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Abstract—Traditional permutation schemes mostly focus on
random scrambling of pixels, often neglecting the intrinsic image
information that could enhance diffusion in image encryption al-
gorithms. This paper introduces PermutEx, a feature-extraction-
based permutation method that utilizes inherent image features to
scramble pixels effectively. Unlike random permutation schemes,
PermutEx extracts the spatial frequency and local contrast fea-
tures of the image and ranks each pixel based on this information,
identifying which pixels are more important or information-rich
based on texture and edge information. In addition, a unique
permutation key is generated using the Logistic-Sine Map based
on chaotic behavior. The ranked pixels are permuted in con-
junction with this unique key, effectively permuting the original
image into a scrambled version. Experimental results indicate
that the proposed method effectively disrupts the correlation in
information-rich areas within the image resulting in a correlation
value of 0.000062. The effective scrambling of pixels, resulting in
nearly zero correlation, makes this method suitable to be used
as diffusion in image encryption algorithms.

Index Terms—Diffusion, permutation, feature extraction, spa-
tial frequency, local contrast, Josephus permutation, chaos.

I. INTRODUCTION

In digital image security, image encryption plays a vital
role in ensuring confidentiality and integrity [1]–[3]. Image
encryption involves two basic processes, i.e., confusion and
diffusion. According to Claude Shannon [4], confusion refers
to changing the values of the pixels based on a key and
is usually achieved by substituting one value for another.
Diffusion, on the other hand, refers to changing the position
of the pixels based on a key. This is usually achieved through
methods like the permutation. Traditional permutation schemes
often focus on the random scrambling of pixels, neglecting
intrinsic image information, which could be utilised for a more
effective permutation strategy. Such schemes include chaotic
row-column shuffling [5]–[7], classic Josephus permutation
[8], and improved Josephus permutation [9]. Although these
methods may offer a certain level of unpredictability, they
often fall short of exploiting the image’s inherent features,
which could be important for enhancing the quality of diffu-

sion. To achieve effective scrambling, this paper argues that the
permutation algorithms should utilize intrinsic image features.

Features like spatial frequency and local contrast both relate
to the variation in intensity values of an image, but they focus
on different aspects and scales of variation. Spatial frequency
refers to the rate at which pixel intensities change in an image
[10]–[12]. It can be thought of as the fineness or coarseness of
patterns in an image. High Spatial Frequency refers to rapid
changes in pixel values over short distances. This is often seen
in areas with detailed textures or sharp edges. For example,
in an image of a zebra, the black and white stripes represent
a high spatial frequency because of the rapid alternation of
contrasting colors. Low Spatial Frequency, on the other hand,
depicts slow changes in pixel values over larger distances.
This would be seen in areas with gradual intensity changes,
like a smooth gradient sky during sunset. Spatial frequency
can be analyzed using Fourier transforms. Furthermore, local
contrast or local dynamic range refers to the difference in
intensity between a pixel and its immediate surroundings. It’s
a measure of how much a pixel stands out from its neighbors-
[13], [14]. A high local contrast means that a pixel that has
a much different intensity than its neighbors. For instance, if
a single white pixel is surrounded by black pixels, this white
pixel has a high local contrast because of its stark difference
from its immediate environment.

This paper introduces PermutEx, a novel approach to per-
mutation that takes into account the inherent features within
the image for effective scrambling of pixels. Unlike traditional
methods, our scheme examines the spatial frequency and local
contrast of each pixel, ranking them based on this information.
This information is used to scramble the pixels, disrupting
the correlation in information-rich areas within the image
effectively. Fig. 1 depicts the basic workflow of the proposed
permutation scheme. The clusters in Fig. 1a represent the
information in an image such as edges, shapes, etc. The
darker dots represent the information-rich areas, and the lighter
dots represent the information-poor areas. Fig. 1b depicts the
pixels ranked on the basis of information content. Each dot is
annotated with its rank where dots with higher ranks represent
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(a) (b) (c)

Fig. 1: Basic workflow of information-based scrambling

higher information content and in Fig. 1c, the dots have been
scrambled based on the information ranking.

The main contributions of this paper are:
1) A novel feature-extraction or image-information-based

permutation scheme, PermutEx is proposed that incor-
porates feature extraction to enhance pixel scrambling.

