
1

Abstract— A new and simple Python network simulator Nessi

is described in this paper. While other simulators focus on

minimizing the simulation time, Nessi tries to minimize the

development time and the difficulties to implement a new

simulation model. As such, it is mainly oriented toward

educational use, where it enables students to implement or modify

simulation models of protocols with minimal overhead. A second

application of Nessi is for verification and performance evaluation

of new protocols, where it allows the developer to easily explore

different options.

Nessi comes with an easy to use graphical interface that

allows the user to interactively monitor the behavior of a

simulation, to modify simulation parameters and to plot results.

Index Terms—Network simulator, Python, protocol.

I. INTRODUCTION

HE development of such a simulator can serve many

purposes: First, it allows a student or a researcher to study

mechanisms of existing protocols like CSMA (Carrier

Sense Multiple Access) or more complex mechanisms (IEEE

802.3 or 802.11 for instance). Second, it allows one to study

the behavior and the performances of complex networks.

Finally, it may be used to develop new protocols and to

evaluate their correctness and performances.

The Network Simulator ns-2 is the de-facto standard for

network research in the scientific community. While being fast

and offering a comprehensive set of simulation models, ns-2

has a steep learning curve and development of new protocols

is difficult and error prone. Moreover, ns-2 is geared toward

wireless / ad-hoc network research as well as network

congestion control, covering only a part of the curriculum of

telecommunications. Nessi may be seen as the complement of

ns-2. It is much slower (by a factor of 20-100), but protocol

development is much faster, easier to learn and less error

prone. Nessi runs on Windows, Linux/Unix/BSD, MacOS and

offers an easy-to-use graphical interface that allows students

and researchers to interactively control simulations, to observe

the behavior of the network and to produce graphical results.

J. Ehrensberger is a Professor at the University of Applied Sciences of

Western Switzerland, HEIG-VD, 1400 Yverdon-les-Bains, Switzerland.

J. Vernez is a research assistant at the University of Applied Sciences of

Western Switzerland, HEIG-VD, 1400 Yverdon-les-Bains,

S. Robert is a Professor at the University of Applied Sciences of Western

Switzerland, HEIG-VD, 1400 Yverdon-les-Bains, Switzerland.

Figure 1 shows the simulation control window and a results

window, running on Windows.

Figure 1 - Nessi graphical user interface

Nessi has been designed to simplify and to speed-up the

development of simulation models. As such it is mainly

oriented toward educational purposes, where students can

implement the most important mechanisms of current

protocols with a minimum of overhead. A second application

of Nessi is rapid prototyping of new protocols in order to

verify the correct functioning of the protocol. We’ve

developed Nessi primarily as a network simulator for

education and rapid protocol development. To achieve these

goals, Nessi is implemented in Python [2], an easy to learn

interpreted language with a very comprehensive set of

libraries, in particular for numeric and scientific computing

[3]. Since Python is an interpreted (‘scripting’) language, this

choice appears unusual. However, development and debugging

of simulation models in C/C++ takes days or weeks, for some

minutes or hours of actual simulation time. In our experience,

development time in Python is reduced by a factor of 5-10,

compared to C/C++ or Java, such that the total time spent for

development and simulating of a new protocol may be

considerably shortened. Moreover, development in Python is

A Network Simulator for Education and Fast

Protocol Development: Nessi

Jürgen Ehrensberger, Jérôme Vernez, Stephan Robert

T

Published in the proceedings of the 11th International Workshop on
Computer-Aided Modeling, Analysis and Design of Communication Links
and Networks, 8-9 June 2006, Trento, Italy, which should be cited to
refer to this work.
DOI: https://doi.org/10.1109/CAMAD.2006.1649720

 2

far less error prone, such that the quality of simulation models,

which are notoriously difficult to validate, may be increased.

While University of Applied Sciences HEIG-VD during the

past two years, it is still in an early development state. The

simulation framework, including, the scheduler, random

number generators, packet format creation, network entities,

and plotting and scripting capabilities, is virtually completed.

However, only a rather limited set of network protocols have

been implemented in Nessi up to now, including:

• ARQ protocols like Stop-and-Go, Go-back-N under

different bit error models.

• Error control methods like IP checksum, Hamming,

Codes, polynomial codes and CRC.

• CSMA methods, like Aloha, CSMA/CA, CSMA/CD,

• A complete implementation of Ethernet on shared

media.

• Wireless LAN IEEE 802.11.

The rest of this article is organized as follows. Section II

presents the general structure of a network model used in

Nessi. Sections III–VI provide details on packet format

creation, traffic generation, the event scheduler and result

tracing. Section VII shortly presents the graphical user

interface. Finally, Section VIII concludes the article.

