
ar
X

iv
:1

50
7.

07
71

6v
1 

 [c
s.

IT
]  

28
 J

ul
 2

01
5

A Hierarchical Rate Splitting Strategy for FDD
Massive MIMO under Imperfect CSIT

Mingbo Dai∗, Bruno Clerckx∗†, David Gesbert‡ and Giuseppe Caire§
∗Department of Electrical and Electronic Engineering, Imperial College London, UK

†School of Electrical Engineering, Korea University, Seoul, Korea
‡Mobile Communications Department, EURECOM, 06560 Sophia Antipolis, France

§Department of Telecommunication Systems, Technical University of Berlin, Berlin, Germany
Email:{m.dai13,b.clerckx}@imperial.ac.uk, david.gesbert@eurecom.fr and caire@tu-berlin.de

Abstract—In a multiuser MIMO broadcast channel, the rate
performance is affected by the multiuser interference when
the Channel State Information at the Transmitter (CSIT) is
imperfect. To tackle the interference problem, a Rate-Splitting
(RS) approach has been proposed recently, which splits one user’s
message into a common and a private part, and superimposes the
common message on top of the private messages. The common
message is drawn from a public codebook and should be decoded
by all users. In this paper, we propose a novel and general
framework, denoted as Hierarchical Rate Splitting (HRS), that
is particularly suited to FDD massive MIMO systems. HRS
simultaneously transmits private messages intended to each user
and two kinds of common messages that can be decoded by
all users and by a subset of users, respectively. We analyse the
asymptotic sum rate of HRS under imperfect CSIT. A closed-
form power allocation is derived which provides insights into the
effects of system parameters. Finally, simulation resultsvalidate
the significant sum rate gain of HRS over various baselines.1

Index Terms—Rate Splitting, Imperfect CSIT, Massive MIMO.

I. INTRODUCTION

In MIMO wireless networks, the rate performance is af-
fected by the multiuser interference when the Channel State
Information at the Transmitter (CSIT) is imperfect [1]. To
tackle the detrimental effect of multiuser interference, aRate-
Splitting (RS) approach was recently proposed [2, Lemma 2].
Specifically, we can split one selected user’s message (e.g.,
user1) into a common part(sc) and a private part(s1), where
the common message is drawn from a public codebook and
should be decoded by all users with zero error probability.
The private message(s1) and the private messages(sk|k 6=1)
intended to other users are transmitted via Zero-Forcing (ZF)
beamforming using a fraction of the total power while the
common message(sc) is superimposed on top of the ZF-
precoded private messages using the residual power. At the
receiver side, the common message is decoded by treating all
the private messages as noise. After removing the decoded
common message from the received signal by Successive
Interference Cancellation (SIC), each user decodes their own
private messages. When the CSIT error varianceτ2 decays
with signal-to-noise ratio (P ) asO(P−δ) for some constant

1This work was partially supported by the Seventh Framework Programme
for Research of the European Commission under grant number HARP-318489.

0 ≤ δ < 1, the sum DoF of RS is1 + δ, which is strictly
larger than the2δ that is achieved with conventional multiuser
broadcasting strategies (e.g., ZF).

At finite Signal-to-Noise-Ratio (SNR), by optimizing the
transmit beamforming and power allocation parameters for
both RS and conventional multiuser broadcasting (BC)
scheme, the RS approach shows significant sum rate gain
over the conventional BC [3]. In the context of a two-user
MISO broadcast channel with quantized CSIT, [4] has also
confirmed the rate benefits provided by the transmission of a
common message in a RS strategy over conventional multiuser
BC schemes. Both the optimization method proposed in [3]
and the analysis in [4] are hard to extend to multiuser
massive MIMO systems, where attaining accurate CSIT gets
particularly challenging as the number of transmit antennas
increases.

