inputs significantly.

Finally, we make the first step to repairing the compressed
model. We verify if model retraining is helping to alleviate
disagreements to answer RQ4. Model retraining is the most
straightforward and commonly used method during deploy-
ment to specifically let a pre-trained model work on unlearnt
features [31]. However, its effectiveness on model quantization
is uncovered. After retraining, we follow the same procedure
as RQI to produce the compressed model and check if the
disagreements decreased. Remarkably, we consider both the
existing and newly generated disagreements.

B. Datasets and Models

Table I presents the details of datasets and models. In this
study, we consider four widely studied datasets over image
and text domains. For each dataset, we build two different
models. More specifically, MNIST [27] is a gray-scale image
dataset containing digit numbers from 0 to 9. We train LeNet-
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Fig. 2. Overview of the experimental design.

TABLE I
DETAILS OF DATASETS AND DNNs

Dataset Classes  Training Test Model Parameters  Accuracy (%) Distribution Shift

MNIST 100 1000 RS 9547 Syt
CIARI0 10 se0 oo FGRE 50 8527 Csynthetey
MDb 2 swo se0 gyt S G Naturaly

1 and LeNet-5 from the LeNet [27] family. CIFAR-10 [32]
contains color images of airplanes and birds. For this dataset,
we build two models, Network in Network (NiN) [33] and
ResNet-20 [34]. iWildCam is a dataset from the distribution
shift benchmark Wilds [15]. It consists of color images of
different animals, e.g., cows, wild horses, and giraffes. We
follow the recommendation of the benchmark to build ResNet-
50 [34] for iWildCam and add one more model, DenseNet-
121 [35], in our study. IMDb [28] is a text dataset collected
from the popular movie review website IMDb. This dataset is
mainly used for sentiment analysis, i.e., the reviewer holds a
positive or negative opinion of a movie. We build two well-
known RNN models, LSTM [36] and GRU [37], for IMDb.

Test data with distribution shift. For synthetic distribution
shift, we test on MNIST and CIFAR-10 with benchmark
datasets MNIST-C [29] and CIFAR-10-C [30], respectively.
Both benchmarks include several groups of noisy images
synthesized by different image transformation methods, e.g.,
image rotation and image scale. MNIST-C contains 16 types
of transformations and CIFAR-10-C has 19 types. For natural
distribution shift, we test on iWildCam and IMDb using
the Wilds benchmark. The distribution shift comes from the
change of camera traps in iWildCam and the difference in
websites and customers in IMDb.

C. Quantization Techniques

TensorflowLite [13] is a component of the deep learning
framework — TensorFlow, which is developed and maintained

by Google. It provides interfaces to convert TensorFlow mod-
els into Lite models to promote the deployment in different
low-computing devices, such as Android mobile phones. Cur-
rently, TensorFLowLite supports both 8-bit integer and 16-
bit float quantizations for most DNNs except 8-bit integer
quantization for RNNs [38]. In our experiments, we only apply
16-bit float quantization for IMDb-related models.

CoreML [14] is an Apple framework that converts models
from third-party frameworks (e.g., TensorFlow and PyTorch)
to Mlmodel. Mlmodel is a specific deep learning model
format for IOS platforms. CoreML also provides post-training
quantization interfaces to compress models. Different from
TensorflowLite, CoreML supports all bits level quantization
for all types of DNNSs.

D. Training Strategies

In addition to standard training, we consider three rep-
resentative training strategies from different perspectives,
quantization-aware [19], adversarial [20], and Mixup [21].

Standard training is the baseline to evaluate the other
training strategies. In this setting, we train the model without
any modification in the model (e.g., quantization-aware) or
data (e.g., Mixup).

Quantization-aware training is designed by the Tensor-
Flow group, which is used for preserving the accuracy of the
model after post-training quantization in the training process.
It simulates the quantization effects in the forward pass of
training. Namely, during training, the parameters of the model
will be updated by both the normal operations and the injected
quantization operations. In this way, the trained model can
learn the knowledge for quantization.

Adpversarial training is one of the most effective defenses
for promoting model robustness by adversarially data augmen-
tation. Compared to standard training, adversarial examples
crafted from raw inputs are fed to train the model during



each epoch. As a result, the training dataset is augmented
successively.

Mixup training is a data augmentation technique that
generates new samples by weighted combinations of random
training data and their labels. It has been empirically proven
to be effective in improving the generalization of DNNs and
has several variants, such as AugMix [39]. In this paper, we
consider the original Mixup.

E. Evaluation Measures

We consider both the accuracy and disagreement to evalu-
ate the performance of DNNs and use AUC-ROC to evaluate
the performance of logistic regression classifiers.

Accuracy is the basic criterion to quantify the quality of a
DNN model, which refers to the ratio of correct predictions.

Number of disagreements is defined in [10] to characterize
the difference between two DNNs. A disagreement is an
input that triggers different outputs by the original model
and its compressed version. By measuring the number of
disagreements in the test data, one can observe the model’s
behavior change after quantization.

Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) [40] is a threshold-independent evaluation
metric. In RQ3, we utilize the AUC-ROC score to measure the
performance of the trained logistic regression classifiers.

