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Abstract—Optimizing power generation with photovoltaic 
panels seeks to achieve the best performance and efficiency, 
both of single panels and grids comprising several of them. The 
outcomes depend on ambient conditions, such as irradiance or 
temperature, but also on external causes (e.g., soiling) that may 
lead to critical power losses. This paper proposes a smart 
metering device containing sensors to monitor these panels 
continuously by collecting I-V curves, a Maximum Power Point 
Tracker (MPPT) to maintain the optimal operation, as well as 
security elements to prevent external accesses and protect the 
generated data. The objective is to create a predictive 
maintenance system with artificial intelligence algorithms on 
the edge. Developing those algorithms requires a 
characterization of the selected panels to get optimal results, 
detecting failures and troubles swiftly, both of the panel and the 
smart device. Moreover, periodically or in case of noteworthy 
events, the device reports the information to a cloud platform 
by using LoRa 2.4GHz communication protocol. The device 
must ensure the proper operation of panels, allowing to take 
sustainable corrective measures by preventing an unnecessary 
waste of resources (electricity or water, among others). The aim 
is to avoid irreparable failures that imply high costs and reach 
high efficiency of the monitoring system and the energy 
generation process. 

Keywords— PV panels, predictive maintenance, IoT, edge 
computing  

I. INTRODUCTION 

Smart grid technologies are nowadays envisaged as an 
ultimate solution for the intelligent provision of the electrical 
power flow through an enhanced integration of components 
at different stages: power generation, transmission, 
distribution, securitization, or energy consumption. These 
technologies are aimed to develop novel bidirectional 
electricity delivery systems capable of both providing 
controllable and reliable power flow measurements and 
supporting the extended integration of renewable resources 
and local storage capacities [1]. They are also expected to 
overcome the limitations of current power infrastructures by 
reducing the power consumption in peak demand periods, and 
by optimizing the energy demand distribution, as directed by 
European regulations [2]. Up to now, smart metering tools 
have been used to acquire the consumption of electric energy 

in defined intervals, and record the information for 
monitoring and billing through bidirectional communication 
channels [3] [4]. However, the creation of innovative 
metering systems is crucial for developing energy 
management algorithms and enabling robust, intelligent, and 
secured infrastructures. 

This work proposes the integration of several metering 
solutions for the optimal utilization and exploitation of energy 
generated by photovoltaic (PV) panels installed at any 
location. The new integrated system monitors every panel of 
a grid individually, gathers data and computes Predictive 
Maintenance (PM) algorithms to achieve the optimal 
operation of the grid. To this end, Internet of Things (IoT) 
sensors and components are employed to measure parameters 
with a relevant impact over the performance of PV panels 
(e.g., irradiation level or device temperatures) [5], in addition 
to store and communicate data, compute results, provide 
information about the individual panels and the grid, and help 
to detect emergency conditions or operating faults.  

The smart metering device uses a Maximum Power Point 
Tracker (MPPT) to maintain the panel in its optimal working 
point but allowing the collection of I-V curves without 
disconnecting that tracker. It also includes two innovative 
components: on the one hand, a security module to implement 
encryption protocols (RSA, SHA, etc.) for guaranteeing the 
safety of collected data, the results of the edge computing and 
the communication with the cloud, seeking to protect the 
infrastructure against external attacks that can compromise 
the energy generation process [6]. On the other hand, a new 
transceiver to provide communication by LoRa modulation in 
the 2.4 GHz band, aiming to transmit data wirelessly to the 
cloud platform for further processing and visualization [7]. 

Among the current PV technologies, the proposed 
solution uses silicon (Si) PV modules to build the grid, that 
have been widely employed over the years [8]. These panels 
have been characterized under different conditions using a 
climatic chamber to finely control conditions, such as the 
irradiance or the temperature. Results serve as inputs for 
developing Artificial Intelligent (AI) algorithms and generate 
predictive models about the future state of the grid. Likewise, 
these data also allow determining the energy generation 



 

 

profiles through I-V curves and approaches based on tracking 
the maximum power point [9]. 