When it comes to designing precoders on the basis of
reduced CSI feedback, a two-tier precoder relying on both
short- and long-term CSIT has been proposed by several
authors [5]–[8]. Consider a single-cell scenario, when users
are clustered into groups according to the similarity of their
channel covariance matrices, [5] proposed a two-tier pre-
coding approach, where the outer precoder controls inter-
group interference based on long-term CSIT (the channel
covariance matrices) while the inner precoder controls intra-
group interference based on short-term effective channel (the
channel cascaded by the outer precoder) with a reduced-
dimension. The finding of [5] has been generalized into multi-
polarized system [6]. The work [7] proposed a signal-to-
leakage-plus-noise ratio (SLNR)-based outer precoder design
and [8] developed a low complexity iterative algorithm to
compute the outer precoder. However, the rate performance
of the aforementioned two-tier precoding schemes are highly
degraded by two limiting factors: inter-group and intra-group
interference.

To address these issues in the context of reduced CSI
feedback, we propose a novel and general framework, called
Hierarchical-Rate-Splitting (HRS), that is particularlysuited to
FDD massive MIMO systems. By clustering users into groups
based on their channel second-order statistics, the proposed
HRS scheme exploits the benefits of spatially correlated chan-
nels and the two-tier precoding structure. Specifically, HRS is

http://arxiv.org/abs/1507.07716v1


partitioned into an inner RS and an outer RS. Let us imagine
each group as a single user, an outer RS tackles the inter-group
interference by packing part of one selected user’s message
into a common codeword that can be decoded by all users.
In the presence of multiple users per group, an inner RS
copes with the intra-group interference by packing part of one
selected user’s message into a common codeword that can be
decoded by users in that group. Note that the achievable rateof
the common message is the minimum rate among users that
decode this common message. In contrast to RS where the
only one common message should be decoded by all users,
HRS offers more benefits by transmitting multiple common
messages while the achievable rate of each inner common
message is the minimum rate among a smaller number of
users.

We analyse the proposed HRS scheme in the large-scale
array regime under imperfect CSIT. We also compute a closed-
form adaptive power allocation for each message, by which
HRS exhibits robustness w.r.t. CSIT error and eigen-subspaces
overlap. Moreover, we quantify the sum rate gain of HRS
over conventional multiuser broadcasting scheme with two-
tier precoder, which offers insights into the effect of system
parameters, e.g., SNR, CSIT quality, spatial correlation,etc.

Organization: Section II introduces the system model. In
Section III, we develop the HRS transmission scheme and
elaborate the precoder design, asymptotic rate performance
and power allocation. Section IV presents the numerical results
and Section V concludes the paper.Notations: Bold lower and
upper case letters denote vectors and matrices, respectively.
The notations[X]i, [X]i,j ,X

T ,XH , tr(X), E(X) denote thei-
th column, the entry in thei-th row and j-th column, the
transpose, conjugate transpose, trace and expectation of a
matrix X. ‖x‖ represents the 2-norm of a vector.

II. SYSTEM MODEL

Consider a single cell FDD downlink system where the BS
equipped withM antennas transmits messages toK(≤ M)
single-antenna users over a spatially correlated Rayleigh-
fading channel. Consider a geometrical one-ring scattering
model [1], the correlation between the channel coefficientsof
antennas1 ≤ i, j ≤M is given by

[Rk]i,j =
1

2∆k

∫ θk+∆k

θk−∆k

e−j
2π
λ
ψ(α)(ri−rj )dα, (1)

whereθk is the azimuth angle of userk with respect to the
orientation perpendicular to the array axis.∆k indicates the
angular spread of departure to userk. ψ(α) = [cos(α), sin(α)]
is the wave vector for a planar wave impinging with the
angle of α, λ is the wavelength andri = [xi, yi]

T is
the position vector of thei-th antenna. With the Karhunen-
Loeve model, the downlink channel of userk hk ∈ CM

is expressed ashk = UkΛ
1/2
k gk, whereΛk ∈ C

rk×rk is a
diagonal matrix containing the non-zero eigenvalues of the
spatial correlation matrixRk, andUk ∈ C

M×rk consists of the
associated eigenvectors. The slowly-varying channel statistics
Rk can be accurately obtained via a rate-limited backhaul link
or via uplink-downlink reciprocity and is assumed perfectly
known to both BS and users.gk has independent and identical
distributed (i.i.d.) CN (0, 1) entries. For each channel use,

linear precoding is employed at the BS to support simultaneous
downlink transmissions toK users. The received signals can
be expressed as

y = H
H
x+ n, (2)

wherex ∈ CM is the linearly precoded signal vector sub-
ject to the transmit power constraintE[||x||2] ≤ P , H =
[h1, · · · ,hK ] is the downlink channel matrix,n ∼ CN (0, IK)
is the additive white Gaussian noise (AWGN) vector and
y ∈ CK is the received signal vector at theK users.