F. Uncertainty Metrics

In RQ3, we utilize uncertainty metrics to estimate the
characteristics of the disagreement inputs. Following previous
studies [41], [42], we select 4 commonly used output-based
uncertainty metrics in our study. Given a classification task, let
DNN be a C-class model and = be an input. p; (z) denotes
the predicted probability of x belonging to the ith class,
0 <4 < C. Entropy score [43] quantifies the uncertainty of
2 by Shannon entropy: Entropy(z) = 'ZiC:1 p; (z) log p; ().
Gini [44] score is calculated as: Gini(z) = 1—2?:1 (ps (z))*.
Margin [45] score is based on the top-2 prediction probabil-
ities: Margin(xz) = Margin(z) = pi () — p; (x), where
k = argmax(p; (z)) and j = argmax (p; (z)). Least

i=1:C i={1:C}/k
Confidence (LC) [46] score is the difference between the
most confident prediction and 100% confidence. LC(x) =1 -
pr (z), where k = arg max (p; (z)).
i=1:C

i=1:

i=1:

IV. CONFIGURATION

Environments. We undertake model training and retrain-
ing on an NVIDIA Tesla V100 16G SXM2 GPU. For the
TensorFlowLite model evaluation, we run experiments on a
2.6 GHz Intel Xeon Gold 6132 CPU. For the CoreML model
evaluation, we conduct experiments on a MacBook Pro laptop
with macOS Big Sur 11.0.1 with a 2GHz GHz QuadCore Intel
Core i5 CPU with 16GB RAM.

Quantization. We apply the interfaces provided by Ten-
sorFLowLite and CoreML to accomplish post-training model
quantization. For IMDb-related models, we only apply 16-
bit float quantization by TensorFlowLite and utilize both 8-bit

integer and 16-bit float quantization by CoreML. For other
models, we conduct 8-bit integer and 16-bit float quantization
using both techniques.

Model training. For the quantization-aware training, we
mask layers (e.g., the BatchNormalization layer) that are not
supported by the current TensorFlow framework. In addition,
since TensorFlow does not support RNNs [47], we skip IMDb-
related models in this experiment. Regarding the adversarial
training, we employ the commonly used PGD-based [48]
adversarial training for image datasets, and PWWS-based [49]
adversarial training for text datasets. For the Mixup training,
we follow the recommendation by the original paper to set the
mixup parameter « as 0.2. For the training of the regression
model used in RQ3, we use the default setting of sklearn
framework and set the number of maximum iterations as 5000.

Model retraining. Following the same setting from the
empirical study of model retraining [31], we add all disagree-
ments into original training data to train the pre-trained model
with additional several epochs (5 epochs for MNIST, IMDb,
and iWildsCam, 10 epochs for CIFAR-10). All the detailed
configurations can be found at our project site [22].

V. EXPERIMENTAL RESULTS
A. RQI: Behavior of Compressed Models

Table II presents the results of the behaviors of compressed
models on ID test data and OOD test data with synthetic
distribution shifts. We can see the accuracy in most cases
degraded due to the loss of information during quantiza-
tion, which is also demonstrated by the existing studies [9],
[41]. However, surprisingly, almost 30% of (86 out of 292)
opposite cases where compressed models hold higher ac-
curacy than their original models. Particularly, in the case
of ResNet20, Zoom_blur, the compressed model has an
improvement of 1.98%. On the other hand, this phenomenon
also happens to the natural distribution shift (10 out of 16 cases
in Table III). Regarding shifted data as natural adversarial
examples, our finding confirms the conclusion from a recent
research [50] that the quantization process can be useful to
promote the model’s adversarial robustness. In addition, the
distribution shift can lead to larger change and should be taken
into account during deployment. For example, in MNIST, TF-
8, the compressed model has an accuracy change of 0.04%
on ID test data but 0.78% under the Fog shift (Table II). And
comparing the ID and OOD test sets, we found the synthetic
distribution shift can increase the accuracy change by up to
3.03% (ResNet20-Gaussian_noise-CM-8).

Considering the disagreement, the results demonstrate that
even if the compressed model maintains accuracy, there may
exist disagreements. For example, in the case of LeNetl, CM-8,
the accuracy change is 0, but the number of disagreements is 6.
Even worse, in DenseNet-121, CM-16, 216 disagreements ap-
pear without any accuracy change. This calls for the attention
that the behaviors of compressed models can not be exactly
reflected by only comparing the test accuracy. Thus, during
deployment, using accuracy only to evaluate the quality and
reliability of compressed DNNs is insufficient.



TABLE II
BEHAVIOR OF COMPRESSED MODELS UNDER SYNTHETIC DISTRIBUTION
SHIFT. NON-HIGHLIGHTED VALUE: ACCURACY CHANGE (%),
HIGHLIGHTED VALUE: NUMBER OF DISAGREEMENTS. A LOW VALUE
INDICATES A SMALL DIFFERENCE BETWEEN THE ORIGINAL AND
COMPRESSED MODELS. ID REFERS TO THE ID TEST DATA AND THE
OTHERS ARE OOD TEST DATA. TF: TENSORFLOWLITE. CM: COREML.
—AVERAGE—: THE AVERAGE OF ABSOLUTE CHANGES.