II. A SIMPLE STRUCTURE

In Nessi, a simulation is defined by a script that describes the

structure of the simulation model and the simulation

parameters like duration, and statistics to compute. A

simulation script is a short and generally very simple Python

program that uses objects from the simulation framework to

compose a simulation model. Figure 2 shows a simple

simulation model which may be used to evaluate of the

efficiency of error detection codes.

Figure 2 - Scheme of a simple point-to-point network. One

link is error-free, the other simulates bit errors.

Figure 3 shows the simulation script for this network and

Figure 4 illustrates the resulting hierarchy of network objects.

Typically, a simulation script contains the following parts:

• Creation of the network elements (protocol entities,

media, network interfaces, traffic sources and sinks).

• Building of the network topology by composing the

network elements.

• Definition of statistics to measure.

• Definition of the simulation parameters (duration, etc.).

Create the network

goodlink = PtPLink()

badlink = ErrorPtPLink()

badlink.errorModel('bernoulli', 1e-5)

Create two nodes

hosts=[]

for i in range(2):

 h = Host()

 # On each host create interfaces eth0 and eth1

 for j in range(2):

 niu = NIC()

 h.addDevice(niu,"eth"+str(j))

 niu.addProtocol(FullDuplexPhy(), "phy")

 niu.addProtocol(PointToPointDL(), "dl")

 # eth0 is attached to the errored link,

 # eth1 to the error-free link

 h.eth0.attachToMedium(badlink)

 h.eth1.attachToMedium(goodlink)

 hosts.append(h)

h1 = h[0]

h2 = h[1]

Connect the source and the sink

source = ChksumSource()

h1.addProtocol(source, "app")

source.registerLowerLayer(h1.eth0.dl)

source.registerLowerLayer(h1.eth1.dl)

sink = ChksumSink()

h2.addProtocol(sink, "app")

h2.eth0.dl.registerUpperLayer(sink)

h2.eth1.dl.registerUpperLayer(sink)

Run the simulation

source.start()

RUN(1000)

Figure 3 - Simulation script that creates the network of Fig. 2

The types of network elements that are readily available are

described in the following.

A. Node

A node is a container to which three types of network

elements may be added: traffic sources and sinks, higher layer

protocol entities and network devices. A node mainly provides

these different elements with means to communicate with each

other without via symbolic names. A protocol entity may for

instance obtain the list of all installed network interfaces and

decide over which interface is wants to send a data packet.

B. Network Interface Units (NIU)

A NIU is an interface between the physical transmission

medium and higher layer protocols. NIUs follow the OSI

reference model in as much as they allow the addition of a

physical layer protocol (referred to as ‘phy’) and a data link

layer protocol (‘dl’). A network interface can be attached to a

transmission medium, such that the physical layer protocol

entity can easily send and receive data over the medium.

 3

Figure 4 - Nessi structure corresponding to the scheme shown

in Fig. 2. The name of each block corresponds to the name of

the object which has been instantiated. The name below

corresponds to its class and the name between parentheses is

the parent class. The arrows correspond to methods calls

which serve to link the different objects. The application layer

entity of Host 1 is a traffic source that sends identical data

packets over all available interfaces. The application layer

entity of Host 2 is a data sink that receives all packets and

compares them to test if the checksum correctly detects a bit

error.

C. Medium

The medium simulates the transmission and propagation of

data between all the network interfaces attached to it. The

medium may be a point-to-point link, a shared bus or a radio

channel. When an interface wants to attach to the medium, it

gives its position (2- or 3-dimensional coordinates) in order to

be able to calculate the propagation time.

Errors can be inserted to data to simulate an error channel. The

following media are currently implemented:

• A shared bus, for simulating medium access

protocols.

• An ideal point-to-point link, simulating propagation

delays.

• A point-to-point link with bit errors with different

error probabilities and distributions.

• A radio channel with bit errors.

D. Protocol Entity

A protocol entity implements a communication protocol to

transmit data across the network. Following a layered protocol

architecture, the protocols installed on a node exchange

packets (‘protocol data units, PDUs) via “send” and “receive”

calls. Physical and data link layer protocol entities are attached

to network interfaces while higher layer protocols are directly

attached to the host. Currently, the following protocols are

implemented:

• Simple physical and data link layer protocols for point-

to-point links.

• ARQ protocols link Stop-and-Go and Go-back-N over

point-to-point links.

• Physical layer protocols for shared media like buses or

radio channels.

• Medium access protocols for Aloha, CSMA, CSMA-

CA.

• Ethernet (physical and MAC layer).

• Wireless LAN 802.11 (physical and MAC layer).