III. HIERARCHICAL RATE SPLITTING

A. Transmission Scheme

Recently, multiuser broadcasting schemes with a two-tier
precoder for FDD massive MIMO systems have been proposed
to lessen CSIT requirement by exploiting the knowledge of
spatial correlation matrix at the transmitter [5]–[8]. Since the
human activity is usually confined in a small region, locations
of users tend to be spatially clustered. We make the same
assumption as [5] thatK users are partitioned intoG groups
(e.g., via K-mean clustering) and that users in each group share
the same spatial correlation matrixRg = UgΛgU

H
g with rank

rg. We let Kg denote the number of users in groupg such
that

∑G
g=1 Kg = K. The downlink channel of theg-th group

is expressed asHg = [hg1, · · · ,hgKg ] = UgΛ
1/2
g Gg, where

the elements ofGg are distributed withCN (0, 1). Then, the
transmitted signal of conventional two-tier precoded (TTP)
broadcasting system is expressed as

x =
G
∑

g=1

BgWgPg sg, (3)

wheresg ∈ C
Kg represents the data streams for theg-th group

users. The outer precoderBg ∈ C
M×bg is based on the long-

term CSIT while the inner precoderWg ∈ C
bg×Kg depends on

the short-term effective channel̄Hg = BH
g Hg. Pg ∈ C

Kg×Kg

is the diagonal power allocation matrix withPg =
√

P/K · I.
Then, the received signal of thek-th user in g-th group is given
by ygk =

√

Pgkh
H
gkBgwgksgk +

∑Kg

j 6=k

√

Pgjh
H
gkBgwgjsgj +

∑G
l 6=g hHgkBlWlPl sl + ngk, wherewgk = [Wg ]k. To eliminate

the inter-group interference, the outer precoder is designed in
the nullspace of the eigen-subspace spanned by the dominant
eigenvectors of the other groups’ spatial correlation matrices.
However, the power attached to the weak eigenmodes may
leak out to other groups and create inter-group interference.
Besides, the intra-group interference cannot be fully be re-
moved due to imperfect CSIT (e.g., limited feedback). To
eliminate the interference-limited behavior at high SNR, one
can optimize the groups, the users in each group, etc, as
a function of the total transmit power and CSIT quality. In
general, such an optimization problem is quite complex.

By generalizing the philosophy of RS, we propose a HRS
scheme that consists of an outer RS and an inner RS. By
treating each group as a single user, an outer RS would tackle
the inter-group interference by packing part of one user’s
message into a common codeword that can be decoded by
all users. Likewise, an inner RS would cope with the intra-
group interference by packing part of one user’s message into
a common codeword that can be decoded by multiple users
in that group. The common messages are superimposed over



the private messages and the transmitted signal of HRS can
be written as

x=
√
Pocwocsoc+

G
∑

g=1

Bg

(

√

Pic,gwic,gsic,g+
√

PgkWgsg

)

, (4)

where sic,g denotes the inner common message intended
to g-th group whilesoc denotes the outer common message
intended to all users.wic,g and woc are the corresponding
unit norm precoding vectors. A uniform power allocation is
performed for the private messages and we mainly focus
on how to allocate power between the common and private
messages. Hence, letβ ∈ (0, 1] represent the fraction of the
total power that is allocated to the group (inner common and
private) messages. Within each group,α ∈ (0, 1] denotes the
fraction of power given to the private messages. Then, the
power allocated to each message is jointly determined byα
andβ, i.e.,Poc = P (1−β), Pic,g = Pβ

