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Abstract—Recent technological improvements in vehicle man-
ufacturing may greatly improve safety however, the individuals’
driving behaviour still remains a factor of paramount importance
with aggressiveness, lack of focus and carelessness being the
main cause of the majority of traffic incidents. The imminent
deployment of 5G networking infrastructure, paired with the
advent of Fog computing and the establishment of the Internet
of Things (IoT) as a reliable and cost-effective service delivery
framework may provide the means for the deployment of an
accurate driving monitoring solution which could be utilized
to further understand the underlying reasons of peculiar road
behaviour, as well as its correlation to the driver’s physiological
state, the vehicle condition and certain environmental param-
eters. This paper presents some of the fundamental attributes
of Fog computing along with the functional requirements of a
driving behaviour monitoring framework, followed by its high
level architecture blueprint and the description of the prototype
implementation process.

Index Terms—Fog computing, IoT, driving behaviour, moni-
toring framework

I. INTRODUCTION

The imminent deployment of 5G networking infrastructure
and the tremendous boost in coverage and performance it
proclaims [1], along with the establishment of the Internet of
Things (IoT) as a reliable and cost-effective service delivery
framework, will unlock new and exciting verticals with a
significant impact in our daily lives. Automotive industry is
one of the markets that will be greatly benefited by the advent
of 5G and the new levels of quality of experience (QoE)
it introduces [2]. Road safety and traffic efficiency services
will be upgraded through seamlessly interconnected devices
and advanced V2X communication schemes [3], while latency
decrease will most likely allow semi-autonomous driving to
become a commodity available to everyone. The specific
vertical contributes to huge societal and economical impact,
since it may render severe traffic accidents, increased energy
consumption and long commute times obsolete.

Even though technological innovation in vehicle hardware
and software greatly improves safety, a person’s driving be-
haviour remains a factor of paramount importance. Aggres-
siveness, lack of focus and carelessness cause many traffic
incidents, while novice drivers often get involved in hazardous
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situations on the road. Despite its significance, there is no
simple metric for quantifying aggressiveness or characterizing
driving styles [4]. Current attempts have either tried to pre-
define characteristics of specific driving behaviours or to
cluster similar driving patterns but due to the large amount
of generated data online knowledge discovery techniques are
necessary for extracting valuable information [5]. Moreover,
the circumstances of driver aggressiveness must be examined
under the prism of his physiological status. The integration of
both in-vehicle data as well as the physiological data of the
driver introduce challenges in determining the overall driving
style. It is therefore essential for any contemporary sensing
system to focus on determining the most influential factors,
through a set of appropriate sensors that allow the driver to
retain road perception [6], while also taking into account the
given driving location.

The deployment of an end-to-end system for obtaining
driver and vehicle data, execute specific analysis based on pre-
defined algorithms to extract information that can be utilized
to monitor and improve one’s driving behaviour has always
been a topic of active research. Alas until recently sensing
infrastructure had not been adequately evolved to align with
the real-world requirements of such a platform, while the nec-
essary communication and networking architectural structural
elements that could potentially allow the implementation of a
holistic framework were put together with the advent of Fog
computing [7].

The rest of the paper is organized as follows: Section II
presents some of the essential attributes of Fog computing
along with its benefits towards deploying an end-to-end,
sensor-based platform. Section III focuses on the realistic
requirements and the architecture of a sophisticated driving
behaviour monitoring framework, while Section IV describes
the actual prototype implementation challenges and evaluation
process. Finally, Section V draws conclusions and summarizes
the paper.

II. FUNDAMENTAL ATTRIBUTES OF FOG COMPUTING

Sensing nodes tend to be physically located close to the phe-
nomenon they monitor while their most common deployment
method is over wide-area network topologies. This introduces
a severe communication overhead with the back-end data

ar
X

iv
:2

01
0.