2) The intrinsic image features, such as spatial frequency
and local contrast are employed for effective pixel
rearrangement. Pixels are ranked on the basis of the
maximum and minimum information and are scrambled
accordingly.

3) A unique permutation key is generated using hybrid
Logistic-Sine Map having improved chaotic behaviour
and large chaotic range.This key is used in conjunction
with the pixel ranking criteria to scramble the pixels and
break the correlation effectively.

II. THE PROPOSED PERMUTATION SCHEME—PERMUTEX

The complete steps involved in the proposed PermutEx
scheme, depicted in Fig.2, are as follows:

• Step 1. Read Plaintext Image: Read the grayscale
256× 256 baboon image as the plaintext image matrix I
represented as (1).

I = {I(x, y)}256×256
(x=1,y=1) (1)

• Step2. Calculate Spatial Frequencies: To extract the
information on how the pixel intensity values in the
image vary over space, the spatial frequency information
has been calculated using Fast Fourier Transform (FFT).
High frequencies represent the regions with more infor-
mation/complexity, such as the edges, textures, and other
fine-grained details in the image. The low frequencies, on
the other hand, represent the basic structures and shapes
in the image. In Fig.3b, the brighter spots indicate where
the maximum information is, while the low frequency
components depicting basic shape/structure information

are visualised in Fig. 3c. The FFT of the plaintext image
I(x, y) is calculated by:

F (u, v) =

256−1∑
x=0

256−1∑
y=0

I(x, y) · e−j2π( ux
256+

vy
256 ) (2)

F (u, v) = [F1, F2, F3, . . . , F256] (3)

Where F (u, v) is the Fourier transform of I(x, y), 256×
256 shows the dimension of the image, j is the imaginary
unit, and [F1, F2, F3, . . . , F256] are complex numbers.
The zero-frequency component is moved to the centre of
the array as:

Fshifted(u, v) = F

(
u− 256

2
, v − 256

2

)
(4)

The magnitude of the complex numbers in Fshifted is
calculated as:

Fmag(u, v) =
√

Re(Fshifted)2 + Im(Fshifted)2 (5)

To enhance the visibility of the components, the logarith-
mic scaling is applied:

Fmag log(u, v) = log(Fmag(u, v) + 1) (6)

The final step is to normalize the logarithmically scaled
magnitude to fit within the grayscale range [0, 1]:

Fnorm(u, v) =
Fmag log(u, v)−min(Fmag log)

max(Fmag log)−min(Fmag log)
(7)

• Step 3. Calculate Local Contrast: The local contrast
is calculated by using a local window around each
pixel and calculating the contrast within that window.
The contrast is often defined as the standard deviation
of the pixel values within the window and essentially
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Fig. 2: PermutEx –The proposed feature-extraction-based Per-
mutation Scheme.

captures the local variability or range of pixel values,
which can be thought of as a very rudimentary form
of ”texture” or ”detail” at that pixel location. Visually,
high contrast values represent the areas where the image
changes dramatically over a small distance, like the edges
of objects or textures as shown in Fig. 3d and the low
contrast values represent smooth, slowly varying areas,
which can also be visualised in Fig. 3d.
For our 256×256 input image I , where I(x, y) represents
the intensity of the pixel at location (x, y), the local
contrast is calculated by choosing a local window W of
size m × m centered at location (x, y). We selected a
3× 3 window and it is represented as:

W (x, y) = {I(i, j) | i ∈ [x− (m− 1)/2, x+ (m− 1)/2],

j ∈ [y − (m− 1)/2, y + (m− 1)/2]} (8)

Then calculate the mean µ of the pixel intensities within
W :

µ =
1

m2

∑
(i,j)∈W

I(i, j) (9)

Then calculate the standard deviation σ of the pixel
intensities within W , which serves as the local contrast
C(x, y) expressed as (10) and visually depicted as shown
in Fig. 3d.

