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Abstract—This paper aims to find patterns of knowledge from
physical layer data coming from Heterogeneous Long Term
Evolution (LTE) networks. We discuss how the collected data
is employed in such a manner that improves Minimization of
Drive Tests (MDT) functionality in LTE networks. In particular
we aim to predict Quality of Service (QoS) expressed in terms
of throughput of the User Datagram Protocol (UDP) traffic flow.
We propose regression models to estimate QoS, by extrapolating
information independently of the user’s physical location. In
particular our approach allows to estimate the QoS in any
location, based on measurements collected at anytime in the
past, or anywhere in the network. This will allow to significantly
reduce costs of future network deployments, even in complex
and heterogeneous scenarios, such as those foreseen in stadiums,
events, etc. We identify three feasible regression models, and we
compare results in terms of prediction accuracy.

I. INTRODUCTION

Minimization of human intervention in cellular networks

is achieved through the implementation of Self-Organizing

Network (SON)s [1]. This concept has been introduced by

3rd Generation Partnership Project (3GPP) in Release 8 and

it has been expanding across subsequent releases. The main

objective of SON is to reduce the costs associated with

network operations, by diminishing human involvement, while

enhancing network performance, in terms of network capacity,

coverage and service quality. One of the most important SON

use cases identified by [1] is the MDT. MDT enables operators

to collect User Equipments (UEs) measurements together

with location information, if available, with the purpose of

optimizing network management, while reducing operational

effects and maintenance costs. This feature has been intro-

duced by 3GPP since Release 10, among the targets there

are the standardization of solutions for coverage optimization,

mobility, capacity optimization, parametrization of common

channels, and QoS verification [2]. Since operators are also

interested in estimating QoS performance, in Release 11,

MDT functionality has been enhanced to properly dimension

and plan the network by collecting measurements indicating

throughput and connectivity issues [3].

The problem of QoS prediction, estimation and verification

has been studied in the literature in [4][5]. Here, the authors

address the MDT QoS verification use case by identifying and
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estimating different KPIs and correlating them with common

nodes measurements, to establish whether a UE is satisfied

with the received QoS. Other works on QoS prediction focus

on WiFi and mobile networks in general [6] [7]. We observe

that the works available in literature cover only traditional

macrocell scenarios and do not focus on more complex multi

layer heterogeneous networks. In addition, available solutions

in LTE networks mainly focus on the use case of QoS

verification, trying to estimate the QoS perceived by the users

in the network, without having to monitor network state and

performances through expensive drive tests.

In this paper we propose to move forward, and we propose

an approach that not only is able to verify the QoS level expe-

rienced by the users, through physical layer measurements of

the UEs, but it is also able to predict it based on measurements

collected in different moments in time, and from different

regions of the heterogeneous network. We propose then to

make predictions independently of the physical location, in

order to exploit the experience gained in other sectors of

the network, to properly dimension and deploy heterogeneous

nodes. Target use cases could be the future deployment of

heterogeneous nodes, the construction of new infrastructures,

e.g., new highways, railways, buildings etc., the satisfaction of

customer’s complaints, estimation for extraordinary deploy-

ments, e.g., stadiums, events, etc. This approach promises

high reduction in Operational Expenditure (OPEX) according

to MDT philosophy. Without loss of generality, we focus

on the throughput as a metric to be predicted, but other

interesting indicators could also be considered following the

same approach, like the Physical Resource Block (PRB)/
Megabit (MB), as it is proposed in [8] by AT&T.

For our purposes, in this paper we propose to use Supervised

Learning (SL) solutions, which are Machine Learning (ML)

techniques very useful to identify relations between input and

output variables [9]. Our problem is a regression problem,

since we want to analyze the relationship between a continuous

dependent variable (throughput), and more independent vari-

ables (UE measurements). Many regression techniques have

been developed in the SL literature, and criteria to select the

most appropriate method include aspects such as the kind

of relation that exists between the input and the output, or

between the considered features, the complexity, the dimension

of the dataset, the ability to separate the information from the

noise, the training speed, the prediction speed, the accuracy



in the prediction, etc. It is very difficult to predict the kind of

dependency between physical layer measurements in a LTE

heterogeneous network and the performances that may derive

from them. This is why, for this preliminary study, we focus

on two families of regression models, linear and nonlinear

regression models [9], and we select the most representative

approaches from these families, prioritizing criteria such as the

low complexity and the high accuracy: (1) K-Nearest Neigh-

bors (KNN), (2) Generalized Linear Models (GLM), and (3)

Support Vector Machines (SVMs). We perform an empirical

comparison of these algorithms and we analyze results from

these three approaches observing the impact on the prediction

of the different kinds and amounts of UE measurements.