G
(1−α), Pgk = Pβ

G
α
Kg

.
The decoding procedure is performed as follows. Each user
sequentially decodessoc and sic,g, then remove them from
the received signal by SIC. The private message intended to
each user can be independently decoded by treating all other
private messages as noise. By plugging (4) into (2), the SINRs
of the common messages and the private message of userk are

written asγocgk =
Poc|h

H
gkwoc|

2

INgk
, γicgk =

Pic,g |h
H
gkBgwic,g |

2

INgk−Pic,g |hH
gk

Bgwic,g |2
,

γpgk =
Pgk |hH

gkBgwgk|
2

INgk−Pic,g |hH
gk

Bgwic,g |2−Pgk |hH
gk

Bgwgk|2
, whereINgk

=
∑G
l=1 Pic,l |hHgkBlwic,l|2 +

∑G
l=1

∑Kg

j=1 Plj |hHgkBlwlj |2 + 1.
The achievable rate of the outer common message is given
by RHRS

oc = log2(1 + γoc) with γoc = min{γocgk, ∀g, k}. The
sum rate of the inner common messages is given byRHRS

ic =∑G
g=1R

HRS
ic,g =

∑G
g=1 log2(1+γ

ic
g ) with γicg = min{γicgk, ∀k}.

The sum rate of the private messages is given asRHRS
p =

∑G

g=1

∑Kg

k=1 R
HRS
gk =

∑G

g=1

∑Kg

k=1 log2(1 + γpgk). Then, the
sum rate of HRS isRHRS

sum = RHRS
oc +RHRS

ic +RHRS
p .

B. Precoder Design

HRS has only access to the channel covariance matrices
and the effective channel estimatesˆ̄Hg = BH

g Ĥg of dimension
bg × Kg, whereĤg = UgΛ

1/2
g Ĝg = UgΛ

1/2
g (

√

1− τ 2
g Gg +

τgZg) has dimension ofM × Kg. Based on long-term
CSIT, the outer precoderBg is designed to eliminate the
leakage to other groups. Denoting the number of dominant
(most significant) eigenvalues ofRg by rdg and collecting
the associated eigenvectors asUd

g ∈ C
M×rdg , we define

U−g = [Ud
1, · · · ,Ud

g−1,U
d
g+1, · · · ,Ud

G] ∈ C
M×

∑
l 6=g r

d
l . Ac-

cording to the singular value decomposition (SVD), we denote
by E

(0)
−g the left eigenvectors ofU−g corresponding to the

(M−
∑

l 6=g r
d
l ) vanishing singular values. To reduce the inter-

group interference while enhancing the desired signal power,
Bg is designed by concatenatingE(0)

−g with the dominant
eigenmodes of the covariance matrix of the projected channel
H̃g = (E

(0)
−g)

HHg. The covariance matrix is decomposed as
R̃g = (E

(0)
−g)

HUgΛgU
H
g E

(0)
−g = FgΛ̃gF

H
g , whereFg includes

the eigenvectors ofR̃g. Denote F
(1)
g as the dominantbg

eigenmodes and thenBg is given byBg = E
(0)
−gF

(1)
g .

The outer precoderBg can be interpreted as being the
bg dominant eigenmodes that are orthogonal to the subspace
spanned by the dominant eigen-space of groupsl 6= g. bg
determines the dimension of the effective channel and should
satisfy Kg ≤ bg ≤ M − ∑

l 6=g r
d
l and bg ≤ rdg . rdg(≤ rg) is a

design parameter with a sum rank constraint
∑G
g=1 r

d
g ≤ M .

The inner precoderWg can be designed as RZF, i.e.,Wg =

ξg
ˆ̄Mg

ˆ̄Hg, where ˆ̄Mg = ( ˆ̄Hg
ˆ̄HH
g + bg ε Ibg )

−1. By following
[5], [6], [9], the regularization parameter is set asε = K/bP
which is equivalent to the MMSE linear filter.b is give by
b =

