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Abstract—In recent years, there has been a significant prolif-
eration of industrial Internet of Things (IoT) applications, with a
wide variety of use cases being developed and put into operation.
As the industrial IoT landscape expands, the establishment
of secure and reliable infrastructure becomes crucial to instil
trust among users and stakeholders, particularly in addressing
fundamental concerns such as traceability, integrity protection,
and privacy that some industries still encounter today. This paper
introduces a privacy-preserving method in the industry’s IoT
systems using blockchain-based data access control for remote
industry safety monitoring and maintaining event information
confidentiality, integrity and authenticity.

Index Terms—Industry Safety, Internet of Things (IoT), Dis-
tributed Ledge (DL), Blockchain, Hyperledger Fabric.

I. INTRODUCTION

Trust infrastructures within IoT networks are important in
maintaining the trustworthiness of the data and of the devices
used. Maintaining data privacy is challenging in centralised
systems, as there is often a lack of policy-based data access
control [1], [2]. By defining and enforcing access policies,
only authorised entities can access specific data, enhancing
confidentiality and safeguarding sensitive information from
potential breaches. This centralised approach allows for fine-
grained control over data access, enhancing privacy protection.

With blockchain solutions, we either have a permission-less
approach to IoT trust, which uses a public ledger, or we can
use a permission approach, such as with Hyperleder Fabric.
Overall, permissioned ledgers can provide a selective access
control mechanism where only trusted participants can access
the distributed ledger, reducing the risk of malicious actors
disrupting the system.

The aim of this paper is to propose an integrated approach
for implementing access control within segmented device and
identity infrastructures for IoT devices. Its core contribution
is the definition and implementation of a blockchain-based
access control mechanism for clear segregation between users
and IoT devices, ensuring robust security, data integrity, and
controlled access through policies.

This paper is organised as follows: Section 2 delves into
current related works, providing context for our paper. Section
3 offers essential background information, covering Hyper-
ledger Fabric, the MQTT protocol, and the publish-subscribe
communication model. In Section 4, we present our system
infrastructure design and its practical implementation. Section
5 conducts an evaluation, encompassing security considera-
tions, data privacy preservation, data integrity, scalability, and

throughput latency. Finally, Section 6 serves as the paper’s
conclusion, summarising our findings and also provides valu-
able suggestions for future research and development.

II. RELATED WORK

The problem with the centralised authentication approach
is that it requires to store authentication data on a centralised
local server, which is prone to a single point of failure [3]. Sim-
ilar to our work, many other approaches proposed blockchain-
based authentication and access control methods [4]. For
instance, the work presented in [4] proposed a conceptual
framework aimed at establishing a data-sharing system that
incorporates access control mechanisms based on blockchain
technology for IoT devices. The system employs three dis-
tinct smart contracts to facilitate the efficient administration
of access control. These contracts include one for access
control provisioning, one for authentication, and another for
decision-making. Nevertheless, the implementation of a public
blockchain like Ethereum in the proposed system will incur
expenses for transaction processing. Similarly, the authors in
[5] proposed a Capability-Based Access Control (CapBAC)
scheme by utilising the public Ethereum blockchain technol-
ogy. The authors proposed to fix some of the BlendCAC
issues using a fine-grained access control model, however,
no cost or performance metric was discussed. Furthermore,
many studies have indicated that Role-Based Access Control
(RBAC) exhibits limitations in terms of flexibility and scala-
bility when confronted with the access control demands of IoT
environments [6]. However, there are still many researches and
studies that have put forth the concept of a blockchain-based
Role-Based Access Control system in different IoT domains,
such as in [7] [8].

Current IoT systems rely on the centralised data manage-
ment model or client-server architecture to handle authentica-
tion and authorisation and to control access to IoT systems and
their data. Therefore, this can put an extra cost on designing
the security architecture of an IoT system due to the high costs
associated with the cloud service that is needed to validate
the identity of devices and applications involved in the IoT
systems [9]. All information and data are gathered and shared
for complete understanding, reliable delivery, and intelligent
processing. This presents issues with respect to transmission
costs, trust, data value, and privacy [10].