We benchmark our approach to a physical distance based

prediction, and to the Kriging spatial interpolation technique

[10].

The outline of the paper is organized as follows. Section II

introduces the considered SL algorithms. Section III describes

the simulation framework set-up, together with the procedure

we followed to collect and prepare the data. Section IV

presents meaningful simulation results. Finally, Section V

summarizes the conclusion.

II. SUPERVISED LEARNING

SL is a Machine learning technique which takes training

data, organized into input and desired output, to develop a

prediction model, by inferring a function f : x → y, returning

the predicted output y. The input space is represented by

a n-dimensional input vector x = (x(1), . . . , x(n))T ∈ Rn.

Each dimension is an input variable. In addition a training set

involves m training samples ((x1, y1), . . . , (xm, ym)). Each

sample consists of an input vector xi, and a corresponding

output yi. Hence x
(j)
i is the value of the input variable x(j)

in training sample i, and the error is usually computed via

yi − yi.

In this paper we focus on regression analysis, i.e., yi is

continuous in nature. It is hard to define the relationship that

exists between input and output variables in our regression

problem, as in the complex heterogeneous cellular network,

the relationship between physical layer measurements and

QoS perceived is very complicated, and affected by random

propagation effects, as well as multiple transmission, com-

munication and networking aspects. We empirically evaluate

different representative models, belonging to the family of

linear and nonlinear regression, prioritizing aspects in this

selection such as the low complexity, the high accuracy and

the speed of training and predicting. On the one hand, linear

models are adequate when a linear trend exists in the data,

they can be adapted also for nonlinear relations, but with some

limitations. On the other hand, nonlinear approaches, do not

require any prior model of the nonlinearity. We focus on three

representative schemes from these families [9]:

A. K-Nearest Neighbors

KNN is a nonlinear method where the input consists of the

k closest training samples in the input space. The predicted

output is the average of the values of its k nearest neighbors.

A commonly used distance metric for continuous variables is

Euclidean distance. The KNN method has the advantage of

being easy to interpret, fast in training, and the amount of

parameter tuning is minimal. However, the accuracy of the

prediction is generally limited.

B. Generalized Linear Model

The linear model describes a linear relationship between

the output and one or more input variables, and where the

approximation function hθ maps from x to y as follows,

y = hθ(x) = θ0 + θ1x
(1) + . . .+ θnx

(n) (1)

where θi are the unknown parameter.

Assuming that we only have one input variable, the idea is to

choose θ0, θ1 so that hθ(x) minimizes the following function,

min
θ0,θ1

J(θ0, θ1) (2)

where J(θ0, θ1) is the cost function, and is defined as,

J(θ0, θ1) =
1

2m

m
∑

i=1

(hθ(xi)− yi))
2 (3)

Linear regression type models are highly interpretable, are

fast in training and prediction and do not need parameter

tuning. However, they can be limited in their usefulness. These

models are appropriate if the input-output relation falls along

a hyperplane (i.e. the straight line defined above, in case of

only one input variable). If though, the relation is not linear,

the model should be generalized, in an attempt to capture this

relationship.

C. Support Vector Machines

The main motivation of SVM for regression, referred here-

after as a Support Vector Regression (SVR), is to find a func-

tion f(x), i.e., an optimal hyperplane, which approximates all

training samples with ε precision. Similarly to other regression

methods, this is done by minimizing a cost function. The pro-

posal is that the problem which is stated in a finite dimensional

space, is mapped onto a higher dimensional space, where the

fit is supposed to be easier. The cost function used by SVM

is different by the ones used in other regression methods, to

save in computational complexity. The cost function can use

nonlinear kernels, so that it allows for nonlinear regression.

This process is based on the kernel trick and the representation

of the solution is obtained in the dual domain. SVR methods

in general show high accuracy in the prediction, and with

appropriate kernels, they behave very well also with nonlinear

problems. However, they are much harder to interpret than the

other methods discussed above, and they need more tuning.

III. SIMULATION FRAMEWORK SET-UP

We consider a heterogeneous wireless network, whose

system performance has been evaluated on the ns3 LTE-EPC

Network Simulator (LENA) platform based on LTE Release

10. The scenario that we set up consists of 1 Enhanced Node



Base station (eNB) with three sectors, which results in 3

cells and 19 UEs with transmit power equal to 46 dBm.

The small cell network is based on the dual stripe scenario

with 1 block of 2 buildings. We consider 30 blocks in the

coverage area of the macrocell. Each building has one floor,

with 20 apartments, which results in 40 apartments per block.