09
42

1v
1 

 [
cs

.D
C

] 
 1

9 
O

ct
 2

02
0



centers and inevitably dictates the introduction of an inter-
mediate intelligence layer between these entities specifically
designed to eliminate large round-trip delay and possible
network congestion. Such a layer allows the deployment of
latency-sensitive applications and further augment the overall
performance of the network. The preeminent design guide-
line of the aforementioned layer was to move computation
resources closer to the end-user domain, in an attempt to
facilitate data processing and manipulation on the spot thus
eliminating the need for transmitting bulk datasets across the
entire topology. This new concept is often referred to as as
Edge computing and constitutes an improved version of the
existing edge network.

Multi-access edge computing (MEC) [8] and Fog computing
are considered the prevailing deployment blueprints amongst
the several edge-centric computing paradigms proposed by
industry and academia. MEC architecture dictates a combined
operation of dedicated servers placed on the network edge,
paired with cellular base stations and specific communica-
tion interfaces toward the back-end cloud infrastructure. This
model appears to be mostly suitable for large scale telco
offerings since it is primarily focused on network efficiency
through agile and highly adaptive initiation of cellular-based
services [9]. To the contrary, Fog computing appears to be
more focused on real-world IoT deployment requirements
by engaging both edge and core networking components as
computational infrastructure, thus allowing a huge number
of sensors/devices to be simultaneously monitored [10]. As
a consequence, multi-tier application deployment becomes
easier, obtained datasets are stored and processed closer to
the original source [11], [12], leading to minimized service
delivery latency which is essential in real-time and near real-
time use cases.

Designed primarily as a distributed paradigm strategically
placed between the cloud and the sensing nodes, Fog incor-
porates dedicated communication interfaces with the network
backend. This enhances the overall topology robustness since
ingress packets undergo a secondary inspection progress ca-
pable of identifying problematic or malicious content, way
before reaching the cloud entry point. Fog resolves additional
IoT-related constraints such as (i) the extensive bandwidth re-
quirements due to the higher number of interconnected devices
and (ii) the elevated propagation error due to the increased
volume of transmitted data. However, the major contribution
of Fog is without a doubt latency elimination which renders
the deployment of delay-critical services possible.

III. FUNCTIONAL REQUIREMENTS AND SYSTEM
ARCHITECTURE

A generic categorization of entities necessary for imple-
menting a driving behaviour monitoring framework which will
unobtrusively record physiological, behavioural, environmen-
tal and vehicle parameters becomes clear by reviewing the
core design principle of Fog computing which dictates the
introduction of an intermediate layer between sensing nodes
and backend infrastructure.

Fig. 1: High-level Architecture of the Driving Behaviour
Monitoring Framework

As shown in Figure 1 there are three categories of sensing
devices and information retrieval services each contributing
with specific bits of information necessary to fill all gaps and
assemble the overall context of each route.

1) Vehicle sensors are integrated to modern cars by all
manufacturers. Such sensors monitor gear, tire pressure,
temperature and oil, all interlinked through an inter-
nal controller area network (CAN) designed to allow
seamless and robust communication. Data is sent to
the vehicle’s electronic control unit (ECU) and can be
retrieved using an on-board diagnostics (OBD) controller,
via the Bluetooth protocol. OBD exposes coded informa-
tion which may slightly vary on each vehicle, however
all available parameters are addressed by unique identifi-
cation numbers. Through the OBD it is possible to get a
detailed log of the vehicle’s behaviour on any given time,
which if properly time-stamped can be easily correlated
with supplementary logs from other sources.

2) Wearable Devices are attached to the driver’s body
and record certain aspects of its physiological condition
through an array of sensors in a non intrusive manner.
Some contemporary wearables are also able to provide
instant feedback to the driver and analyze traces collected
from the sensors on the spot. The original traces (raw
data) after being encrypted, may be stored locally on the



Fig. 2: Deployment of the driving behaviour monitoring framework prototype

internal memory of the wearable device and constitute a
type of short-term inventory that will be later be further
processed.

3) Online data repositories containing all types of real-
time data are nowadays virtually omnipresent and can be
accessed for free. This allows third-party frameworks to
retrieve information about the weather, traffic congestion
in a specific area as well as detours and road blocks that
may have impact on the duration of an individual’s daily
commute. Such datasets when associated with vehicle
and physiological metrics may reveal driving behaviour
patterns that otherwise lack of proper explanation.