∑G

g=1 bg. Then, the power normalization factor isξ2g =

Kg/tr( ˆ̄HH
g

ˆ̄MH
g BH

g Bg
ˆ̄Mg

ˆ̄Hg).
The precoderwoc ∈ CM aims to maximize the achievable

rate of the outer common messagelog2(1 + γoc) based on
the reduced-dimensional channel estimateˆ̄Hg ∈ C

bg×Kg , ∀g.
However, there exists a dimension mismatch betweenwoc and
ˆ̄Hg. To address this problem, we first constructH̃g = Bg

ˆ̄Hg ∈
C
M×Kg and H̃ = [H̃1, · · · , H̃G] ∈ C

M×K . From [9, Lemma
5], the columns ofH̃ become orthogonal asM → ∞ and we
are able to design the precoderwoc as a linear combination of
h̃k = [H̃]k, which can be interpreted as a weighted matched
beamforming (MBF). We simply employ equally weighted
MBF in order to obtain a tractable and insightful asymptotic
sum rate expression in the sequel.

On the other hand, the optimization of the multiuser transmit
precoding is generally a NP-hard problem. Thus, the optimal
precoder of the inner common messagewic,g that maximizes
RHRS

ic cannot be obtained efficiently. However, when the outer
precoder fully eliminates the inter-group interference,wic,g

can be equivalently designed to maximizeRHRS
ic,g within each

group. Following a similar design philosophy ofwoc, we here
designwic,g as an equally weighted MBF of the effective
channel ˆ̄Hg. Under further assumption thatK → ∞, we
note that ˆ̄Mg of the inner precoderWg(= ξg ˆ̄Mg

ˆ̄Hg) can
be approximated by an identity matrix. Hence,wic,g can
be equivalently designed as an equally weighted MBF of
Wg, i.e.,wic,g = ζic,g ˆ̄qg, where ˆ̄qg = 1

Kg

∑Kg

k=1 wgk and
ζ2ic,g = 1/ˆ̄qH

g BH
g Bg ˆ̄qg.

C. Asymptotic Rate Analysis

For simplicity of exposition, we assume thatτg = τ,Kg =
K̄, bg = b̄, ∀g. We shall omit the proof of the following
theorem, where the asymptotic SINRs of HRS can be directly
established based on the approach of [9].

Theorem 1: As M,K, b→ ∞ with fixed ratiosK
M

and b
M

,
the SINRs of HRS asymptotically converge as

γocgk − γoc,◦g → 0, γicgk − γic,◦g → 0, γpgk − γp,◦g → 0, (5)

almost surely, where

γoc,◦g =
κgP (1− β)(1− τ 2

g )

β
(
∑

l 6=g(ξ
◦
l )

2Υ◦
gl +

(

ξ◦g
)2
Υ◦
ggΩg +

P
K

(

ξ◦g
)2
Φg

)

+ 1
(6)

γic,◦g =
β(1− α)

(

ξ◦g
)2 (

Υ◦
ggΩg +

P
K
Φg

)

β
∑

l 6=g (ξ
◦
l )

2 Υ◦
gl + βα

(

ξ◦g
)2
(Υ◦

ggΩg +
P
K
Φg) + 1

, (7)



γp,◦g =
βα P

K

(

ξ◦g
)2
Φg

β
∑

l 6=g (ξ
◦
l )

2 Υ◦
gl + βα

(

ξ◦g
)2
Υ◦
ggΩg + 1

, (8)

with (ξ◦g)
2 = K̄

Ψ◦
g
, Ψ◦

g = K̄
b̄

m′
g

(1+m◦
g)

2 , Φg =
(1−τ2g )(m◦

g)
2

(1+m◦
g)

2 , Υ◦
gl =

P
G

1
b̄

m′
gl

(1+m◦
l
)2
, κg =

Tr(R̄gg)
2

K̄
∑

G
l=1

Tr(R̄ll)
, R̄gl = BH

l RgBl, ∀g, l, Ωg =

K̄−1
K̄

(1−τ2g (1−(1+m◦
g)

2))

(1+m◦
g)

2 , and

m′
g =

1
b̄
Tr(R̄ggTgB

H
g BgTg)

1−
K̄
b̄

Tr(R̄ggTgR̄ggTg)

b̄ (1+m◦
g)

2

,m′
gl =

1
b̄
Tr(R̄llTlR̄glTl)

1−
K̄
b̄

Tr(R̄llTlR̄llTl)

b̄ (1+m◦
l
)2

,

wherem◦
g andTg the unique solutions of the following:m◦

g =
1
b̄
Tr(R̄ggTg), Tg = ( K̄

b̄

R̄gg

1+m◦
g
+ ε Ib̄)

−1.

