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Abstract—The evolution of wireless mobile networks towards
cloudification, where Radio Access Network (RAN) functions can
be hosted at either a central or distributed locations, offers
many benefits like low cost deployment, higher capacity, and
improved hardware utilization. Nevertheless, the flexibility in the
functional deployment comes at the cost of stringent fronthaul
(FH) capacity and latency requirements. One possible approach
to deal with these rigorous constraints is to use FH compression
techniques. To ensure that FH capacity and latency requirements
are met, more FH compression is applied during high load, while
less compression is applied during medium and low load to
improve FH utilization and air interface performance. In this
paper, a model-free deep reinforcement learning (DRL) based
FH compression (DRL-FC) framework is proposed that dynam-
ically controls FH compression through various configuration
parameters such as modulation order, precoder granularity, and
precoder weight quantization that affect both FH load and air
interface performance. Simulation results show that DRL-FC
exhibits significantly higher FH utilization (68.7% on average)
and air interface throughput than a reference scheme (i.e. with
no applied compression) across different FH load levels. At the
same time, the proposed DRL-FC framework is able to meet the
predefined FH latency constraints (in our case set to 260 µs)
under various FH loads.

Index Terms—C-RAN, fronthaul, machine learning, reinforce-
ment learning, compression, performance evaluation.

I. INTRODUCTION

Centralized Radio Access Network (C-RAN) deployments
[1] offer substantial cost savings by allowing the dissagre-
gation of RAN functionalities where the processing of such
functionalities is split between the remote radio units (RRU),
close to the antenna masts, and the baseband unit (BBU), at
some centralized location. Then, a centralized pool of BBUs
can exploit statistical multiplexing gains by jointly processing
RAN functions from a large number of RRUs, under the
assumption that not all RRUs will be subject to high-load con-
ditions simultaneously. This allows a better resource utiliza-
tion and dimensioning than non-centralized (a.k.a. distributed)
RAN options, where all processing is done locally, and where
each BBU should be dimensioned for peak requirements of
each RRU. In addition, C-RAN offers, among other features,
increased maintainability, flexibility and upgradability, as well
as improved and fast coordination features such as CoMP,
inter-cell handover, etc. [1], [2]. In contrast, C-RAN may
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cause high data rate requirements on the fronthaul (FH), which
interfaces between the RRU and the BBU, as well as increased
latency budget constraints in the overall signal processing
chain [2]. Indeed, a major challenge in C-RAN deployments
is the huge demands on bandwidth aggregation required for
the FH, especially for specific split options. As noted in [3],
for a fully centralized split in a 5G New Radio (NR) system,
with 100 MHz bandwidth and 64 antennas, the required FH
transmission rate exceeds several hundreds of Gbps, for a sin-
gle cell. A thorough characterisation, modelling and evaluation
of functional splits in a flexible RAN for dynamic functional
split optimisation in 5G and beyond systems is presented in
[4]. A site serving several cells would require a yet increased
aggregated FH data rate. For this, more favourable splits can
be defined [5], combined with data compression methods [6]–
[8] that can help alleviate the data rate demands over the FH
link.

Current literature has tackled the aforementioned challenges
in several ways. In [9], a graph-based framework is proposed
to effectively reduce the FH cost through properly splitting
and placing baseband processing functions in the network.
In [6], a lossless compression technique for the FH is pre-
sented, which depends on the ratio of occupied resources.
Authors in [10] provide insights on FH compression based
on so-called modulation compression whereby the modulation
constellations are conveniently encoded so as to reduce the
the required FH capacity, reportedly up to 82%. Work in [8]
combines modulation compression with scheduling strategies
to further optimize the use of FH-limited deployments. Joint
FH compression and precoding design is proposed in [11],
where two different splits, determining the location of the
precoder, are investigated. Noteworthy, the previous works are
based on conventional mathematical optimization approaches
that, in general, exhibit very high complexity to obtain optimal
solutions and heavily rely on the availability of underlying
models, which are difficult to acquire for realistic scenarios.

Accordingly, we resort to Machine Learning (ML) ap-
proaches to tackle the FH compression optimization problem.
The use of ML techniques to address complex optimization
problems in wireless networks has been widely covered in the
literature, see e.g. [12] and references therein. Notably, regard-
ing the C-RAN domain, in [13], UE slicing and functional split
optimization has been investigated using supervised learning,
though requiring high quality labels which are difficult and
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costly to obtain in practice. A framework based on model-free
reinforcement learning (RL) to jointly select the most suitable
split and computing resource allocation is proposed in [14].

In this paper, we will address the configuration and sub-
sequent optimization of the FH link in the DL of a C-
RAN deployment. We propose model-free deep RL-based FH
compression (DRL-FC) framework as a data-driven solution
framework that dynamically adjusts several parameters related
to compression schemes, including modulation order, precoder
granularity, and precoder weight quantization. All of this, with
the objective of maximizing FH utilization and herewith maxi-
mize air interface throughput while keeping FH latency below
some predefined target (in our case 260 µs). Compared to
previous work, to the best of our knowledge, our contribution
is novel in that it addresses the problem of FH compression
optimization with learning-based methods while at the same
time targeting at guaranteeing latency constraints.