The periodic data gathering, and the subsequent 
application of AI algorithms seek detecting phenomena that 
can affect negatively to individual panels or the whole grid, 
and thus the proper energy generation. Some examples are 
soiling, which can be remarkable hinging on the location of 
the deployment; ageing that PV panels endure with the 
passage of time; or obstacles that avoid the irradiation fall 
upon the panels thoroughly [10] [11]. It is also indispensable 
that these algorithms can distinguish other natural and non-
controllable phenomena, such as shading due to the presence 
of clouds [12]. The final objective is to take corrective actions 
when required to improve both the lifetime and the efficiency 
of panels, as well as targeting the energy demands of the 
specific locations where the grids are located. 

Extensive research is available about PM systems for solar 
plants or individual PV panels [13] [14]. This maintenance 
method prevails over other solutions, either outdated, as 
visual inspection, or innovative but expensive, such as the 
usage of drones [15]. This solution reduces costs and 
increases the efficiency and the possibility to detect faults and 
errors in advance, avoiding more costly actions. Furthermore, 
the PM process also aims that these systems become 
sustainable, adopting one or several Sustainable Development 
Goals (SDG) to, not only improving the performance of the 
energy generation, but reducing the consumption of resources 
(e.g., water to clean) to the minimum extent. 

The smart device includes edge computing for providing 
a swift and effective method to detect failures in a PV 
installation without needing a cloud platform for analyzing 
and display data for visualization. In this manner, the device 
becomes stand-alone, avoiding communication troubles and 
allowing to take corrective actions quickly to solve failures or 
damages to the infrastructure that may end in future 
malfunctioning. The algorithms use real data from panels to 
evaluate the state of the grid, both present and future, after a 
previous treatment to remove corrupted or fail data. Thus, it 
is essential to characterize the panels for identifying the most 
relevant parameters to examine their behavior, as well as 
applying the proper algorithms so that results are sound and 
corrective actions lead to optimize the installation. 

II. CHARACTERIZATION OF PV PANELS  

Troubles affecting energy generation or power losses in a 
PV grid depend on the installed panels. They can be 
hardware-related (e.g., electrical connectivity or cable 
breakings), or come from external causes, such as soiling, 
shading or ageing. It is then required to characterize the 
selected PV modules (CL-SM30M Cellevia Power) for 
adapting the PM system to the specific requirements of the 
grid, using the results to identify the main parameters for 
evaluating phenomena affecting the panels and developing 
the planned AI algorithms. The process is conducted using a 
climatic chamber for maintaining controlled conditions of 
irradiance and temperature, and an I-V checker (EKO MP-11) 
to collect I-V curves (see Fig. 1). 

The characterization consists of two phases: 

 Tests in climatic chamber to collect I-V curves 
in controlled environmental conditions of 
irradiance and temperature. The chamber allows 
the configuration as follows: 

o Temperature of the climatic chamber: 
0, 10, and 25 ºC 

o Lamp power (irradiance level): 250, 
450, 800, and 1.000 𝑊/𝑚ଶ . 

 Soiling tests in climatic chamber to collect I-V 
curves under changeable soiling settings, and 
fixed ambient conditions (10 ºC and 1.000 
𝑊/𝑚ଶ). The conditions are as follows: 

o Types of soil: standardized and soil 
from the vicinity of the installation in 
Leitat facilities. 

o Soiling methods: spraying and painting 
using a dispersion of soil in water. 

The study of resulting I-V curves requires focusing on the 
characteristic PV parameters and select those which define 
behavior trends more reliably. Some examples are the 
maximum power point (𝑃௠௔௫), the short-circuit current (𝐼ௌ஼), 
the open-circuit voltage ( 𝑉ை஼ ), the irradiance level, the 
temperatures (both ambient or panel), the efficiency of the 
panel (𝜂) or the Fill Factor (FF).  

A. Results of the Characterization 

1) Tests in Climatic Chamber 
Fig. 2 shows three I-V curves with similar irradiance 

levels (around 1.000 𝑊/𝑚ଶ), and different temperatures. The 
graphs show similar device temperatures as regards the 
chamber conditions since the lamp heats up the PV panel 
when working. In the three graphs, 𝑃௠௔௫, 𝐼ௌ஼ , and 𝑉ை஼  keep 
similar values. 

A similar behavior appears when comparing curves with 
lower and fixed irradiance values (250 or 450 𝑊/𝑚ଶ), and 
the same three temperatures (0, 10 and 25 ºC). A decrease of 
panel temperature appears when reducing the chamber 
temperature, but there are not significant variations, and the 
three characteristic parameters remain approximately equal. 