Blockchain is a decentralised, distributed ledger technology
that has great potential to tackle the security, privacy, and scal-
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ability concerns of critical infrastructure in the IoT [11]. Since
blockchain is considered an immutable ledger for transactions,
it can track millions of IoT devices and provide highly secure
communications and coordination between them [12]. To use
blockchain technology to secure IoT devices, each device can
have a unique address to send transactions. So, IoT objects
don’t have to trust each other because they use a consensus
algorithm that lets nodes connected to the blockchain work in
a trusted way. IoT devices, gateways, cloud computing, and
blockchain technologies are the four layers of the decentralised
architecture.

III. PASSION PERMISSIONED APPROACH

PASSION integrates Hyperledger Fabric [13], [14] and en-
sures privacy and confidentiality features, enabling participants
to transact securely and share sensitive information selectively.
It offers a high degree of control over the network, allowing
participants to set policies, define roles, and manage access to
the ledger [15].

The main elements of Hyperledger Fabric that are adopted
are (Figure 1):

1) Membership Service Provider (MSP): The MSP is re-
sponsible for managing the certificates and identities of
network participants.

2) Certificate Authority (CA): The CA is responsible for
issuing and validating digital certificates that identify
network participants.

3) Client: The client application interacts with the network
by submitting transactions to peers and querying the
ledger.

4) Channel: Channels are private sub-networks that allow
multiple parties to transact with one another in a secure
and confidential way. Channels allow a subset of nodes
through the anchor node to link different Users/partic-
ipants (organisations) which compose the consortium.
The ledger of a channel can be accessed only by those
organisations that are part of the channel. Therefore,
participants can only see network features based.
Chaincode: Chaincode is the smart contract written in
a programming language that runs on the Hyperledger
Fabric network. Organisations may include different
nodes connected through one channel or multiple (multi-
chaincode). Notably, nodes could have multiple chain
codes (engaged with multi-channel) to store the trans-
action data in an immutable ledger.

5) Peer Nodes: Peer nodes maintain copies of the ledger,
execute transactions, endorse transactions, and participate
in consensus.
• Endorser Peers (Endorsement): In (6), A transaction

proposal is sent to endorsing peers, which simulate
the transaction and validate its correctness according
to the smart contract. If the proposal is endorsed, the
endorsing peers sign it and send it back to the client.

• Orderer Peers (Ordering Service): The endorsed trans-
actions are grouped into blocks and (7) sent to the or-
dering service. The ordering service receives endorsed

transactions from peer nodes and orders them into a
block (Creates a block), which is then broadcast to all
peers in the network (delivers the block to each peer
node).
Consensus: The ordering service uses a consensus
algorithm to ensure that all nodes in the network agree
on the order of the blocks. This ensures that the ledger
is consistent across all nodes in the network.

• Validation Peers: In (8), Peers validate the block and
transactions contained within it, checking the digital
signatures and endorsement policies. If the block is
valid, the transactions are committed to the ledger.

• Update the ledger (9).

A. Hyperledger Fabric-Based IoT Architecture components

The architecture for Hyperledger Fabric IoT includes the
following components:

• Applications: The applications layer includes the software
and services that consume and process the data stored on
the blockchain. This can include data analytics, machine
learning algorithms, and other applications that provide
insights or actions based on the analysis of the data.

• Application Support Layer: The data processing layer
plays a critical role in IoT systems as it enables the
extraction of meaningful insights from the large amounts
of data generated by connected devices. The layer typ-
ically consists of several components, including Data
collection; Data filtering and preprocessing; Data storage;
Data analytics; and Data visualisation and reporting.

• IoT devices/sensors: This layer consists of the physical
devices and sensors that collect data from the environ-
ment.

• Network Layer: The network layer, also known as the
transmission layer, is responsible for managing network
connectivity-related tasks such as authentication, autho-
risation, accountability, and IoT transport management
data. It acts as a bridge between the perception and
application layers, transmitting the data collected from
physical objects. The transmission medium can be either
wireless or wired, and it is responsible for connecting
smart devices, network devices, and networks together.
Moreover, the following are such examples:
– Gateway: The gateway acts as a bridge between the IoT

devices and the blockchain network and is responsible
for collecting data from the devices and sending it to
the blockchain.

– Blockchain network: This layer includes the distributed
network of nodes that form the Hyperledger Fabric
blockchain. The nodes are responsible for processing
transactions, validating data, and reaching consensus.