• Traffic generators as application layer protocols, which

simulate the traffic of constant-bit-rate sources or self-

similar sources (Web traffic).

III. A POWERFUL CLASS PDU GENERATOR

Nessi provides a very convenient method to create packet

formats and to manipulate the content of data packets. The

Ethernet packet format can be defined as shown in Figure 5.

 PDUFormat = formatFactory(
 [('preamble', 'ByteField', 64),

 ('destAddr', 'MACAddr', 48, 'FF:FF:FF:FF:FF:FF'),

 ('srcAddr', 'MACAddr', 48, self.address),

 ('typeOrLength', 'Int', 16, 0x0800),

 ('data', 'ByteField', None, None),

 ('FCS', 'Int', 32, None)])

Figure 5 - Example of the creation of the packet format of

Ethernet. Each line like preamble or FCS describes a packet

field. A packet field is defined via a name, a data type, the

length in bits and optionally a default value. Fields with a

length of ‘None’ have variable length.

While it is not necessary for packet fields to be aligned on

octet boundaries, the complete packet must have a length

which is a multiple of a byte. The available data types are:

• ByteField: An arbitrary sequence of bytes which is

treated as a string. Example: 'abcd'.

• BitField: Sequence of bits. The sequence may have

an arbitrary length and is represented by

a string of zeros and ones.

• MACAddr : MAC address with a length of 48 bits

Example : '20:C0:83:AD:33:01'.

• IPv4Addr: IPv4 address, 32 bits, in dotted decimal

notation. Example: '192.168.10.01'.

• Int : An integer with an arbitrary length in

bits.

 4

The fields are defined as object attributes and directly

accessible by their names. The following example shows how

a new Ethernet packet is created and the destination MAC

address is set to “00:11:22:AA:BB:CC”:

pdu = PDUFormat()

pdu.destAddr = “00:11:22:AA:BB:CC”

It has to be noted that the second instruction is not a simple

assignment. Rather, a method is invoked (via the Python

property mechanism) that checks if the assigned value is a

correct MAC address and converts the address into the internal

binary format.

IV. THE EVENT SCHEDULER

Nessi is a discrete event simulator. The scheduler is the

engine of the simulator that uses a virtual clock to execute

operations at a scheduled time. The scheduler keeps an up-to-

date list with the different events that have been scheduled. An

event is defined by an execution time, a function to call and

additional arguments. Nessi therefore implements and

asynchronous programming model that does not allow for

blocking function calls (calls that may block for an arbitrary

time until the result is available). This differs from real-world

protocol implementations that often use blocking calls. For

instance, a protocol entity may call a function “receive” that

only returns when a new packet is available. In Nessi, as in

most discrete event simulators, this behavior has to be

modeled via callback functions. The advantage of Nessi’s

execution model is that it does not require threads, which

considerably speeds up simulations and avoids problems due

to non-reentrant functions.

V. SOURCE AND SINK

A traffic source generates data packets according to a size

and an interarrival distribution. As show in Figure 4, a

protocol entity may be registered with the source via the

function registerLowerLayer. Each time the source generates a

new packet, it calls the ‘send’ methods of the registered

protocol entities. The protocol entities then perform the actions

to transmit the data across the network. At the receiver side, a

traffic sink may be registered with a protocol entity via the

function registerUpperLayer. When the protocol entity

receives a data packet it passes it the sink which may simply

discard the packet or perform more complicated operations.

Currently, four types of traffic sources are implemented:

• CBRSource : Generates data packets of fixed

length, at fixed interarrival times.

• PoissonSource : The packet size and the interarrival

times have exponential distributions.

• WebSource : This source simulate the traffic of http

connections with self-similar

behavior. It implements an empirical

ON-OFF model described in [4] and

[5]. The off periods have a length

according to a Pareto distribution.

The source transmits Web-pages with

a size according to a log-normal

distribution. During the transmission,

packets have a constant size and are

sent at constant rate. Self-similar

behavior is created via the

superposition of multiple connections.

• DLFlooder : Sends fixed-size data packets as fast

as the lower layers accept them.

VI. STATISTICS

An important element of every simulator is the computation

of the statistics, which comprises two main tasks: measure one

or more simulation parameter and compute the results based

on the time-series on these parameters. Nessi provides

different methods to measure simulations parameters:

• Explicit tracing: the simulation model contains

instructions that write the current value of a parameter

to a ‘trace collector’ each time the command is

executed. The instructions to trace a parameter are

therefore hard-coded into the simulation model.

• Sampling: a sampling function is executed in parallel

which the simulation and samples the value of a

parameter at different moments. Typically, a Poisson

sampling is used, in which the intervals between the

sampling moments are exponentially distributed. But

other distributions (e.g., periodic sample with constant

intervals) are possible.