MNIST

Test Data LeNetl LeNets

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
D 004 [ 14 004 | 9 0 2 0 [ 002 4 00l | 3 001 T 0
Brightness 0.51 172 028 67 -004 @ 53 0.01 7 | -027 175 -056 100 -0.79 100 0.03 6
Canny_edges 077 172 0.5 86 0.02 51 -0.01 4 0.16 73 006 35 001 17 0.02 2
Dotted_line -0.21 38 006 24 003 8 0 0 | -0.01 26 -0.06 13 004 | 12 0 0
Fog 078 542 0.11 133 0.17 = 12 0 6 031 321 -043 112 -06 [ 120 001 8
Glass_blur -005 41 -004 18 -0.05 10 0 0 0.09 44 -0.1 23 -0.03 17 0 0
Tdentity -0.04 14 -0.04 9 0 2 0 0 0.02 4 0.01 3 0.01 1 0 0
TImpulse_noise -023 77 0.06 28 0.1 33 004 4 |-002 50 -013 35 0.01 23 003 | 3
Motion_blur 0.14 79 0.08 29 -0.07 @ 20 0.01 1 0.18 59 -0.11 23 -0.01 17 0.01 1
Rotate -007 © 62 -003 30 0 13 002 2 | -011 30  -0.09 18 -0.05 10 0 0
Scale <028 102 -0.15 43 -0.04 29 0 0 | -005 53 -002 22 -0.02 8 0 0
Shear 0 22 0 8 0.01 11 0.01 2 0 22 003 11 -0.01 5 0 0
Shot_noise -006 26 -002 11 0 10 0 0 0.06 16 -0.01 7 -0.03 6 0 0
Spatter 005 31 006 13 002 6 0 0 | 004 | 14 -002 10 0 8  -001 1
Stripe 042 113 01 70 0.8 103 -004 6 | -003 8 003 36 -0.19 53 0 1
Translate 0.8 159 008 70 -0.04 = 67 0 4 | 015 135 005 64 0 47 001 2
Zigzag 003 8 003 41 -001 34 -004 7 | 006 66 -017 34 -008 30 -001 1|
—Average— 023 (103 010 _ 41 005 [ 33 00l | 3 | 009 | 69 0.l | 3 0Il [ 28 001 | 1

CIFAR-10
NN ResNet20

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
D 095 (514 001 | 24 003 | 45 002 | 7 | 004 456 04 | 54 036 | I8L 003 | 7
Brightness 002 70 001 50 003 44 001 9 |-002 190 01 51 -008 170 -003 5
Contrast 004 78 -006 42 -006 48 -004 6 | -0.12 250 004 49 002 187 -006 10
Defocus_blur 0.1 51 -005 ~ 34 006 37 004 5 | -021 205 001 53 002 175 003 15
Elastic_transform  0.03 = 107 0.02 65 0.06 70 0.01 10 | 0.02 = 342 0 84 0.83 1302 -005 |18
Fog -0.02 = 57 0.02 29 006 37 -003 6 | -007 236 0.01 45 007 | 212 0 16
Frost 0.02 81 -0.05 ~ 53 0 50 0 10 | -0.28 = 260 0.05 68 -076 317 001 14
Gaussian_blur 005 = 56 -006 29 -004 36 -002 5 | -0.18 207 005 60 0.04 161 003 12
‘Gaussian_noise 0.06 9 -0.03 = 57 0.06 65 006 8 | 035 343 006 106 -267 499 -0.15 29
Glass_blur -0.36 164 -042 122 002 9 008 20 | -0.09 559 0.2 168 -1.56 754 -0.14 57
TImpulse_noise -028 108 -034 8  -0.11 82 005 I8 | -0.12 275 0.04 72 -1l 329 001 20
Jpeg_compression  -026 = 82  -0.15 =55 -0.21 57 005 12| 015 259 -008 75 -094 315 -006 21
Motion_blur 0 87 006 43 0.14 67 005 13| 046 336 -0.04 83 169 325 -002 21
Pixelate 0.03 84 0 49 006 53 001 6 0.08 251  0.05 61 <032 £ 239 -0.02 10
Saturate <013 89 0 49 -005 | 49 002 | 8 | -016 262 -002 66 011 238 -001 22
Shot_noise -006 105 -0.08 60 009 69 -002 8 | -0.18 302 003 79 201 409 -0.12 23
Snow <014 698 003 67 002 66 -002 5 | -056 255 004 68 -0.84 291 -008 23
Spatter -1.06 604 -0.02 43 008 52 002 4 | -029 228 006 64 -038 239 -001 15
Speckle_noise -1.89 631 -0.12 | 49  -006 65 0.01 5 | 034 269 -001 70 -198 398 -0.04 13
Zoom_blur 0.6 883 007 | 56 0.1 77 004 12| 025 415 004 125 198 392 0.01 24
—Average— 031 1232 0.08 53 0.07 58 0.03 9 020 7295 0.06 75 089 307 005 |19