 On the other hand, Fig. 3 shows three I-V curves with 
decreasing irradiance levels and constant temperature (25 ºC), 
even though the irradiance slightly changes depending on the 
lamp power, which may affect the collected curves. In this 
case, 𝑃௠௔௫ , 𝐼ௌ஼ , and 𝑉ை஼  considerably reduce, following the 
decreasing of the irradiance level. Moreover, the trials with 
decreasing irradiances and other fixed temperatures (10 and 0 
ºC) always show the same behavior, evidencing the influence 
of the irradiance on the collected I-V curves.   

Figure 1. Solar panel in the climatic chamber for characterization 



 

 

2) Soiling Tests in Climatic Chamber 
These trials intend to figure out whether the soiling may 

cause a reduction of the performance when the radiation 
cannot fully hit the PV panel by studying how the I-V curves 
change in those cases.   

All trials maintain the same irradiance and temperature 
values: 1.000  𝑊/𝑚ଶ  and 10 ºC, respectively, whereas the 
soiling conditions change. Figs. 4 and 5 shows I-V curves to 
compare between the clean panel (left images) and soiled 
panels (middle and right images) with different soils by 
spraying and painting. In the spraying case, the values of 
𝑃௠௔௫ , 𝐼ௌ஼ , and 𝑉ை஼  reduce in the soiled panels, either with 
standardized or Leitat’s soil. The same behavior appears when 
the soil is applied by painting, although the reduction is less 
pronounced in that case.  

III. SMART METERING DEVICE 

A. Hardware System 

The smart metering device (see Fig. 6) employs an 
STM32L4 microcontroller to manage several sensors, 
monitor the state and the operation of PV panels, and compute 
AI algorithms on the edge.  

 Pyranometer [EKO ML-02-10P] to get the solar 
irradiance reaching the panel. It is placed over 
the panel edge to obtain the value accurately. 

 Ambient temperature sensor [Telaire – T9602]. 
It is placed in the outer part of the box containing 
the metering system. 

 Panel temperature sensor (Pt-1000). It is attached 
to the posterior face of the PV panel to avoid 
blocking the solar irradiance. 

The device also includes a subsystem to obtain I-V curves 
since it is the main method to know the performance of PV 

panels [9]. Commonly, monitoring systems include an MPPT 
to maintain the PV panel in its optimal working point, but the 
collection of I-V curves requires disconnecting the tracker for 
using an external equipment. In this case, there is no need to 
disconnect the panel, which avoids stopping the operation and 
save time and costs for evaluating the panel status. Moreover, 
this subsystem collects more points than the EKO MP-11 to 
generate the I-V curves, providing more thorough information 
about the panel status, and obtaining the point of maximum 
power with higher efficiency and accuracy to enhance the 
performance of the PM algorithms. 

The device includes a security element with several 
functionalities (Optiga Trust M – Infineon). On the one hand, 
collected data about the PV panel status and the results of the 
edge computing are encrypted by using RSA protocols, and 
they are only decrypted when data reach the cloud. The 
required RSA keys are, in turn, encrypted by employing a 
random number generator, setting a double encryption layer. 
Furthermore, the system uses the SHA protocol to create 
digital certificates, forcing the software platform to 
authenticate for enabling the communication and the 
reception of data coming from the metering device. The three 
security protocols enable a secure way since the device 
collects data from the PV panel to reception by the cloud 
platform.  

The communication between the device and the cloud is 
conducted by using LoRa 2.4 GHz. This protocol is a variant 
of the original LoRa protocol, and it uses different frequencies 
to transmit messages. The main advantage is the absence of 
limitations regarding the length of messages that caused the 
original protocol was not an option for this application (the I-
V curves can contain up to 1500 current and voltage values). 
Although 2.4 GHz frequency is also used by other protocols 
(e.g., Wi-Fi), the immunity is ensured [7]. Likewise, the 
protocol also ensures that the communication distance is 

Figure 2. I-V / P-V curves with fixed irradiance level (1000 𝑊/𝑚ଶ) and different chamber temperatures (25ºC on the left, 10ºC in the middle, and 0ºC in 
the right). The behavior is always similar (𝑉௢௖, 𝐼௦௖, and 𝑃௠௔௫) because the chamber heats due to the influence of the lamp. 