C(x, y) = σ =

√√√√ 1

m2

∑
(i,j)∈W

(I(i, j)− µ)2 (10)

• Step 4. Calculate Importance Probabilities: Informa-
tion probabilities are calculated by taking the average of
corresponding values from the Spatial Frequency array
F (u, v) having frequency values for each pixel as Fx,y

and the Local Contrast Array C(x, y) having contrast
values for each pixel as Cx,y . This new array captures a
blended form of both spatial frequency and local contrast
information. The probability P of a pixel at location
(x, y) is calculated as:

Px,y =
Fx,y + Cx,y

2
(11)

This metric provides a measure of ”importance” or
”information richness” at each pixel location. Pixels
with higher values in the probabilities array would
mean that both their spatial frequency and local contrast
are high, making them significant in terms of edges,

(a) (b)

(c) (d)

Fig. 3: Visual representation of extracted features: (a) original
image, (b) spatial frequency, (c) frequency components with
shape/structure info, and (d) local contrast.



texture, and overall complexity. Whereas, the pixels
with lower values are less significant in terms of both
spatial frequency and local contrast. These are probably
smoother areas with less detail.

• Step 5. Normalize Importance Probabilities: Normal-
izing the ”probabilities” array to a range of 0 to 1 is done
using the Min-Max normalization method. First, calculate
the minimum minProb and maximum maxProb values of
the ”probabilities” array.

minProb = min
x,y

(Px,y) (12)

maxProb = max
x,y

(Px,y) (13)

The probabilities are then normalized to the range [0, 1]
using the formula:

P norm
x,y =

Px,y − minProb
maxProb − minProb

(14)

• Step 6. Rank Pixels by Importance: In this step, the
grayscale pixels are ranked by their importance based
on their normalized probabilities. The sorting is done in
descending order, meaning the most important (highest
probability) pixels come first. The pixels ranked on the
basis of importance are visualized in Fig. 4(b), where
yellow edges represent high values of probabilities de-
picting the areas having a lot of information according to
the probability metric (a combination of spatial frequency
and local contrast). These are the areas of the image with
higher texture or edge information. On the other hand,
the blue background represents the areas having less
information according to the probability metric. These are
likely to be smoother, less textured areas of the image.
The ranking is done as follows:

1) The normalized probability matrix P norm(256×256)
is flattened into a vector p′ of length 256× 256.

p′ = Flatten(P norm) (15)

2) The vector p′ is then sorted in descending order as
follows:

psorted = Sort(p′, ’descend’) (16)

3) The original indices corresponding to the sorted vec-
tor psorted are stored in Rimp. These indices indicate
the positions of the pixels in the sorted vector p′.

Rimp = Indices of psorted in p′ (17)

The Rimp array contains the indices of the pixels in
the sorted normalized probability matrix, sorted by
their importance (highest probability first). We use
these indices to prioritize or select pixels for further

Local Contrast

Spatial Frequency

Original Image

(a)

(b)

Fig. 4: Visualization of ranked pixels based on importance:
(a) Information acquisition from spatial frequencies and local
contrast, (b) Visualization of significant and less important
pixels.

processing, based on their calculated importance.

• Step 7. Generate the Permutation Key: A permutation
key K is generated using the Logistic Sine Map. This is a
chaotic map used for generating a sequence of values that
appear highly random. The highly chaotic permutation
key is depicted in Fig. 5(c) and is generated using the
following steps:

1) The number of iterations is set twice the number of
pixels in the input image I .

Iterations = 2× numel(I) (18)

2) The hybrid logistic sine map is defined by:

XN+1 = (L(r,XN )+

S((4− r), XN )) mod 1 (19)

Where L(r,XN ) is the logistic map function
and S((4 − r), XN ) is the Sine Map function.



Specifically, these are defined as:

The Logistic Map: L(r,XN ) = r×XN×(1−XN ).
The Sine Map: S((4−r), XN ) = (4−r)×sin(π×XN )

4 .

By combining these two, the hybrid map becomes:

XN+1 =

(
r ×XN × (1−XN )

+
(4− r)× sin(π ×XN )

4

)
mod 1 (20)

3) This generates a chaotic sequence S. To avoid the
initial transients that may not represent the chaotic
behavior well, only the latter half of the sequence is
taken and the new chaotic sequence S′ is obtained.

S′ = S[end - numel(I) + 1 : end] (21)

4) The values are scaled and rounded to integers to
create a finite digital precision format sequence D.

D = round(S′ × 103) (22)

5) The integer values from D are sorted and their orig-
inal indices are stored in permuteSequence. Then,
the indices of this sorted array are again sorted to
create the unique permutation key K.

permuteSequence = SortIndices(D) (23)

K = SortIndices(permuteSequence) (24)

This generates a unique permutation key K which is
used to map and permute the pixels in the next step.