TABLE III
BEHAVIOR OF COMPRESSED MODELS UNDER NATURAL DISTRIBUTION
SHIFT. NON-HIGHLIGHTED VALUE: ACCURACY CHANGE (%),
HIGHLIGHTED VALUE: NUMBER OF DISAGREEMENTS. A LOW VALUE
INDICATES A SMALL DIFFERENCE BETWEEN THE ORIGINAL AND
COMPRESSED MODELS. ID REFERS TO THE ID TEST DATA AND THE
OTHERS ARE OOD TEST DATA. TF: TENSORFLOWLITE. CM: COREML.
—AVERAGE—: THE AVERAGE OF ABSOLUTE CHANGES.

iWildCam

Test Data DenseNet-121 ResNets0

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
D -1896 2830 -0.12 167 834 | 2035  0.04 | 34 0 326 -0.11 187 021 © 226 0.06 16
00D 41091 | 14279 -042 1105 508 11095 0 216 | 109 2158 06 1270 -033 1811 -0.01 128
—Average— 1494 | 8555 027 | 636 6.76 | 6565 002 | 125 | 055 1242 035 _ 729 027 1019 004 | 72

TMDb
LST™M GRU

TF-8 TF-16 CM-8 CM-16 TF-8 TF-16 CM-8 CM-16
D B B 008 |8 0 6 0 - = 006 | 3 004 2 0 0
CR - - 004 8 006 9 0 0 - - 028 30 02 24 002 1
Yelp - - -0.12 14 0.02 7 0 0 - - 0.06 9 0.08 8 0 0
—Average— - - 008 10 003 7 000 0 - 013 | 14 01l 11001 0

Moreover, comparing the number of disagreements from the
ID test data and OOD test data, we observe that the distribution
shift tends to lead to more disagreements. In 82% cases (241
of 294), the number of disagreements from OOD test data is
greater than from ID test data, the difference can be by up
to 5.28% (LeNetl, Fog, TF-8). However, after the model has
been deployed and used in the wild, test data are more likely to
have distribution shifts which raises a big concern that model
quantization may bring unexpected errors.

Next, we compare the two quantization techniques consider-
ing the accuracy change. On average, regardless of the dataset,
DNN, and quantization level, CoreML produces more stable
compressed models (smaller change) than TensorFlowLite
in most cases (12 out of 14). Concretely, in 16-bit float
quantization, CoreML always outperforms TensorFlowLite.
Take iWildCam, DenseNet-121 as an example, in 16-bit level
quantization, the average accuracy change is 0.27% by Ten-
sorFlowLite but only 0.02% by CoreML. This difference of

0.25% could cause the CoreML-compressed model to correctly
predict 188 more data than the TensorFlowLite-compressed
model, which is a considerable difference. In 8-bit integer
quantization, CoreML can still outperform TensorFlowLite in
most cases (4 out of 6). Additionally, we found an extreme
case (iWildCam, DensetNet-121) where the accuracy of com-
pressed models by both techniques drops a lot. This finding
raises the concern that both quantization tools have room
for improvement and require a thorough test. On the other
hand, considering the number of disagreements, the models
compressed by CoreML have fewer disagreement inputs than
those by TensorFlowLite in most cases (13 out of 14).

Answer to RQI1: Under synthetic distribution shift, the
accuracy change and the number of disagreements between
the original and compressed models increase by up to 3.03%
and 5.28%. Regardless of the dataset, DNN, and distribution
shift, CoreML keeps the behaviors of original DNNs better
than TensorFlowLite during deployment.

B. RQ2: Influence of Training Strategy

In this section, we explore how different training strategies
influence the behaviors of compressed models. Here, we only
report the results of one model from each dataset (MNIST-
LeNet5, CIFAR-10-ResNet20, IMDb-LSTM, and iWildsCam-
ResNet50). The whole results are available at our project site.

motion_blurotate

(a) MNIST

(c) IMDb (d) iWildCam

Fig. 3. Accuracy (%) of models (before quantization) trained by different
training strategies. ID represents the accuracy on ID test datasets, and the oth-
ers are on OOD test datasets. Stan: standard training. QA: quantization-aware
training. Adv: adversarial training. Mixup: Mixup training. In CIFAR-10, GB,
IN, and JC represent glass_blur, impulse_noise, and jpeg_compression.

First, we evaluate the performance of each training strategy
considering the distribution shift before model quantization.
Figure 3 shows the results. Under synthetic distribution shift,
for MNIST, there are 12, 5, and 6 cases out of 17 that
using quantization-aware, adversarial, and Mixup training,
respectively, improve the accuracy compared to using standard
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Fig. 4. The disagreement change of models trained by different training strategies compared to by standard training.
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QA: quantization-aware training. Adv:

adversarial training. Mixup: Mixup training. y—axis: the difference in the number of disagreements between a training strategy and standard training.

TABLE IV
AVERAGE ACCURACY CHANGE (%) OF MODELS BY QUANTIZATION. A
LOW AVERAGE VALUE INDICATES A SMALL DIFFERENCE BETWEEN THE
ORIGINAL AND COMPRESSED MODELS. HIGHLIGHTED VALUES INDICATE
THAT THE ACCURACY CHANGE BY THE CORRESPONDING TRAINING
STRATEGY IS THE SAME AS OR SMALLER THAN BY STANDARD TRAINING.