• Variable tracing: the value of a variable is registered

each time it is changes.

Most simulations use sampling to measure simulation

parameters. The advantage is that the simulation model does

not contain any instructions for result generation. They are

added independently, e.g., in the simulation script. The same

simulation model can therefore be used for different simulation

experiments, without modifications.

Since Nessi is oriented toward education and the verification

of protocol behavior, it provides support to observe and

visualize the behavior of network protocols. This ‘activity

tracing’ records the time and type of the actions of different

protocol entities, which can be used to analyze and verify the

coordination of the actions each system takes. To give a simple

example, a sender can indicate the types of packets it sends,

and a receiver can indicate the actions take upon the receipt of

the different packets. This can be used the draw a sequence

diagram of the operations of the network. While the tracing of

activities is completely implemented, the visualization of the

operations in the form of sequence diagrams or ‘arrow

diagrams’ still has to be done.

In Nessi, all measured parameters are sent to a trace collector

which can be configured by the simulation script. The trace

collector can simply discard the values if not needed or

redirect them to a file or to the graphical user interface, for

interactive plotting, as shown in Figure 1.

 5

The graphical user interface can be configured during the

simulation run to add new statistics and to plot them as bar

charts or line charts during the simulation. Moreover, the main

window allows the user to change simulation parameters, like

the traffic intensity, and observe immediately the effects, e,g.,

the evolution of lost packets. This is meant to help the student

to gain a ‘feeling’ for the behavior of the network.

If the simulation parameters are written to a results file, they

can be used to compute statistically valid results like mean

values and confidence intervals. Python offers a very

comprehensive library (see Scientific Python [3]) with

mathematical operations in vector and matrix form, similar to

Matlab™.

VII. GRAPHICAL INTERFACE

Nessi can either be executed as a batch program, for

multiple simulation runs without user interaction, or as an

interactive simulator with a graphical user interface. The main

window of the simulator is shown in Figure 6. It allows the

user:

• To load simulation scripts.

• To run, stop, pause and restart the simulation.

• To slow down the simulation for interactive control

• To interactively modify simulation parameters via a

command line interface.

• To create graphics windows which interactively plot the

statistics.

Figure 6 - Main interface of Nessi for interactive simulations

Both the core simulation of Nessi and the graphical user

interface are portable. Nessi can thus be used under Windows,

Linux/Unix and MacOS, with a look-and-feel similar to the

actual platform.

Graphics windows allow the user to create sophisticated plots

via a point-and-click interface. Currently, bar plots and line

plot are implemented, as shown in Figure 1. The plots can be

saved in different formats at any time.

VIII. CONCLUSION

We have presented Nessi, a Python network simulator for

fast protocol development. Nessi is implemented in a scripting

language Python which makes it slower that simulators

implemted in C or even Java. However, the advantage of Nessi

is that simulation models can be developed in a fraction of the

time necessary with other simulations. Nessi therefore allows

students to create or modify models of network protocols with

minimal overhead and is thus perfectly suited for networking

laboratories or semester projects. Another possible application

of Nessi is to evaluate the performance and correctness of new

protocols. Simulation models in Python are less error prone

than implementations in C/C++ or Java. Moreover, even

though simulation times with Nessi are quite long, protocol

development is very fast, resulting in a total time for

development and simulation that is shorter than with other

simulators.

Nessi may be used as a batch simulator to perform multiple

simulations runs which write statistics to trace files. However,

Nessi excels as an interactive simulator that allows the user to

start, stop, pause and slow-down simulation, to modify

simulation parameters and to interactively plot the evolution of

simulation results.

Currently only relatively basic protocols are implemented in

Nessi, including ARQ protocols, CSMA protocols as well as

Ethernet on shared media. We are currently working on the

implementation or Wireless LAN 802.11, focusing especially

on Quality of Service mechanisms defined in 802.11e.

REFERENCES

[1] Ns-2, The Network Simulator. http://www.isi.edu/nsnam/ns.

[2] The Python Programming Language. http://www.python.org.

[3] SciPy – Scientific Tools for Python. http://www.scipy.org.

[4] P. Barford and M. Crovella, 'Generating representative web workloads

for network an server performance evaluation', Proc. 1998 ACM

SIGMETRIC Intl. Conf. On Measurement and Modeling of Computer

Systems, pp 151-160, July 1998.

[5] N. K. Shankaranarayanan, Zhimei Jian, and Partho Mishra, 'User-

Perceived Performance of Web-browsing and Interactive Data in HFC

Cable Access Networks.