• Step 8. Map and Permute to Get Scrambled Image: In
this step, we map the ranked list of original indices stored
in Rimp to the generated permutation key K. We then use
this mapped list to rearrange the pixels in the original
image, effectively scrambling it. From the previous steps,
we have two sequences:

– Rimp = [r1, r2, . . . , r256×256] — This is the sequence
of original pixel indices sorted by their ranked im-
portance.

– K = [k1, k2, . . . , k256×256] — This is the unique
Permutation Key.

To create the final permuted indices to get the permuted
image, we rearrange Rimp according to the key K. The
equation for this operation is:

permutedIndices[z] = Rimp[rz] (25)

For z = 1, 2, . . . , 256× 256.
Here, permutedIndices[z] is the zth element in the final
permuted sequence, and Rimp[rz] is the rth

z element in the
ranked sequence.
This is how the ranked pixels are scrambled according
to the unique permutation key, resulting in a permuted or
scrambled image.

III. RESULTS AND ANALYSIS

The proposed permutation scheme uses the intrinsic infor-
mation of the plaintext image to scramble the images in an
effective manner. The proposed scheme has been evaluated for
image permutation analysis and correlation analysis as follows.

A. Permutation Analysis

The ranking-based permutation ensures that the most ”im-
portant” or ”information-rich” pixels are treated differently,
making it more secure. Fig. 5 presents the permutation results
of the proposed scheme depicting the the pixels ranked on the
basis of extracted information, the unique chaotic permutation
key, and the final permuted image. Moreover, the comparison
of the proposed permutation scheme with traditional permuta-
tion schemes is given in Fig.6. It also displays the comparison
of PermutEx with and without applying the feature-based pixel
ranking.

B. Correlation Analysis

Extensive correlation analysis of the proposed scheme has
been carried out. Results of the correlation analysis with
comparison are given in Table I showing an ideal value of
0.000062 for the PermutEx-permuted images. The correlation
between adjacent pixels is displayed in Fig. 7. The correlation
plots are uniformly distributed, which is an excellent indicator
of a good permutation scheme as it shows that the pixel
dependencies have been well diffused.

(a) The Original Image (b) Pixels ranked based on the
important feature-information

(c) The Permutation Key (d) The Final Permuted Image

Fig. 5: Permutation Analysis of PermutEx—the proposed
diffusion scheme.



TABLE I: Correlation analysis of the PermutEx permuted image and comparison with other techniques

Image Horizontal Coeff Vertical Coeff Diagonal Coeff GLCM Correlation Correlation (Orig,
Permuted) – Corr2

Original Baboon Image 0.8824 0.8397 0.7990 0.7915 1
Random row-column
shuffling

0.4493 0.4533 0.2009 0.0412 0.003721

Chaotic row-column shuf-
fling

0.4405 0.4578 0.1970 0.0321 0.028485

PermutEx without feature-
based pixel ranking

0.3265 0.3617 0.1102 0.0223 0.037976

PermutEx with feature-
based pixel ranking

0.0021 -0.0029 0.0022 0.0011 0.000062

(a) Random row-column shuf-
fling (Correlation=0.0412)

(b) Chaotic row-column
shuffling (Correlation=0.0321)

(c) PermutEx without feature-
based pixel ranking (Correla-
tion=0.0223)

(d) PermutEx with feature-
based pixel ranking (Correla-
tion=0.0011)

Fig. 6: Comparison of PermutEx with traditional permutation
schemes and PermutEX with and without applying feature-
extraction-based pixel ranking.

(a) (b)

Fig. 7: Correlation analysis of the PermutEx-permuted image

IV. CONCLUSION

This paper introduced PermutEx, a new technique to scram-
ble pixels effectively. Unlike traditional methods, PermutEx
uses the intrinsic image-information-based features, i.e., spa-
tial frequency and local contrast, to scramble the pixels of
the plaintext image. This feature-driven permutation leads to
effective disruption in correlation of the information-rich areas
within the image. This feature-based ranking makes PermutEx
more secure and effective in term of diffusing the pixels.
PermutEx achieved a very low correlation value of 0.000062
making PermutEx extremely efficient, effective, and secure
method of image permutation and is recommended to be used
in image encryption algorithms as a diffusion technique.
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