In order to align with the Fog computing design guidelines
it is possible to use an Android1 smartphone as the main
coordinating node of the proposed framework, resembling to
the smart gateway often mentioned in similar deployments
[10]. This is achieved through a custom-made application
capable of connecting to all available sensors as well as third-
party online repositories, collect and locally store data before
transmitting them to any permanent storage repository.

Selecting a smartphone as the coordination node of any
Fog-based data retrieval and processing platform provides
significant flexibility due to the large number of communica-
tion protocols and corresponding interfaces any contemporary
device supports, as well as the inherent caching and process-
ing capabilities it incorporates. In addition, the accumulated
datasets may undergo data pre-processing, customized for
extracting the most essential and meaningful information or
fill possible voids which may lead to inaccurate patterns and
results as described in [4]. Data pre-processing techniques
or algorithms for tackling nonuniformities are relatively easy
to be implemented and then integrated in the pipeline of
data handling of every contemporary smartphone operating
system, thus providing additional benefits after eliminating
the overhead of modifying complex or proprietary software
running in routers or switches.

Through this coordination node, all accumulated datasets
after being processed or partially analyzed will be uploaded
to an affiliated cloud storage repository, which optionally may

1https://www.android.com/

be upgraded by dedicated processing resources rendering it
capable of processing and analyzing large data sets through
custom algorithms in the most efficient manner. It is also im-
portant this repository to incorporate cutting-edge security and
data leakage prevention mechanisms, given the fact that some
datasets may contain sensitive medical information which is
often subdue to specific legislation.

IV. PROTOTYPE IMPLEMENTATION AND EVALUATION

For properly evaluate the previous categorization, extract
certain results on how Fog-enabled ecosystems can be seam-
lessly deployed and validate the proposed architecture of
Section III we have implemented a functional prototype of
a driving behaviour monitoring framework and conducted
several experimentation routes. The fundamental components
of the prototype include (i) Wearables (ii) Vehicle-sensing
equipment (iii) online data repository retrieval mechanisms
(iv) the Data Logger2, a customized Android application for
converting the driver’s smartphone to a central communication
and data aggregation hub and (v) the Spark Works Cloud
Storage Repository which handles data storage and allows
second-phase access.

More specific, vehicle-oriented data collected by the em-
bedded sensors of the car were obtained using an On-Board
Diagnostics (OBD) module, supported by every major manu-
facturer following specific EU regulatory guidelines. Without
the loss of generality, only data regarding vehicle speed, engine
rounds-per-minute (RPM) and throttle position were collected
for creating matrices stored in a per-trip fashion. The OBD
module was connected over Bluetooth protocol to the driver’s
Android smartphone, on which Data Logger application was
running. The driver’s wearables were also providing data to
the Data Logger after being paired and identified by the later.
Data Logger acted as a data aggregator that accumulated
sensor values, added a timestamp and created a .CSV file.
This file was also populated by additional content retrieved
from the affiliated online sources, as well as the smartphone’s
integrated GPS which indicated the exact positioning of the

2https://play.google.com/store/apps/details?id=app.gamecar.
sparkworks.net.gamecardatalogger



Fig. 3: Integrating Data Logger application and the OBD module for obtaining vehicle information

driver/vehicle. At the end of each route, the application after
notifying the driver, encrypts and transmits the .CSV file
through WiFi or 4G/LTE networks. Additional implementation
information per group is listed below.

A. On-Board Diagnostics module

The prototype framework uses the OBD module to retrieve
data from the integrated vehicle sensors. Figure 3 presents
the implemented software stack that works in tandem with
the underline hardware resources to fetch the available vehicle
information. More specific, the Data Logger application con-
tains a dedicated function, called OBD Service which triggers
the WebSocket function allowing to establish a direct line of
communication between the application and the OBD over the
integrated Bluetooth antenna. More specific, the WebSocket
function, initiates the Bluetooth Manager Module of the An-
droid Operating system which then activates the necessary
hardware ports for having the Bluetooth antenna establish the
necessary channel with the OBD.