It follows from (5) that(RHRSp −RHRS,◦p )/K
M→∞−→ 0 where

RHRS,◦p =
∑G
g=1 K̄ log2(1 + γp,◦g ), (RHRSic −RHRS,◦ic )/G

M→∞−→
0 where RHRS,◦ic =

∑G
g=1 log2(1 + γic,◦g ), and thatRHRSoc −

RHRS,◦oc
M→∞−→ 0 whereRHRS,◦oc = log2(1 + γoc,◦) with γoc,◦ =

min{γoc,◦g ,∀g}. Then, an approximationRHRS,◦sum of the sum rate
of HRS is obtained asRHRS,◦sum = RHRS,◦oc +RHRS,◦ic +RHRS,◦p .

Likewise, the asymptotic sum rate of the conventional TTP
in (3) converges as(RTTPsum − RTTP,◦sum )/K

M→∞−→ 0, where
RTTP,◦sum =

∑G
g=1 K̄ log2(1 + γTTP,◦g ) and

γTTP,◦g =
P
K

(

ξ◦g
)2
Φg

∑

l 6=g (ξ
◦
l )

2 Υ◦
gl +

(

ξ◦g
)2
Υ◦
ggΩg + 1

, (9)

and the first term in the denominator of (9) containing
Υ◦
gl(R̄gl) denotes inter-group interference while the second

term with Ωg(τ
2) refers to intra-group interference. The

sum rate gain of HRS over conventional two-tier precod-
ing BC is quantified by∆RHRS,◦ = RHRS,◦oc + RHRS,◦ic +
∑G
g=1 K̄

(

log2

(

1 + γp,◦g
)

− log2

(

1 + γTTP,◦g

))

.

D. Power Allocation
Sinceα andβ are coupled in the SINR expressions (6)∼

(8), a closed-form and optimal solution that maximizes the
sum rate of HRSRHRS,◦sum cannot be obtained in general. In
this paper, we compute a closed-form suboptimal but effective
power allocation method, by which the private messages of
HRS are allocated a fraction of the total power and achieve
nearly the same sum rate as the conventional broadcasting
scheme with full power, i.e.,RTTP,◦sum ≈ RHRS,◦p . Then, the
remaining power is utilized to transmit the common messages
and therefore enhance performance. We can write

γp,◦g ≤ γTTP,◦g , ∀g, (10)

for ∀α, β ∈ (0, 1]. Consider two extreme cases: weak and
strong inter-group interference. Based on (9), the notation of
‘weak’ implies that the inter-group interference is sufficiently
small and therefore can be negligible, i.e.,Υ◦

gl ≈ 0, ∀g 6= l. The
sum rateRTTP,◦sum is limited by the intra-group interference due
to imperfect CSIT. On the contrary, the notation of ‘strong’
means that the inter-group interference dominates the rate
performance, i.e.,

∑

l 6=g (ξ
◦
l )

2 Υ◦
gl >

(

ξ◦g
)2
Υ◦
gg.

Proposition 1: The equality of (10) nearly holds when the
power splitting ratiosα, β are given as

β = 1, α = min
{ K̄

P · ΓIG
, 1

}

(11)

in the weak inter-group interference regime, and as

β = min
{ K

P · ΓOG + K̄
, 1

}

, α = 1 (12)

in the strong inter-group interference regime, where

ΓOG = min
g

{

∑

l 6=g

1

G

tr
(

R̄glR̄
−1
ll

)

tr
(

R̄−1
ll

)

}

, (13)

ΓIG = min
g

{

τ 2

G

b̄

tr
(

R̄−1
gg

)

K̄ − 1

K̄

}

. (14)