The remainder of this paper is organized as follows. In
Section II we provide a description of the assumed C-RAN
scenario, outline our simulation setup and describe our system
models. The optimization problem formulation is described in
Section III. Herein we derive a RL problem formulation and
show that it is equivalent. Subsequently, we derive a reward
function, mapping it to the problem we are trying to solve, as
well as some additional techniques we use in order to stabilize
and speed-up learning. Hereafter, in Section IV, we provide
results of our experiments with an emphasis on how much
throughput gain we could expect compared to other more static
policies. Lastly, in Section V we outline some concluding
remarks.

II. SCENARIO AND SYSTEM MODEL

A. C-RAN scenario description

We consider the DL direction in a Time Division Duplex
(TDD) system following the 3GPP NR standard. In the fre-
quency domain, a chosen subcarrier spacing (SCS), defined as
∆fSCS = 15 · 2µ (kHz) with SCS index µ = {0, 1, 2, 3, 4},
partitions the available bandwidth B (Hz) into a number of
N PRB

B,µ Physical Resource Blocks (PRBs). Each PRB contains
12 subcarriers. In the time domain, the TDD frame-structure
periodically cycles over time slots, carrying DL and UL data,
each with a duration of 14 symbols, i.e. Tµ

slot = 14 · Tµ
symb,

with Tµ
symb the duration of a symbol. NR also defines the num-

ber of subcarrier-symbol pairs (a.k.a. Resource Elements, REs)
contained in a single PRB during the duration of a slot, thus
NRE = 12 · 14 = 168. Multi-User MIMO (MU-MIMO) with
Nant at the transmitter is supported via digital beamforming
by precoding the user data with pre-calculated weights based
on channel estimations from UL pilot measurements [15]. This
allows up to υlay ≤ Nant spatially multiplexed users to be
scheduled at the same time, over the same frequency resource.

As mentioned in Sec. I, we draw our attention towards the
C-RAN architecture [1], where the baseband processing for a
number of K geographically distributed RRUs (each serving a
cell) can be split between a centralized location, where a pool
of BBUs reside, and each of the said RRUs. Fig. 1(a) depicts

Fig. 1: The considered scenario with the (a) physical architecture; (b) logical
architecture and (c) functional architecture.

the physical architecture for a simple K = 3 cell case scenario,
where the RRU and BBU are interconnected via the FH. The
FH, characterized by an available FH capacity of CFH (Gb/s),
carries the aggregate DL generated traffic towards all three
cells in this example. Accordingly, the term split will be used
hereafter to describe the amount of baseband processing func-
tions residing in each of the aforementioned locations. The FH
may consist of a packet-oriented networked system, including
switches and links following a specific networking protocol,
e.g. eCPRI [3]. From a logical architecture perspective, see
Fig. 1(b), and for each cell served by a RRU, we can consider
the Baseband Low (BBL) entity, residing at each RRU, and
the Baseband High (BBH) entity residing at the pool of BBUs.
Similar to [6], [15], in this work we consider a DL split
where the encoded user data and the precoding weights are
sent separately over the FH (see Fig. 1(c)). The encoded user
data (in bits) can be mapped to the corresponding modulated
symbols at the BBL, thus experiencing no quantization errors
over the FH. The precoding weights however, which are
complex-valued, need to be quantized with some bit resolution
bw, and are therefore prone to quantization errors.

B. FH compression configuration

The FH is usually dimensioned taking into account the sta-
tistical multiplexing gain due to the spatial traffic randomness
at different cells in a given area [16]. In practice, this means
that the FH is underdimensioned, i.e., it cannot uphold the
transmission of peak data rates towards all fully-loaded cells
simultaneously. Then, in order to keep the FH throughput
below the dimensioned capacity, compression methods can be,
and have been, introduced. In particular, three of such methods
will be considered in this paper. Firstly, the modulation order,
which in NR is given by the set QNR = {2, 4, 6, 8} bit/symbol



[17], can be restricted to some maximum value q ∈ QNR so
that symbols are represented with fewer bits, thus lowering the
FH throughput. This will, of course, have an impact on the
air interface throughput, but its use can be limited to specific
time instants where the FH cannot support the offered traffic.
Second, we can modify the bitwidth bw ∈ N (expressed in
bits) for precoding weights used to quantify and represent
complex-valued samples for their transmission over the FH.
Finally, one can tune the sub-band precoding granularity, rw,
which reflects the number of subcarriers that can be assumed to
share similar channel conditions and therefore admit the same
precoding weight value [6]. We define the sub-band precoding
granularity as the number of consecutive PRBs being applied
the same precoding weight. For example, rw = 1 indicates
that each PRB in the entire bandwidth will be precoded with
its own distinctive weight, whereas rw = 2 means that two
consecutive PRBs will be precoded with the same weight
(effectively halving the weight payload to be transmitted over
the FH), and so on.