On the other side, the OBD device, after being attached
to the Serial Port existing in every vehicle, ”translates” egress
messages coming from the vehicles’ CAN bus. This communi-
cation is amphidromous, with the OBD also pushing requests
(in the form of OBD commands) for sensor information
towards the vehicle’s brain which are accommodated in due
time (in the form of OBD command responses). The accom-
modation time interval varies and is dependent on the vehicle
manufacturer as well as the vehicle model. After properly
analyzing trip logs from several different manufacturers, we
estimate that the average reply delay per OBD command is ap-
proximately 110ms. The reply timeframe per OBD command
according the protocol design documentation, spans between
50ms and 200ms. These metrics indicate a maximum of 1200
OBD command replies per minute and a minimum of 300
OBD commands. The average rate yielded in our experiments
was a result of a reply rate of 540 OBD commands per minute.
For properly evaluating the described implementation, we
conducted several we different driving sessions with numerous
vehicles and different drivers all returning similar metrics.
Figure 4 presents data from two different 5-minute drives
occurred over two consecutive days. The X-Axis represents
the number of updates received by the system in each 5-

minute driving session, while Y-Axis shows the number of
OBD commands recorded in the specific update. As shown,
the application demonstrates a sharp increase on the number
of recorded OBD commands during the first 400-500 updates,
followed by a lower increase during the next 150 updates.
After this, the number of OBD commands recorded on each
update stabilizes at approximately 540 OBD commands per
update.

Fig. 4: OBD recordings

B. Wearable Devices

As already stated, wearables are non-intrusive devices which
record certain aspects of the physiological conditions of the
driver through an array of sensors. In the specific prototype,
three different wearables were utilized to obtain data regarding
the driver’s heartbeat and respiration rate, both factors of
significant value to determine stress and anxiety on any given
moment. All traces and the alerts produced along with their
timestamps are initially stored in the internal memory of the
device and in certain time intervals are being forwarded to the
Data Logger application.

1) Xiaomi MiBand M1S: The Xiaomi MiBand is a wearable
activity tracker consists of the core tracker which is around 9
mm thick, and 36 mm in length, inserted into a hypoallergenic
TPSiV wristband, having anti-UV and anti-microbal proper-
ties. The tracker was used to access heart rate information
limited to beats per minute and can offer up to an average of
1 measurement per 10 seconds due to its operation limitations



and its on-demand measuring system, which is implemented
based on integrated Bluetooth communication.

2) Polar H7 Respirator: Polar H7 Heart Rate sensor is
a device mostly used to access heart rate information and
includes beats per minute as well as R-R intervals for the
heartbeats. The measurement rate is around 1 measurement per
2 second as its operation is subscription based (using Bluetooth
Low Energy (BLE) 4.0 subscriptions).

3) Spire Respirator: Spire Respirator is a wearable stress
and activity tracker worn on the waistband or bra strap
designed to analyze breath rates to determine levels of tension,
calm, or focus. Data Logger application provides support
for the Spire Respirator sensor and also integrates a flow
for accessing the corresponding web platform through the
provided API.

C. Data Logger Application

Data Logger is installed on the driver’s mobile Android
device and is paired to the available wearables for trace
acquisition. During the application instatiation, the driver must
pair the mobile device with the wearables following the
standard BLE bonding process. As soon as the pairing process
is complete, the mobile application locks the wearable device
preventing it from being paired with another mobile device.
User information stored within the wearables are protected
from being accessed without permission even from the driver’s
his own device by the available mechanisms of the Android
operating system.

The application communicates with the wearable devices
over a well defined API via the secure Bluetooth wireless
connection, can retrieve the traces and alerts either in small
packages or in batch mode and the data received are stored
within the mobile device’s internal storage space. The mobile
application can erase some or all of the data stored (a) on the
wearable device and (b) on the internal store of the mobile
device.