The Home eNodeB (HeNB) deployment ratio is 0.5, and the

activation factor is 1, which results in 20 HeNBs, each one

located in an independent apartment. The HetNet scenario is

given in Table I, and the parameters used in the simulations

are given in Table II.

TABLE I: HetNet scenario.

Macrocell scenario Value

eNB Tx Power 46 dBm

No of cells 6

No of macro UEs 19

Small cell scenario Value

HeNB Tx Power 23 dBm

No Femto blocks 30

No of HeNBs per block 20

No of home UEs per HeNB 4

No of home UEs per block 80

Total No of HeNBs 600

Total No of home UEs 2400

TABLE II: Simulation parameters.

Parameter Value

PropagationLossModel HybridBuildings

ShadowSigmaOutdoor 1

ShadowSigmaIndoor 1.5

Scheduler Round Robin

AMC model 4-QAM, 16-QAM, 64 QAM

Transport protocol UDP

LTE Value

Cell layout radius: 500m

Bandwidth 5MHz

No. of RBs 25

TTI 1ms

CQI period: 1ms; No. of RBs per CQI:2

Simulation time 0.25s

Our approach is based on 3 phases. First we collect the data,

then we prepare them, and finally we analyze them through

the proposed regression analysis methods.

A. Collect the data

We collect for each UE: (1) the Reference Signal Received

Power (RSRP), and (2) the Reference Signal Received Quality

(RSRQ) coming from the serving and neighboring cells. The

RSRQ is defined as,

RSRQ =
nRB ×RSRP

BW ×RSSI
(4)

where nRB is the number of resource blocks, BW is the

system bandwidth, and RSSI is the reference signal strength

indication, and contains the power received from co-channel

serving and non serving cells, adjacent channel interference

and thermal noise. As a result, the RSRQ is an indicator of

the portion of useful reference signal power received by the

UE over the measurement bandwidth BW . Finally, in order to

test the QoS performance, the throughput per user is obtained

by using UDP Client application, which takes care of the

generation of Radio Link Control (RLC) Protocol Data Units

(PDUs) allowing multiple flows belonging to different QoS

classes.

The size of the input space is [2400 × 1200], where the

number of rows is the number l of UEs in the scenario,

and the number of columns corresponds to the number of

UE measurements n. In particular, for the serving and the

neighbouring cells, each UE reports the RSRP and the RSRQ.

As a result, in the data set one column corresponds to the

RSRP of the serving cell, the second one corresponds to the

RSRQ of the serving cell, 599 correspond to the RSRP of

the neighboring cells, and 599 correspond to the RSRQ of the

neighboring cells. The size of the output space is [2400× 1],
which corresponds to the throughput.

B. Preparing the data

Once data are collected, we proceed with the data prepara-

tion.

1) The three selected methods for evaluation will benefit

in performances if the input variables of the different

measurements are on a similar scale and range. So, a

common practice is to normalize every variable between

−1 ≤ x(j) ≤ 1 range, and replace x(j) with x(j) − µ(j)

over the range (max-min), where µ(j) is the average of

the input variable j in the training set.

2) We create a random partition for test validation from

the l sets of input. This partition divides the observations

into a training set of m samples, and a test set p = l−m
samples. We randomly select approximately p = 1

5 × l
observations for the test set.

3) For each test value, we predict the throughput, and

evaluate performances against the actual value in terms

of the Root Mean Squared Error (RMSE) as follows:

RMSE =

√

∑p

i=1(yi − yi)2

p

where p is the length of the test set, yi, indicates

the predicted value, and yi is the testing value of one

data point i. In order to compare the RMSE with

different scales, the input and output variable values are

normalized as follows,

NRMSE =
RMSE

ymax − ymin

where ymax and ymin represent the maximum and

minimum values in the output set.

IV. RESULTS

We benchmark the three selected regression methods, which

take Location Independent (LI) input, based on UE measure-

ments, to the following Location Dependent (LD) schemes,

which take the physical position of the samples as input.



1) Kriging: The predicted value is evaluated considering

Kriging as a spatial interpolation technique. Kriging is

an interpolation technique, which selects weights for

each point according to its distance from the unknown

value. This technique aims at minimizing the error

variance, and set the mean of the prediction errors to

zero, where the spatial variation is quantified by the

variogram [10].

2) Distance: The predicted value is that corresponding to

the closest training sample.

For our empirical evaluation, we consider 6 cases, each one

considering different features in the data set:

• (a) RSRP from the neighboring cells,

• (b) RSRP from the serving and neighboring cells,

• (c) RSRQ from the neighboring cells,

• (d) RSRQ from the serving and neighboring cells,

• (e) RSRP and RSRQ from the neighboring cells, and

• (f) RSRP and RSRQ from the serving and neighboring

cells.