Training Strategy

Dataset Q Standard Quantization-aware Adversarial Mixup

TensorFlowLite-8 0.09 0.06 0.36 0.53
TensorFlowLite-16  0.11 0.01 0.09 0.24
MNIST CoreML-8 011 0.06 01 009
CoreML-16 0.01 0.01 0.01 0.02
TensorFlowLite-8 0.20 0.77 1.02 1.48
TensorFlowLite-16  0.06 0.06 0.21 0.15
CIFAR-10 CoreML-8 0.89 0.05 0.20 0.12
CoreML-16 0.05 0.03 0.16 0.04
TensorFlowLite-16  0.08 - 0.03 0.05

IMDb CoreML-8 0.03 - 0.03 0.03

CoreML-16 0.01 - 0.01 0.01
TensorFlowLite-8 0.55 0.47 0.24 0.29

iWildCam TensorFlowLite-16 ~ 0.35 0.05 0.10 0.07
CoreML-8 0.27 0.19 0.04 0.62

CoreML-16 0.04 0.11 0.04 0.06

training. While the result for CIFAR-10 changes to 5, 8,
and 12 cases of 20 correspondingly. We conclude that none
of these three training strategies can consistently deal with
the issue of accuracy degradation under synthetic distribution
shifts. On the other hand, under natural distribution shift,
interestingly, when performing adversarial training for IMDb
models, the accuracy of models on both distribution-shifted
datasets (CR and Yelp) has been improved. We conjecture
that the features of text adversarial examples are more likely
to appear in the real-world OOD test dataset. For example, the
original sentence “a wonderful...are terribly well done and its
adversarial sentence “a wonderful...are terribly considerably
perform” only have a two-word difference, but the model
predicts them differently. The words considerably and perform
are both in the vocabulary of OOD data. For iWildCam, only
the Mixup training can improve the accuracy of models on
shifted data.

Second, we check the accuracy change of each model
trained by different training strategies after quantization. Table
IV presents the results of the average accuracy change of all
test datasets of each model. Compared to standard training, the

compressed models by using the quantization-aware training
are more stable where the accuracy change in most cases
(10 out of 12) is the same as or smaller. For example, in
CIFAR-10, CM-8, by standard training, the compressed model
has an average of 0.89% difference compared to its original
model. However, by quantization-aware training, the difference
can decline to only 0.05%. By contrast, both adversarial
and Mixup training can result in more stable (11 out of
15, 8 out of 15 cases) compressed models than standard
training but not as well as quantization-aware training. In
short, quantization-aware training outperforms adversarial and
Mixup training considering minimizing the accuracy change
during deployment.

In addition, similar to the findings in RQ1, we observe
that under synthetic distribution shift (MNIST and CIFAR-
10), most (7 out of 8) of the accuracy change improvements
happen in the models compressed by TensorFlowLite. And for
the data with natural distribution shifts, the accuracy change
increase only happens in the models compressed by CoreML.
This phenomenon indicates that in terms of accuracy change,
quantization-aware training produces more stable models than
standard, adversarial, and Mixup training. TensorFlowLite is
more suitable to deal with natural distribution shifts, while
CoreML performs better for synthetic distribution shifts.

Finally, we check the disagreements that occur during model
quantization. Figure 4 shows the disagreement change of
models trained by different strategies compared to the standard
training. Given all OOD test datasets, the quantization-aware
equipped with TensorFlowLite can efficiently decrease the
number of disagreements. Under synthetic distribution shift
only, after TensorFlowLite quantization, the models trained by
Mixup training lead to more disagreements. On the other hand,
under natural distribution shift, all these tree training strategies
are useful to reduce disagreements (negative disagreement
change in Figures 4(e) - 4(h)) regardless of the quantization
technique. We can conclude that under synthetic distribu-



tion shift, quantization-aware training is useful to remove
disagreements for TensorFlowLite-compressed models. While
under natural distribution shift, all three training strategies are
efficient to reduce disagreements.

Answer to RQ2: Generally, quantization-aware training can
produce more stable models with small accuracy changes
and fewer disagreements after model quantization. For data
with natural distribution shifts, both quantization-aware
training and basic data augmentation training (adversarial
training and Mixup training) can reduce the disagreements.

C. RQ3: Characteristic of Disagreements

Since disagreements are usually close to the decision bound-
aries of the model [10], we try to characterize the disagree-
ments from the perspective of output uncertainty. Concretely,
after quantization, the decision boundary of a model may
slightly move due to the precision of parameter change. As
a result, the data that are close to the boundary might cross
over the boundary and cause disagreements. Generally, those
data are uncertain to the model and could be identified by
uncertainty metrics. Many metrics have been proposed but
which one can be used to more precisely distinguish the
disagreements and normal inputs is unclear. In our study,
we consider four (Entropy, Margin, Gini, Least Confidence)
widely used uncertainty metrics only based on the output of
the model to determine the best one to present the property of
disagreements.
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Fig. 5. An example (CIFAR-10, ResNet20, ID test data) of the distributions
of output uncertainty scores. Red: disagreements. Blue: normal inputs.