The application is capable of analyzing the data retrieved
from the medical device by utilizing a series of algorithms
available for Android OS or through tailor-made ones. As
data is received from the wearables, the Alert Handling
component is activated to process and analyze the data and
provide alerts. Data collected from the device and produced
by the Alert Handling component is stored in the Data
Handling component and complement those produced by
the algorithms executed by the wearable device. Apart from
the data transfer and management, the mobile application
supports configuration/personalization tasks for the wearable
device related to the memory (e.g., clean), alert generation
and algorithm parametrization, battery configuration, sensors
and synchronization functionality. Moreover, Data Logger also
incorporates functions for obtaining traces from sensors or
additional sources provided by the smartphone, such as the
integrated GPS or the accelerometer. Such traces are combined
with the rest to provide a holistic route overview containing
the full spectrum of available information.

Fig. 5: Driving session trace upload using the Data Logger
app

D. Cloud Storage Repository

All trace files holding the combined vehicle-oriented, wear-
able sensor data are stored in the SparkWorks Cloud Storage
Repository. This repository is designed and impemented by
SparkWorks to store content in a specially designed filesys-
tem with a hierarchical structure, utilizing advanced hashing
techniques for seamless data retrieval. To provide a con-
temporary, efficient and scalable way to upload data trace
files, SparkWorks Cloud Storage Repository provides a public
REST API protected via another module of the overall Spark-
Works Cloud Platform, the SparkWorks Authentication and
Authorization Infrastructure which serves the trace file upload
requests reliable and efficiently via multipart file upload. Upon
the reception of a trace file the Cloud Storage Repository
API persists the trace file metadata in a relational database.
After successfully storing the trace file in the Cloud Storage
Repository a unique public reference is returned to the client
which uploaded the trace in the first place. At this point, the
trace is already available in the Cloud Storage Repository
and every authenticated client with the right permissions (as
defined by the SparkWorks Authentication and Authorization
Infrastructure scheme) can retrieve the trace file via a Spark
Works Core REST API endpoint. The Core API is responsible
to recover the stored trace file from the SparkWorks Cloud
Storage Repository and make it available to the client along
with the trace metadata.

E. Third-party Online Applications and Cloud Services

1) Online Traffic Flow: Data Logger application integrates
the Online Traffic Flow, an online suite of web services for
developers to create web and mobile applications around real-
time traffic. The aforementioned services can be used via
RESTful APIs, while the Online Traffic Flow API’s are based



on real-time traffic data3 with accurate and fresh information
about traffic jams, incidents and flow. This service is based
on flow segment data, which provides information about the
speeds and travel times of the road fragment closest to any
given coordinates. It is designed to work alongside the inte-
grated Maps API to support clickable flow data visualizations.
With this API, the client side can connect any place in the map
with flow data on the closest road and present it to the user.

2) OpenWeatherMap: OpenWeatherMap4 is an online ser-
vice that provides weather data, including current weather
data, forecasts, and historical data to the developers of web
services and mobile applications. For data sources, it uti-
lizes meteorological broadcast services, raw data from airport
weather stations, raw data from radar stations, and raw data
from other official weather stations. All data is processed by
OpenWeatherMap in an attempt to provide accurate online
weather forecast data and weather maps, such as those for
clouds or precipitation. Beyond that, the service is focused
on the social aspect by involving weather station owners in
connecting to the service and thereby increasing weather data
accuracy. The service provides an API with JSON, XML
and HTML endpoints and a limited free usage tier. Making
more than 60 calls per minute requires a paid subscription.
Through the dedicated API, users can request current weather
information, extended forecasts and graphical maps and in
our case obtain useful weather information that may explain
irregular driving behaviour.

V. CONCLUSIONS

The scope of this paper is to properly present and analyze
the components, the development process as well as the overall
integration of a driving behaviour monitoring framework pro-
totype designed in compliance with the generic guidelines of
Fog computing. Following a brief reference to the fundamental
attributes of Fog computing, a high-level architecture descrip-
tion along with the basic components of the prototype were
provided. The paper also described the actual implementation
and integration process of several sensors, online applications,
and third-party modules responsible for cloud data processing
and long-term storage. Crucial parts of the final prototype were
benchmarked while the overall end-to-end functionality was
efficiently presented.
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