Proof: See Appendix B in [10].
When the inter-group interference is negligible, HRS be-

comes a set of parallel RS in each group, i.e., the outer
common message is unnecessary. By contrast, when the inter-
group interference is the dominant degrading factor, the inner
common message transmission as well as the private messages
transmission are inter-group interference limited. In this case,
HRS boils down to RS (with reduced-dimensional CSIT). For
the general inter-group interference case, finding a closed-
form solution of α, β that guarantees a sum rate gain of
HRS over two-tier precoding BC is challenging. Nevertheless,
motivated by the extreme cases in Proposition 1, we propose
the following power allocation strategy.α is determined by
(11) while β comes from (12). Then,α is reset to 1 ifβ < 1
in order to guarantee the equality in (10). Simulation results
show that the proposed power allocation strategy works wellin
any inter-group interference regime. Thus, the BS can readily
compute the power allocation based on long-term CSIT.

From (11) and (12), we haveα = β = 1 at low SNR
and HRS becomes the conventional two-tier precoding BC,
leading to ∆RHRS,◦ = 0. Namely, the effect of imperfect
CSIT/overlapping eigen-subspaces on the sum rate of broad-
casting private messages is negligible and thereby common
message(s) is not needed. On the other hand, the rate per-
formance of the conventional two-tier precoding BC schemes
saturates at high SNR while HRS exploits a fraction of the total
power (α < 1 or β < 1) to transmit the common message(s)
and enhance the sum rate.

Corollary 1: With power allocation of Proposition 3, the
sum rate gain∆RHRS,◦ at high SNR is lower bounded as:

∆RHRS,◦ ≥
G
∑

g=1

(

log2(1 + γic,◦g )− log2(e)
)

, (15)

in the weak inter-group interference regime, and as

∆RHRS,◦ ≥ log2(1 + γoc,◦)− log2(e), (16)

in the strong inter-group interference regime.
Proof: By plugging (11) and (12) into∆RHRS,◦, we upper

boundRTTP,◦sum −RHRS,◦p at high SNR and obtain (15) and (16).
More details are given in Appendix C of [10].

Remark 1: The following are some physical interpretations
of Proposition 1 and Corollary 1.

Power allocation to the private and common messages:
The intra-group power splitting ratio(α) decreases asτ2 in-
creases. Namely, in order to alleviate intra-group interference,



we should allocate less power to the private messages as the
CSIT quality gets worse(τ2 → 1). Similarly, the inter-group
power splitting ratio(β) drops as the inter-group interference
termΥ◦

gl, g 6= l becomes larger. From (11)∼ (12), the power
distributed to the privates messages is an invariant ofP at

high SNR:
∑G
g=1

∑K̄
k=1 Pgk = Pαβ =

{

K
ΓOG

, if β < 1
K̄

ΓIG
, otherwise

,

which places the sum rate of private messages back to the non-
interference-limited regime. Meanwhile, the power allocated to
the common messages linearly increases withP at high SNR.

Sum rate gain: HRS exploits the extra power beyond
saturation of conventional broadcasting schemes to transmit
the common messages, leading to a sum rate that increases
with the available transmit power. In the weak inter-group
interference regime, HRS becomes a set of parallel inner RS.
Based on (15), the sum rate gain∆RHRS,◦ increases byG
bps/Hz for each 3 dB power increment at high SNR. By
contrast, HRS boils down to RS in the strong inter-group
interference regime and∆RHRS,◦ increases by1 bps/Hz for
each 3 dB power increment at high SNR.

IV. SIMULATION RESULTS

Numerical results are provided to validate the effective-
ness of RS and HRS. Uniform circular array (UCA) with
M = 100 isotropic antennas are equipped at the BS. Consider
the transmit correlation model in (1), the antenna elements
are equally spaced on a circle of radiusλD, for D =

0.5/
√

(1− cos(2π/M))2 + sin(2π/M)2, leading to a minimum
distanceλ/2 between any two antennas.