Figure 5 gives an example (CIFAR-10, ResNet20) of the
distribution of uncertainty scores of the disagreements and
normal inputs. First of all, regardless of the uncertainty metric,
the result confirms that disagreements are more uncertain for a
model than normal inputs as they usually have higher (lower in
Margin) uncertainty scores. Thus, output-based uncertainty is
a promising indicator to distinguish disagreements and normal
inputs. Take the least confidence as an example, most normal

TABLE V
AUC — ROC SCORE OF THE LOGISTIC REGRESSION CLASSIFIERS
TRAINED BY USING DIFFERENT UNCERTAINTY SCORES. THE BEST
RESULTS AMONG THE FOUR UNCERTAINTY METRICS ARE HIGHLIGHTED.

Uncertainty Measure

Dataset DNN Training Strategy Entropy  Gini _ Margin LC
Standard 83.67 85.00 94.76 89.78

Quantization-aware 95.81 95.20 97.45 96.61
Lenet! Adversarial 71.41 73.58 96.51 82.49
Mixup 79.74 84.34 94.06 89.76
Average 82.66 84.53 95.70 89.66
MNIST Standard 86.79 89.49 97.36 94.49
Quantization-aware 80.39 83.3 94.82 88.48
Lenet5 Adversarial 72.02 76.47 96.78 85.09

Mixup 71.53 72.00 89.42 78.37

Average 77.68 80.32 94.60 86.61

Standard 95.42 93.58 94.54 94.28

Quantization-aware 95.29 95.62 96.52 96.11
ResNet20 Adversarial 92.63 94.01 97.05 96.04

Mixup 87.03 90.31 95.28 93.27

Average 92.59 93.38 95.85 94.93

CIFAR10 Standard 93.36 94.88 96.2 95.65
Quantization-aware 85.23 85.74 87.47 86.31
NiN Adversarial 93.79 94.96 96.25 95.64

Mixup 88.59 89.98 93.15 91.85
Average 90.24 91.39 93.27 92.36

Standard 100 100 100 100

Adversarial 100 83.33 100 100

LST™ Mixup 100 100 100 100

Average 100 94.44 100 100

IMDb Standard 100 100 100 100
GRU Adversarial 100 50.00 100 100

Mixup 100 100 100 100

Average 100 83.33 100 100

Standard 78.67 85.00 85.60 85.83

Quantization-aware 75.64 75.73 76.51 76.18

Densenet Adversarial 61.71 62.04 63.35 62.28

Mixup 82.57 79.98 82.46 80.98

iWildCam Average 74.65 75.90 76.98 76.32
Standard 87.00 93.41 95.95 94.44
Quantization-aware 89.71 91.60 97.36 94.79

Resnet50 Adversarial 88.54 85.81 96.77 89.88
Mixup 87.73 89.68 96.23 93.10

Average 88.25 90.13 96.58 93.05

inputs have LC scores near 0. According to the definition of
LC, the result demonstrates that the model is confident (with
almost 100%) in the top-1 predictions for these inputs. In
detail, the number of inputs having LC scores in the ranges of
[0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1] are 462,
31, 7, 0, and O respectively. In contrast, for the disagreement
inputs, most of them have high uncertain scores. Specifically,
the number of inputs that the LC scores in the ranges of [0,
0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1] are 110, 175,
225, 26, and O respectively.

Table V presents the AUC-ROC scores of the regression
classifiers trained by using the uncertainty scores. Overall, in
most cases (27 out of 30), classifiers trained by Margin score
have greater AUC-ROC scores than other classifiers, which
means that the disagreement inputs and normal inputs have
a bigger difference based on the Margin score. Specifically,
in 23 (out of 30) cases, the classifiers trained using Margin
score as the training data have greater than 90% AUC-ROC
scores, which indicates the classifiers are useful to distinguish
the normal inputs and disagreements. Besides, most IMDb
classifiers have 100% AUC-ROC scores, the perfect results
could come from the limited number of disagreements but can
still prove the output-based uncertainty score is a promising
indicator to represent the property of disagreements.

Figure 5 also shows a few disagreements where the model
has high confidence. We call them extreme disagreements.
We utilize the Margin score to set the threshold and analyze
how many extreme disagreements exist and where do they
come from. Concretely, we define the disagreements with
Margin > 0.95 as extreme. We observe that there are 3,



226, 0, and 9 extreme disagreements in MNIST, CIFAR-
10, IMDb, and iWildsCam, respectively. Interestingly, all
the extreme disagreements come from the disagreements be-
tween TensorFlowLite-8bit compressed model and the original
model, which means this quantization moves the decision
boundary a lot in some areas. A deeper analysis could be
an interesting research direction.

Answer to RQ3: Disagreements have closer top-1 and top-
2 output probabilities than normal inputs. Compared to
Entropy, Gini, and Least Confidence, Margin is a better
metric to distinguish disagreements and normal inputs.