– Smart contracts: Smart contracts are the business logic
that defines how the data from the IoT devices is
processed, stored, and shared on the blockchain. They
can be used to define data schemas, process data, and
enforce rules for accessing and sharing data.



Fig. 1. Hyperledger Fabric-based IoT and Transaction Flow

Fig. 2. The publish-subscribe IoT communication model with an MQTT
Broker

B. MQTT

MQTT (Message Queuing Telemetry Transport) is a
lightweight and efficient messaging protocol designed for low-
bandwidth, unreliable networks [16]. It enables communi-
cation between devices and applications in the Internet of
Things (IoT) and other scenarios where a simple and efficient
messaging system is needed.

Key features of MQTT include:

• Publish-Subscribe Model: MQTT uses a publish-
subscribe model, where devices can publish messages to
topics, and other devices (subscribers) can receive those
messages by subscribing to specific topics.

• QoS Levels: MQTT supports three Quality of Service
(QoS) levels to ensure message delivery reliability:
– QoS 0: At most once - Fire and forget; no acknowl-

edgment is sent.

– QoS 1: At least once - Messages are guaranteed to be
delivered, but duplicates may occur.

– QoS 2: Exactly once - Messages are ensured to be
delivered only once and in the correct order.

• Lightweight: MQTT is designed to be efficient and
lightweight, making it suitable for resource-constrained
devices and low-bandwidth networks.

• Persistent Session: MQTT supports persistent sessions,
allowing subscribers to receive messages sent while they
were offline when they reconnect.

• Retained Messages: Publishers can set messages as ”re-
tained,” meaning that the last published message on a
topic will be saved and delivered to new subscribers when
they connect.

• Scalability: MQTT is scalable and can support a large
number of clients, making it suitable for various IoT and
real-time messaging applications.

MQTT has become widely used in IoT applications due
to its simplicity, efficiency, and ability to handle unreliable
network conditions. It has several implementations and is
supported by many platforms and programming languages.

C. The publish-subscribe communication model
The publish-subscribe communication model consists of

three main components: publishers, subscribers, and a message
broker (or messaging system).

Publishers are responsible for generating and sending mes-
sages to the messaging system, and they do so without
having knowledge of the subscribers’ identities [17]. Instead,
publishers publish messages on specific topics. On the other
hand, subscribers express their interest in receiving messages



Fig. 3. Industrial data security with an MQTT Broker, using Hyperledger
Fabric, maintaining data integrity and privacy.

related to particular topics and register themselves with the
messaging system accordingly. When a publisher sends a
message to a topic, the message broker acts as an interme-
diary. It receives the message and ensures that all registered
subscribers interested in that topic receive the message. The
message broker facilitates communication between publishers
and subscribers without requiring direct interaction between
them. This decoupling allows for a flexible and scalable
communication approach, making the publish-subscribe model
well-suited for various applications, including real-time data
streaming, Internet of Things (IoT) systems, financial services,
and social media platforms.

In PASSION, Hyperledger Fabric clients play the roles of
subscribers and publishers, utilising public and private keys
for secure interactions with the MQTT broker. Subscribers
connect to the broker to subscribe to specific topics and
receive data from publishers, which are resource-constrained
IoT devices like sensors. Publishers authenticate with the
MQTT broker to publish their sensor readings on designated
topics. When establishing a connection, both subscribers and
publishers receive a challenge from the smart contract, ensur-
ing only authorised addresses receive it. Using their private
keys, they cryptographically prove their identity by signing
the challenge and interacting with the smart contract. This
challenge acts as a one-time password, providing secure access
to the broker. By integrating Hyperledger Fabric, our system
ensures a reliable and secure communication model suited for
IoT and real-time data applications.

IV. IMPLEMENTATION

In this section, we showcase the proposed infrastructure
employed in our study, including the setups and decision-
making processes. We also delve into the specifics of the
implementation that influenced our experiments on the net-
work model. We have carried out a real-life application, which
entails utilising IoT sensors to acquire environmental data.