Figure 3. I-V / P-V curves with fixed temperature (25 ºC) and decreasing irradiances in 𝑊/𝑚ଶ (800 in the left, 450 in the middle and 250 in the right). The 
relevant parameters of the curves decrease gradually when the irradiance level drops, proving the relevancy of this parameter to get the maximum 

performance of PV panels. 



 

 

enough for the deployment since it can reach until 450 meters 
in urban environments [7].  

B. Edge Computing 

The local processing module runs on the edge with four 
objectives: 1) identify and remove outliers; 2) compare panel 
and ambient temperatures; 3) evaluate I-V curves; and 4) 
generate a log of events.  

The device computes the identification of outliers when 
it collects data every five minutes (default interval) from all 
sensors: temperatures (panel and ambient), irradiance, 
current, and voltage. The process consists of filtering data to 
ensure good data quality, besides detecting trends for 
identifying potential failures or malfunctions in the PV panel.  

The second functionality compares both measured 
temperatures (panel and ambient). If the difference is above 
20 ºC, the device raises a warning event, whereas if the 

difference is above 30 ºC, it raises an alarm to the log. Those 
high differences may appear when read values are technically 
acceptable, but not concordant between them. The result 
could indicate an overall failure of the device or a particular 
failure in a temperature sensor.  

The main objective is to analyze I-V curves to detect the 
occurrence of phenomena that can reduce the performance or 
the efficiency of a PV panel or the whole grid. This technique 
is widely used, and it does not need visual inspection, so the 
process must run on each device to monitor the status of each 
PV module individually.  

There are two basic approaches to analyze the curves: 

1. Comparison between a reference clean PV panel 
and the monitored panel. If the difference in 
power exceeds a threshold, the panels must be 
cleaned or substituted. This approach is not 
optimal since workers must go to the installation 
to perform inspection tasks, not allowing remote 
monitoring.  

2. Comparison between expected and measured 
power according to experimental equations. This 
approach only works if the conditions are similar 
to the standard ones (1.000 𝑊/𝑚ଶ of irradiance 
and 25 ºC of device temperature). Furthermore, 
it would only work at the middle of the day when 
the sun hits the panel perpendicularly, and the 
temperatures are not extreme. 

Considering the drawbacks of the previous options, the 
optimal solution is to employ AI algorithms trained with 
characterization data to determine if the installed panels are 
operating properly by analyzing the collected I-V curves. 
Data from characterization must be previously studied to find 
the most relevant parameters that help to detect if panels are 
enduring soiling, any operating problems, or whichever 

Figure 4. I-V / P-V curves for different kinds of standardized soiling: clean (left), soiled by spraying (middle) and soiled by painting (right). Minor 
differences appear in both curves for soiled panels, being mainly noticeable in the 𝐼ௌ஼  value and the maximum power. 

Figure 5. I-V / P-V curves for different kinds of LEITAT soil: clean panel (left), soiled by spraying (middle), and soiled by painting (right). In this case, the 
differences are more noticeable in both soiled curves, appearing a drop of the 𝐼ௌ஼  value and a considerable decrease of the maximum power. 

Figure 6. Smart metering device 



 

 

phenomena that can affect negatively to its performance. A 
Principal Component Analysis (PCA) allows to discern 
between the main identified parameters (see Section II) and 
obtain trends to differentiate and separate between the I-V 
curves from soiled and clean PV panels. Fig. 7 shows the 
results of the PCA and three principal components: irradiance 
level (PC1), 𝐼ௌ஼  (PC2), and 𝑉ை஼  (PC3). Orange clusters 
represent those parameters of soiled panels, whereas blue 
clusters correspond to the clean panels.  

After identifying the components, the next step is to 
develop a classifier for running on the edge and inferring 
whether the PV panel has soiling affecting its performance 
and efficiency. The PCA only runs as the previous action to 
enhance the development of the AI model, reducing the 
computational load and optimizing the operation of the smart 
metering device. Ten Machine Learning (ML) models for 
classifying were trained using Scikit-learn (www.scikit-
learn.org) with three combinations of features: 1) 𝐼ௌ஼  and 𝑉ை஼; 
2) 𝐼ௌ஼  and irradiance level; 3) 𝑃௠௔௫ and 𝑉ை஼ . 