D. RQA4: Effectiveness of Retraining

In RQ3, we observe that the disagreements are data where
the model has low confidence in the prediction. We investigate
if model retraining, an efficient method to improve confidence,
can ensure a stable compressed model during quantization.

Table VI presents the number of disagreements from the ID
test data before and after model retraining. In most cases (18
out of 26 cases that have disagreements before retraining),
the number of disagreements decreases after model retrain-
ing. However, surprisingly, there are some exceptions that
the disagreements increase. For example, in MNIST, LeNetl,
CoreML-8, 6 more disagreements appear after retraining.
This phenomenon indicates that retraining the model using
disagreements cannot always remove the disagreements.

TABLE VI
NUMBER OF DISAGREEMENTS BEFORE AND AFTER MODEL RETRAINING.
IN TOTAL: DISAGREEMENTS IN A TEST DATASET REGARDLESS OF THE
QUANTIZATION TECHNIQUE. VALUES IN BRACKETS ARE THE DIFFERENCE.
STUBBORN: DISAGREEMENTS CANNOT BE REMOVED BY RETRAINING.
NEW: DISAGREEMENTS APPEARING AFTER RETRAINING.

Before After Before After
MNIST LeNetl LeNet5
TensorFlowLite-8 14 7(-7) 4 3(-1)
TensorFlowLite-16 9 4(-5) 3 1(-2)
CoreML-8 2 8(+6) 1 1(0)
CoreML-16 0 0(0) 0 0(0)
In total 15 16(+1) 6 4(-2)
Stubborn 1
New 15 4
CIFAR-10 NiN ResNet20
TensorFlowLite-8 514 371(-143) 456 439(-17)
TensorFlowLite-16 24 26(+2) 54 49(-5)
CoreML-8 45 31(-14) 181 56(-125)
CoreML-16 7 4(-3) 7 13(+6)
In Total 540 401(-139) 536 480(-56)
Stubborn 47 100
New 354 380
IMDb LSTM GRU
TensorFlowLite-16 8 7(-1) 3 1(-2)
CoreML-8 6 2(-4) 2 0(-2)
CoreML-16 0 0(0) 0 0(0)
In Total 13 8(-5) 5 1(-4)
Stubborn 0
New 8 1
iWildCam DenseNet ResNet50
TensorFlowLite-8 2830 3319(+489) 326 373(+17)
TensorFlowLite-16 167 12(-155) 187 143(-44)
CoreML-8 2035 7(-2028) 226 101(-125)
CoreML-16 34 2(-32) 16 27(+11)
In Total 3834 3324 (-510) 469 462 (-7)
Stubborn 2230 24
New 1094 438

(a) MNIST-LeNet1

(b) CIFAR-10-ResNet20

Fig. 6. Examples of two stubborn disagreements. MNIST: predicted label
before retraining: 1, 100% confidence, after: 8, 100% confidence. CIFAR-10:
prediction before retraining: cat, 59% confidence, after: deer, 92% confidence.

In addition, we study whether the old disagreements are
really removed by model retraining or not. To this end, we
compare if the disagreements remain the same after retraining.
For simplicity, we define the stubborn disagreement as
the disagreement appearing both before and after retraining,
and new disagreement as the disagreement introduced by
retraining. Figure 6 gives two examples of stubborn dis-
agreements. For the MNIST image, the model predicts the
digital number as 0 or 9, while the true label is 8. For the
CIFAR-10 image, the model hesitates to predict the animal to
be a cat before retraining, and raises the confidence of this
wrong prediction after retraining, while the true label is deer.
Besides, we observe that the average Margin score of all the
stubborn disagreements before and after retraining are 0.40 and
0.56, respectively. That means although models become more
confident with these stubborn disagreements after retraining,
their uncertainty is still high. In Table VI, regardless of the
quantization technique, only a few stubborn disagreements
remain after retraining. For example, in CIFAR-10, NiN, only
47 (of 540) disagreements are left. However, model retrain-
ing introduces new disagreements which have the same size
as without retraining. For example, in iWildCam, ResNet50,
through retraining, only 24 stubborn disagreements are left
and all the other 445 are efficiently removed, but meanwhile,
438 new disagreements appear. We can conclude that through
model retraining, only a few stubborn disagreements remain
but a similar size of new disagreements is introduced.

Answer to RQ4: Retraining fails to reduce the total number
of disagreements. Though it manages to remove some
existing disagreements, it introduces as many new ones.

VI. DISCUSSION
A. Compressed Model Repair

We have verified that model retraining, the most common
strategy to enhance performance, has limited functionality in
removing disagreements. How to solve this issue is still an
open problem. Based on our investigation, the disagreements
are mainly the data with small Margin scores by compressed
models. Therefore, the main challenge is how to improve con-
fidence in the data. We provide two potential solutions. 1) On-
line monitoring. Before quantization, training multiple mod-
els to perform prediction can also improve confidence [51].



Concretely, we can divide data into different groups based
on their Margin scores. For each group of data, a model is
trained and compressed. 2) Offline repair. After quantization,
build an ensemble model to perform prediction instead of the
compressed model. Ensemble learning [52], [53] has been
proven to effectively improve the predictive performance of
a single model by taking weighted average confidence from
multiple models. However, both solutions will increase the
storage size since more models are required. As a result, there
is a trade-off between fewer disagreements and efficient model
quantization. Thus, designing a robust quantization method is
still an ongoing and important direction.