1) Environment Setup and Test: This section includes net-
work performance and functionality tests. A network has
been set up to demonstrate the integration of blockchain

TABLE I
THE IOT NODES PRESENT IN OUR EXPERIMENTAL NETWORK

Client IP Adress Operation System Fabric Version
Org1-TLS-CA 10.0.1.10 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Org1-CA 10.0.1.20 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
peer@org1 10.0.1.30 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Org2-TLS-CA 10.0.2.10 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Org2-CA 10.0.2.20 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
peer@org2 10.0.2.30 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
IoT-TLS-CA 10.0.4.10 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
IoT-CA 10.0.4.20 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
peer@IoT 192.168.10.30 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Orderer-TLS-CA 10.0.5.10 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Orderer-CA 10.0.5.20 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0
Solo@Orderer 10.0.5.30 Ubuntu 20.04 Linux 2.4 (64-bit) 2.3.0

and IoT, comprising three organisations: Org1, Org2 and
Org3 (IoT). The application client receives camera streaming
data, temperature, humidity, and gas data from the MQTT
broker and updates the blockchain network accordingly. The
organisation’s TLS-CA server offers TLS (Transport Layer
Security) to all blockchain nodes, including the ordering and
CA (Certification Authority) servers and users, to secure
the network connection. In addition, X509 certificates are
issued to all the members and actors in the organisation’s
blockchain network by the CA server. Then, the benchmark
engine interacts with chain code to deploy, run, analyse, and
generate network performance reports. Table I defines the
network nodes present in our experimental network. Overall,
Hyperledger Fabric is run within a Docker container on a
Ubuntu instance.

2) Interaction System Implementation: The implementation
extends the asset-transferbasic/chain code-javascript using a
Solo Ordering Service, provided by the Hyperledger Fabric
and test network. This performance tests the smart contract
on a Fabric network using Caliper. The basic workflow of this
whole system is:

Implementation of smart contracts: We used Hyperledger
Fabric smart contracts as a proof of concept (chaincode).
The Hyperledger Fabric network was selected because of
the features mentioned that related to its unique design as
modular and extensible, delivering confidentiality, scalability
and privacy. We employ the JavaScript programming language
to deploy smart contracts in Hyperledger Fabric systems.
Finally, we test it by installing it, approving its definition,
committing it to the channel, and invoking the chain code.
By executing the given chain code, user interaction within the
Hyperledger Fabric ledger is feasible. Notably, One node can
have multiple smart contracts, making it possible to monitor
different sensor readings from this node (the user).

The chain code is in charge of dealing with various data
queries. As a result, the system implementation begins by
defining certain chaincode operations, such as querying and
retrieving data lineage. The chain code allows the authorised
user to get a URL using his identity to obtain sensor informa-
tion. In other words, sensor information in the ledger is only
accessible to users who have been given permission to use
it since the chain code can only give out authority after the
user has been verified. The chaincode is intended to facilitate



Fig. 4. Running the Caliper benchmark and obtaining the performance report for the IoT network

various data and traceability processes inside the ledger and
attached-chain storage. The proposed system’s chain code-
specific operations include storing data on an item’s world
state, querying item checksums, retrieving an object with the
relevant transaction ID, extracting the version of an object
based on its transaction ID, retrieving the lineage of the
data item, retrieving the history of a data object, querying
the key-range of the list of items (AssetsID), retrieving the
specific sensor’s information, and providing a specific version
of an object. Assets represent the variable value of items that
may be exchanged on blockchain platforms during transaction
execution. The implemented system is made up of distributed
peer nodes that serve as the hub for communication among
network parts, as shown in Figure 1. The suggested model’s
performance was tested in terms of system throughput, send
rate, latency, and resource usage (memory, CPU, network).
The scope of the investigation was expanded to examine the
latency and scalability of different transaction loads, transac-
tion duration TPS, and Asset batch sizes.

The benchmark involves evaluating ’getAssetsFrom- Batch’
gateway transactions for the fixed-asset smart contract; the
endorsement policy and the network are implemented within
LevelDB and CouchDB state databases. Fabric supports two
alternatives for a key-value store, CouchDB and LevelDB, to
maintain the current state. Both are key-value stores; while
LevelDB is an embedded database, CouchDB uses a client-
server model (accessed using a REST API over a secure
HTTP) and supports a document/JSON data model. Each
transaction obtains a collection of assets from the world
state database, which is comprised of a random selection
of available UUIDs (Universal Unique identifiers). Following
rounds, increase the batch size of assets acquired from the
world state database with a fixed load.