  Fig. 8 shows the contours of six models, although the most 
reliable result emerges when applying the Support-Vector 
Machines (SVM) algorithm using a Radial Basis Function 
(RBF) kernel. In this case, the algorithm separates results of 
soiled and clean panels employing the two features with the 
highest discrimination power: 𝐼ௌ஼  and 𝑉ை஼  (first row in Fig. 
8). Moreover, an 60/40 train-test split shows a 100% 
classifying accuracy, even that does not imply optimal 
performance on site. A 5-Fold Cross Validation was also 
performed to obtain more robust metrics because the dataset 
is unbalanced.  

The algorithm has been validated with real I-V curves 
collected from May’22 to July’22 in the outdoor installation 
consistent of three panels at LEITAT facilities. Results reveal 
a probability around 0.96 that panels are clean and working 
optimally, coinciding with visual inspections. Nonetheless, 
more data in different conditions should be collected for 
attaining stronger results.  

IV. DISCUSSION 

The smart metering device allows monitoring each PV 
panel separately and autonomously, applying AI algorithms 
on the edge to determine failures or malfunctions due to 
internal or external causes. The results of that processing 
serve to take corrective actions for improving the efficiency 
and the overall performance of PV panels.  

The AI algorithms analyze the collected I-V curves from 
a PV panel in real time to determine its current status. 
Developing and training these algorithms for attaining 
optimal outcomes requires characterizing the panels in real 
outdoor conditions simulated with the climatic chamber. In 
this manner, they are able to identify the most relevant 
parameters related to the performance and the efficiency, 
besides phenomena affecting the panels’ operation. 

Tests in the climatic chamber indicated that the irradiance 
level is the main ambient factor affecting the panels, whereas 
the device temperature has minor influence. Despite 
configuring the chamber’s temperature at low values (0 or 10 
ºC), the power lamp heats the panel, increasing the 
temperature to always reach values higher than 20 ºC. Even 
so, Fig. 2 show similar behaviors (𝑃௠௔௫ , 𝐼ௌ஼ , and 𝑉ை஼  values) 
when the irradiance was 1000 𝑊/𝑚ଶ  and the temperature 
changes, prevailing the influence of the irradiance over the 
temperature. 

Therefore, it is essential to evaluate the performance of 
PV panels when the irradiance levels are around 800 – 1000 
𝑊/𝑚ଶ, because the sun reaching perpendicularly the panel in 
outdoor conditions has a similar effect to the lamp. Those 
values maximize power generation, and the resulting I-V 
curves provide more accurate information to develop the AI 
algorithms. In this manner, the soiling tests were performed 
with the standard irradiance value (1000 𝑊/𝑚ଶ ), and the 
final algorithms must also apply with similar values to get 
optimal results for the PM process. Otherwise, lower 

Figure 7. Pair plot of the three identified principal components: irradiance 
(PC1), 𝐼ௌ஼  (PC2), and 𝑉ை஼ (PC3). The orange points represent values from 

soiled panels and the blue ones represent values from clean ones. 

Figure 8. Comparative of six ML models for the three combinations: 1st 
row) 𝐼ௌ஼  vs 𝑉ை஼; 2nd row) 𝐼ௌ஼  vs irradiance; 3rd row) 𝑃௠௔௫ vs 𝑉ை஼. The RBF 

SVM model provides the most promising results with all combinations, 
being able to classify properly the curves from soiled and cleaned panels. 



 

 

irradiance levels could imply unexpected behaviors, leading 
to take unnecessary or wrong corrective actions. 

Soiling tests always indicated a reduction in the efficiency 
and performance of PV panels if they are not completely 
clean, regardless of the soil (standardized or Leitat) and the 
different application methods (spraying and painting). I-V 
curves of soiled modules show a drop in 𝑃௠௔௫ , as well as 
values of 𝐼ௌ஼  and 𝑉ை஼ . Nevertheless, the losses are slightly 
more pronounced when the soil is thicker (Leitat’s). 
Moreover, the sprayed panels generate less power than the 
painted ones, but the differences are not significant enough to 
claim that the performance differs. 