B. Threats to Validity

First, the threats to validity come from the selected datasets
and models. Regarding the datasets, we consider both image
and text classification tasks and include OOD benchmark
datasets with both synthetic and natural distribution shifts.
All the datasets are widely used in previous studies. As for
the models, we cover two types of DNN architectures, feed-
forward neural network, e.g., ResNet, and recurrent neural
network, e.g., LSTM. In addition, we take into account the
model complexity and apply both simple and complex ones,
such as LeNetl and ResNet50. For each dataset, we employ
two different models to eliminate the influence of selected
models. An interesting research direction is to repeat our
experiments on other tasks, such as the regression task.

Second, the training strategies and uncertainty metrics could
be other threats to validity. For the training strategies, among
all possible choices, we include the four most representative
and common ones. Standard training is the most basic training
procedure and should be taken as the baseline. Quantization-
aware training is specifically designed for quantization. Mixup
training is the first and basic data augmentation approach to
improve the generalization of DNNs over different distribution
shifts. Adversarial training is one of the most effective tech-
niques to promote model robustness/generalization. For the
uncertainty metrics, we tend to select metrics that require as
few configurations as possible. The four metrics included in
this work are all solely based on the output probabilities. This
is to avoid the impact of uncontrollable factors. For example,
the dropout-based uncertainty metric [54] needs to consider
where to put the dropout layer and the dropout ratio.

VII. RELATED WORK
A. Deep Learning Testing

As a critical phase in the software development life cy-
cle [55], deep learning testing ensures the functionality of DL-
based systems during deployment. Multiple testing methods
have been proposed in recent years [56]-[60]. For example,
from the perspective of deep learning models, Pei et al
proposed DeepXplore which borrows the idea from code
coverage and defines neuron coverage to measure if the test
set is enough or not. Later on, DeepGauge [61] defines some
new coverage metrics, e.g., k-multisection Neuron Coverage
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and Neuron Boundary Coverage, and demonstrates their ef-
fectiveness compared to the basic neuron coverage. From the
perspective of test data, several test generation [18], [62]—
[64] and test selection [44], [65], [66] approaches have been
proposed. Gao et al. proposed SENSEI [59] which utilizes
genetic search to find the best image transformation methods
(e.g., image rotate) to generate suitable data for training a
more robust model. Chen et al. proposed PACE [65] which
uses clustering methods and an MMD-critic algorithm to
select a small size of test data to estimate the accuracy
of the model. However, all of these works test the model
before quantization, while our study mainly focuses on the
analysis of the difference between the models before and after
quantization.

There are two studies closely related to our work [10], [11].
Both of them generate test inputs that have different outputs
between the original and compressed models. However, these
works did not 1) study the properties of such disagreements; 2)
try to solve the disagreements; 3) consider natural distribution
shift, all of which are considered in our work.

B. Empirical Study for Deep Learning Systems

Empirical software engineering is one general way to prac-
tically analyze software systems. In recent years, multiple em-
pirical studies for deep learning systems have been conducted
to help understand such complex systems.

The empirical study by Zhang et al. [67] pointed out that
model migration is one of the top-three common programming
issues in developing deep learning applications. Noticing the
lack of benchmark understanding of the migration and quanti-
zation, Guo et al. [9] investigated, for the deployment process,
the performance of trained models when migrated/compressed
to real mobile and web browsers. They focus on the impacts of
the deployment process on prediction accuracy, time cost, and
memory consumption. In addition to the accuracy, we further
evaluate the robustness of a model, especially considering
the synthetic and natural distribution shifts in the test data.
Chen et al. [68] studied the faults when deploying deep
learning models on mobile devices. They especially apply
TensorFlowLite and CoreML in the deployment, which is
also considered in our study. The difference with our study
is that their empirical study explores the failures related to
data preparation (datatype error), memory issues, dependency
resolution error, and so on, while our study focuses on the
differential behavior during deployment and retraining. Hu e?
al. [41] verified that model quantization has opposite impacts
on different tasks in the setting of active learning. For example,
after quantization, the model is less accurate in the image
classification task while exhibiting better performance in the
text classification task. In our study, since the labels of all data
are available, we apply standard training.

VIII. CONCLUSION

In this paper, we conducted a systematic study to character-
ize and help people understand the behaviors of compressed
models under different data distributions. Our results reveal



that there are more disagreement inputs in data with distri-
bution shift than in the original test data. Quantization-aware
training is a useful training strategy to produce a model that
has fewer disagreements after quantization. The disagreements
are those data that have high uncertainty scores, and the
Margin score is a more effective indicator to distinguish the
normal inputs and disagreements. More importantly, we also
demonstrated that the commonly used approach — retraining
the model with disagreements has limited usefulness to remove
the disagreements and repair compressed models. Based on our
findings, we provide two future research directions to solve the
disagreement issue. To support further research, we released
our code, and models (before and after quantization) to be a
new benchmark for studying the quantization problem.
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