The measurements were carried out using a command-
line interface (CLI) by configuring the Caliper benchmarking
tool using the benchmark workspace, network module, and

workload to monitor the system’s performance. The test was
carried out by simulating a specific transaction load through
Org1 “User A” and Org2 “User B” and IoT (Org3). The
edge server saved the identities of all connected nodes and
authenticated them inside a trustworthy Hyperledger Fabric
environment by applying the mutual authentication mecha-
nism. The suggested model’s performance was evaluated for
a variety of workloads and environmental conditions. Further-
more, a diverse set of interaction performances was observed
to investigate the improvement or deterioration induced by dif-
ferent model parameters and setups. We evaluated Hyperledger
Fabric V2.3.0 benchmarking, real-time data reporting, and
resource consumption statistics were gathered and monitored.
The following steps provide examples of various functions
through Hyperledger infrastructure configuration and network
performance benchmarking: 1. Bring up the test network and
create the channel; 2. Package and install the smart contract;
3. Approve a chain code definition; 4. Commit the chain code
definition to the channel; 5. Invoke the chaincode; and 6. Run
Caliper Benchmark and get the network performance report
by monitoring IoT network latency, send rate and throughput
as shown in Figure 4

V. EVALUATION

Hyperledger Fabric IoT architecture can provide several
benefits, such as improved security, scalability, and trans-
parency. It can also enable the development of new business
models and services that leverage the data collected from IoT
devices. However, implementing this architecture requires a
deep understanding of both blockchain and IoT technologies,
as well as experience in integrating and deploying these
technologies in a real-world setting.

IoT devices generate various types of data, most of which
is unstructured. For instance, cameras capture images and
videos, microphones record external sounds, and sensors de-
tect physical signals like gas, temperature and humidity, all



of which are converted into digital data. These real-time data
cannot be directly stored in relational databases; they must
be pushed promptly to authorised users. Voice and video data
are streamed, encoded, and sent to the cloud server via WiFi
or 4G, resulting in the generation of a resource URL that
users can use to access the data. On the other hand, for
sensor data, the device sends the data to a topic through
an MQTT-based service or other protocols, and the server
pushes the message to the client after authorising it through
the Hyperledger Fabric network. This kind of data is mainly
used to control IoT devices and perform various operations.
Clients can send requests to the server through a restful API
based on HTTP(s), and the server can send control signals
back to the device through MQTT or other protocols:

• Data Privacy-preserving. Data privacy and data trad-
ing are crucial in today’s digital landscape. Blockchain
technologies, such as Hyperledger Fabric, enhance data
privacy by securely storing and sharing information in
a decentralised and immutable manner. Access control
features in Hyperledger Fabric ensure that only authorised
parties can access and modify data and smart contracts.
In our proposed model, Hyperledger Fabric channels
facilitate secure data trading between broker users with
granular access control, granting specific permissions to
individual users or organisations. This empowers organi-
sations to protect sensitive information and securely trade
data.

• Data integrity. Ensuring data integrity is crucial for in-
dustrial safety, with goals of assurance, completeness,
consistency, and dependability throughout the data life
cycle. Blockchain’s decentralised system, using hashed
blocks, guarantees data integrity and mitigates challenges
from cloud services connected to IoT devices. Config-
uring IoT devices as direct blockchain nodes enhances
data reliability, removing human intervention and external
system reliance. This approach reinforces the integrity of
industrial IoT data, promoting a secure and trustworthy
environment.

• Scalability, Throughput and Latency. Hyperledger Fab-
ric’s Execute-Order-Validate method, which separates
transaction execution and ordering, is a key advantage.
This separation boosts scalability, enhances performance,
and reduces node workload. Unlike other blockchain
designs, Fabric’s approach introduces parallel transaction
processing, addressing smart contract non-determinism.
This results in higher throughput and lower latency,
creating an efficient and high-performance blockchain
ecosystem. In summary, this approach promotes privacy,
trust, scalability, and access control in secure IoT data
systems, setting the stage for secure information exchange
while maintaining privacy and trust.

VI. CONCLUSION

The PASSION approach defines permissioned approach to
access control for segmented Devices and identity for IoT
networks and allows an entity to carefully control the usage

of devices and data within a trusted infrastructure. As part of
our future work, we plan to expand the IoT network, evalu-
ate hardware capabilities, and explore innovative consensus
methods and scalability for improved data processing and
responsiveness during safety-critical events.
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