The characterization reinforces the necessity of a PM 
process so that PV panels achieve its optimal operation. 
Power generation always drops due to soiling and, hence, the 
smart device should inform when a cleaning is necessary. It is 
required to set a threshold as of which the loss is not 
acceptable and corrective actions must be taken, which 
depends on the model of PV panel and the installation where 
they are integrated. 

The AI algorithms must employ, as inputs, both the 
previous results and the collected I-V curves in real time from 
installed panels. Results of applying ML models 
demonstrated that the RBF SVM algorithm was the best 
option to identify the presence of soiling. According to Fig. 8, 
this algorithm is the only one which keeps the soiled I-V 
curves in a perfectly delimited area in the three rows (the blue 
points corresponding to soiled panels perfectly fit to the blue 
area in the background). The optimal solution corresponds to 
the classifier with two parameters of the curve: 𝐼ௌ஼  and 𝑉ை஼ . 
This result coincides with the results both of the 
characterization, which show drops of those parameters when 
PV panels had any soil, and the PCA that identified them as 
two principal components. 

The third identified parameter in the PCA was the 
irradiance level and, although it has lower classifying power, 
it is also feasible to use in the SVM classifying algorithm (see 
the delimited area in the second row of Fig. 8). Furthermore, 
the importance of this parameter also coincides with the 
characterization results, which indicated a strong influence of 
the irradiance in the performance of PV panels (see Fig. 3). 

However, it is necessary to widen the capabilities of the 
computing process in future versions. For instance, 
considering cases that the classifying algorithm may associate 
to soiling even if they are caused by other phenomena, such 
as shading due to the presence of clouds. In those cases, it is 
vital attending to the variations of the irradiance level and the 
common values throughout the day. The algorithms must 
detect the trends properly to determine the presence of clouds 
and avoid that I-V curves are classified as soiling wrongly. 

The algorithm has another drawback related to the 
irradiance level since all trials with soiled panels considered 
values above 700 𝑊/𝑚ଶ. Hence, the edge computing only 
works optimally during the highest irradiation moments of the 
day regardless of the temperature. Predictions at other day 
times should be carefully considered by now, although next 
versions of the algorithm will be trained with more data from 
soiled panels at different irradiances so that the PM system 
can provide results at every possible condition. 

The preliminary installation only consists of three PV 
panels, but it is possible to install these smart devices in grids 

containing more panels or in PV plants, but only with silicon 
panels. In all cases, it would be necessary to include a device 
for each panel, which could increase the costs significantly. 
Nonetheless, there are no limitations regarding the extent of 
the installation providing that the distance between the 
furthest panels and the LoRa receiver complies with the 
defined ranges [7]. Likewise, the losses of power generation 
will be minimal since the device requires very low current 
consumption for its operation. 

Finally, a secondary objective of the PM system is to be 
able to take corrective actions in line with SDGs. Cleaning 
panels after a visual inspection, or if they are clearly dirty, 
may generate an excessive water consumption and more 
polluting emissions. A properly designed PM system may 
optimize the transfers to the installation and only suggest 
corrective actions when they are strictly necessary. In this 
manner, it will be possible to avoid losses of performance, 
achieving an optimal power generation of each PV panel with 
the maximum sustainability. 

V. CONCLUSIONS 

This work proposes the design and development of a 
smart metering system for monitoring PV panels, collecting 
I-V curves and maintain the panel in its optimal operation 
point using an MPPT tracker. The device includes edge 
computing for performing the PM process to detect failures 
due to internal or external causes, such as soiling, as well as 
components to securitize and send the obtained data. The 
predictive algorithms are based on the characterization of 
selected panels, and they classify the collected I-V curves of 
deployed panels in real time to determine its current status. 

The characterization and the subsequent analysis prove 
that I-V curves and some of their parameters (𝑃௠௔௫, 𝑉ை஼ , and 
𝐼ௌ஼ ) are the most reliable method to check and predict the 
status of panels. Using those results, the AI algorithms have 
been developed so that the device performs the maintenance 
and inform about the necessity of taking corrective actions to 
clean a panel or fix troubles in the device. These algorithms 
have been tested with real data obtaining promising outcomes. 

As future work, the characterization will be extended to 
improve the AI algorithms, attaining more information about 
soiling, with more irradiance values, and about the 
degradation and ageing of panels. Thus, the predictive system 
will consider a wide range of failures, seeking to achieve the 
utmost efficiency in PV panels operation. 
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