ConsiderK = 12 users equally clustered intoG = 4
groups. We compare the proposed HRS scheme with the
following baselines:Baseline 1 (BC with two-tier precoder
[5]), Baseline 2 (Baseline 1 with user scheduling at the
group level): Within each group, a single user with the largest
effective channel gain is selected and the precoder of the
private message intended to each user is MBF.Baseline 3
(Baseline 1 with user scheduling at the system level): User
scheduling is performed at the system level such that the best
user among all is selected. Two types of HRS are investigated:
exhaustive search (HRS_EXS) and closed-form (HRS_CLF).
Specifically, HRS_EXS performs a simulation-based exhaus-
tive search with step 0.01 for the best power splitting ratios
α andβ. HRS_CLF allocates power by following the closed-
form solution in Proposition 1.

Various CSIT qualities have been simulated andτ2 = 0.4 is
taken as examples. For the outer precoder design, we setb̄ =
15 such thatK̄ ≤ b̄ ≤M−(G−1)rd andb̄ ≤ rd, whererd =
20 includes the dominant eigenvalues ofRg, ∀ g. To verify
the effectiveness of the proposed HRS strategy, we consider
two scenarios with disjoint and overlapping eigen-subspaces,
respectively. As an example, we setθg = −π

2 + π
3 (g− 1) and

∆g = ∆ = π
8 , ∀ g corresponding to disjoint eigen-subspaces

([θg −∆g, θg + ∆g]
⋂
[θl −∆l, θl + ∆l] = ∅, ∀ l 6= g) while

∆g = ∆ = π
3 , ∀ g leading to eigen-subspaces overlap.

The benefits of HRS under imperfect CSIT are evaluated.
With disjoint eigen-subspaces (negligible inter-group interfer-
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Fig. 1. HRS vs. various baselines under imperfect CSIT. (a) disjoint eigen-
subspace. (b) overlapping eigen-subspace.

ence), Fig. 1(a) shows that conventional multiuser broadcasting
scheme with two-tier precoder (Baseline 1) saturates at high
SNR due to intra-group interference while user scheduling
enables a multiplexing gain of 4 (Baseline 2) and 1 (Baseline
3), respectively. According to Proposition 1, HRS becomes a
set of parallel inner RS. We observe that the proposed HRS
scheme exhibits substantial rate gain over various baselines.
For instance, the sum rate gain of HRS∆RHRS over two-tier
precoding BC at SNR = 30 dB is 15.5 bps/Hz. With severely
overlapping eigen-subspaces (strong inter-group interference),
HRS boils down to RS (with reduced-dimensional CSIT)
at the system level according to Proposition 1, i.e., inner
common messages are not transmitted. Fig. 1(b) reveals that
HRS outperforms two-tier precoding BC with/without user
scheduling. The sum rate enhancement of HRS over two-tier
precoding BC at SNR = 30 dB is 1.5 bps/Hz.

Interestingly, in both settings of Fig. 1(a) and Fig. 1(b),
the closed-form power allocation achieves almost the same
sum rate as that of a simulation-based exhaustive search. This
verifies the effectiveness of the power allocation strategyin
Proposition 1. In Fig. 1(a) and Fig. 1(b), respectively, we
observe that the sum rate gain∆RHRS of HRS over two-tier
precoding BC increases by nearlyG and 1 bps/Hz for any 3 dB
increment of power at high SNR. This observation verifies the
discussion of Remark 1. In a nutshell, HRS exhibits robustness
w.r.t. CSIT error and eigen-subspaces overlap.



V. CONCLUSION

Due to imperfect CSIT, the rate performance of conventional
multiuser broadcasting schemes is severely degraded. To tackle
the multiuser interference, we proposed a novel Hierarchical
Rate Splitting strategy which exploits the channel second-order
statistics and a two-tier precoding structure. Particularly, on
top of the private messages, HRS transmits an outer common
message and multiple inner common messages that can be
decoded by all users and a subset of users, respectively. The
outer common message tackles the inter-group interference
due to overlapping eigen-subspaces while the inner common
messages helps with mitigating the intra-group interference
due to imperfect CSIT. Simulation results showed that the
proposed HRS strategy achieves significant sum rate gain over
the conventional broadcasting schemes with two-tier precoder
and HRS exhibit robustness w.r.t. CSIT error and eigen-
subspaces overlaps.
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