For each case, we consider inputs from a variable number of

cells, which results in a variable number of columns in the

data set, and consequently in a variable number of features in

the input space. In particular, with the following notation we

consider measurements from:

• st: the strongest cell,

• st+ 2nd: the two strongest neighboring cells,

• allnc: all the neighboring cells,

• sc: the serving cell,

• sc + st: the serving cell, and the strongest neighboring

cell,

• sc + st + 2nd: the serving cell and the two strongest

neighboring cells,

• allsignals: all the serving and neighboring cells.

We show performance results for different algorithms. In

particular, we evaluate LI approaches, which do not take into

account information about the physical position of the data,

and LD algorithms, already presented as the benchmarks.

We want to show that abstracting from the physical position

of the measurements we can provide better estimations in a

LTE heterogeneous network, when considering physical layer

measurements. For LI approaches we consider 1) SVR-LI, 2)

GLM-LI, 3) KNN-LI. These approaches are benchmarked to

the following LD schemes: 1) Distance-LD, 2) Kriging-LD,

3) SVR-LD. The most relevant observations are summarized

in the following.

1) From Figures 1 (a) to (f), we observe that the error

decreases if we consider more than one input variable,

but if we take into account the whole input space the

error generally increases, and this behavior is observed

for all the algorithms. The reason is that an underspec-

ified model produces biased estimates, while too many

features lead to an overspecified model, which tends to

have less precise estimates.

2) From Figures 1 (a) to (f), we observe that the SVR-LI

tends to provide the best results. This was to expect,

as SVR is a powerful regression model, which shows

high accuracy in the prediction. Also, properly using

the kernels, it allows for proper nonlinear regression,

without the need to model a priori the nonlinear trends

in the data. This is the main reason why, in our scenario,

where the nonlinear relationship between input and

output is not known a priori, SVR has provided the most

promising results. Since SVR is the scheme which better

performs, we propose also a SVR-LD implementation as

a benchmark. We observe that SVR-LI provides better

results than SVR-LD, which means that, independently

of the regression technique the recognition of patterns

among UE measurements allows more precise predic-

tions than LD estimations.

3) GLM allows to adapt a linear regression to nonlinear

trends in data. However, the model performs worse than

SVM, since it is necessary to foresee the specific nature

of the nonlinearity in the data, which is unknown in our

scenario. Also, Figures 1 (a) to (f) show that GLM-LI

provides better accuracy results than all LD schemes,

in all cases except for the allnc and allsignals ones,

where the model is overspecified. In fact, one of the

drawbacks of GLM is that it has difficulties in properly

handling redundant features [9].

4) KNN is a very simple algorithm, and as it was to expect,

it is the one providing poorest accuracy performances. In

particular, it provides lowest accuracy than LD methods.

5) Introducing heterogeneity in the data set (Figure (e) and

Figure (f)), i.e., using both RSRP and RSRQ signals as

input variables, we improve the accuracy of the results.

This is because, due to the complexity of the hetero-

geneous scenario and to the different effects, at prop-

agation, communication and networking levels, which

affect the UE measurements, they provide independent

information. Also, the algorithms tend to provide better

accuracy when measurements from the serving cell are

included in the data set (i.e. Figures 1 (b), (d), (f)), since

the signal coming from the serving cell is less affected

by propagation effects, and so the associated information

is more stable.

V. CONCLUSION

In this paper we have presented an approach, based on

regression analysis, which allows to predict QoS in Hetero-

geneous LTE networks for UEs, independently of the physical

location of the UE, and only based on physical measurements

already available in MDT data base. Our approach allows

then to predict QoS in a given region, based on measure-

ments extracted from other areas in the network, and in

other moments in time, as long as RSRP and RSRQ patterns

are identified. We compare results from different regression

techniques, namely SVR, GLM, KNN for different amounts

and kinds of input/features. We benchmark the results to LD

prediction models, where the prediction is strictly related to the

position of the UE. We have shown that: 1) the dimension of

the input space has an impact in the error, but not necessarily,
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Fig. 1: NRMSE as a function of different kinds and amount of information.

the bigger the input space, the lower the error, 2) SVR is the

most accurate approach for our application, since it allows to

fit nonlinearities in the data, without a priori modelling them,

3) considering heterogeneous kinds of inputs (e.g. RSRP and

RSRQ), we benefit the prediction, as in the complexity of the

proposed scenario, they provide independent information.
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