Given FH compression will encompass some degree of air
interface performance degradation, it is important to only make
use of it when the situation requires it, i.e., when the FH
utilization (the ratio between used and available FH capacity)
is high and there is risk of not being able to deliver packets in
time over the FH. At medium and low FH loads, compression
should be reduced leading to increased, yet below limit, FH
utilization and consequently better air interface performance.
Maximisation of the FH utilization constrained on FH latency
is therefore targeted as the main optimization criteria hereon.

C. FH utilization

With the assumed functional split given in Sec. II-A, the
FH will carry the aggregated traffic towards the different cells,
which comprises data payload and precoding weights. The data
payload (in bits) to be delivered at a given time slot t intended
for the cell k is given by:

Nd
t,k = NRE · υlay ·N PRB

t,k · qt,k, (1)

where υlay, NPRB
t,k , and qt,k denote number of layers, number

of the allocated PRBs for a given slot t and cell k, and
modulation order for slot t and cell k, respectively.

In a similar way, the number of precoding weight bits
transmitted at slot t towards cell k can be obtained as follows:

Nw
t,k =

⌈
N PRB

t,k

rwt,k

⌉
· υlay ·Nant · bwt,k, (2)

with rwt,k, Nant, and bwt,k, the precoder granularity, the number
of antennas, and the weight bit quantization, respectively.

The FH data rate at slot t for cell k is given by:

RFH
t,k =

1

Tµ
slot

(
Nd

t,k +Nw
t,k

)
, (3)

where Tµ
slot is the slot duration.

Finally, the average FH utilization over T slots and K cells
can be calculated as follows:

ρ =
1

T

T∑
t=1

K∑
k=1

ρFH
t,k =

1

T

T∑
t=1

K∑
k=1

RFH
t,k

CFH
, (4)

with ρFH
t,k the FH utilization for slot t and cell k. CFH and K

denote the FH capacity and the number of cells sharing the
FH, respectively.

III. OPTIMIZATION FORMULATION AND PROPOSED
DRL-FC FRAMEWORK

Besides the functional split, other parameters might affect
the system performance and FH load. Therefore, finding the
optimal configuration of the system that maximizes the average
FH utilization under a FH latency constraint is a difficult
task, more so in a highly dynamic environment. For the DL
direction, FH latency is defined as the time elapsed between
a packet being sent by the BBH and its reception at the
corresponding BBL. As mentioned earlier, in this paper we
focus on the DL transmission and aim to maximize the average
DL FH utilization while keeping FH latency under a certain
threshold.

Let ct,k = (qt,k, b
w
t,k, r

w
t,k) denote the compression configu-

ration and Lt,k the FH latency at slot t for cell k. We denote
τ = max

t,k
Lt,k as the maximum FH latency observed over T

slots for K cells. The problem formulation can be written as
the following constrained optimization problem:

max
c1,1,...,cT,K

ρ, (5)

s.t.

P
(
τ > τmax

)
≤ δ, (6)

K∑
k=1

ρFH
t,k ≤ 1, qt,k ∈ Q, bwt,k ∈ Bw, rwt,k ∈ Rw. (7)

Here, τmax denotes the maximum allowed FH latency, and
Q, Bw, along with Rw are the sets of used modulation
orders, weight bits, and precoder granularities, respectively.
The first constraint (6) ensures that the probability of FH
latency surpassing maximum allowed latency (τmax) during
T slots and K cells does not exceed a specified target δ.

In general, finding the optimal solution for the constrained
optimization problem (5)-(7) is computationally challenging.
Furthermore, it is very difficult to obtain an accurate close-
form expression for the FH latency due to dependency on
many parameters such as functional split, FH topology, switch
implementation etc. Then, a numerical evaluation of the FH
latency, i.e., Lt,k, will be obtained through our in-house
simulator, as will be explained in Section IV.

We aim to solve the constrained optimization problem (5)-
(7) via a model-free RL scheme, which treats the underlying
system as a black-box and requires neither a system model
nor collection and labeling of data, unlike supervised learning
models. Next, details of the proposed scheme are presented.



A. The proposed DRL-FC framework

Recalling from Sec. III, the compression configuration is
controlled via three different parameters: qt,k, bwt,k, and rwt,k.
Then, the system state can be defined as:

st = {ρFH
t,k, Lt,k, qt,k, b

w
t,k, r

w
t,k|k = 1, 2, 3...K}, (8)

which comprises the FH utilization, the FH latency and the
configuration at slot t and cell k. The action at time t is defined
as a change in configuration as follows:

at = {∆qt,k,∆bwt,k,∆rwt,k ∈ {−1, 0, 1}|k = 1, 2, ...K}. (9)

Here, ∆qt,k, ∆bwt,k, and ∆rwt,k denote changes in parameters
qt,k, bwt,k, and rwt,k, respectively. More specifically, ∆qt,k = −1
causes a change to a lower modulation order, ∆qt,k = 1 means
moving to higher modulation order while ∆qt,k = 0 implies
no change. Similar applies to ∆bwt,k and ∆rwt,k.

Let |Q|, |Bw|, and |Rw| denote cardinality of the set of
values for Q, Bw, and Rw, respectively. The cardinality of
action space A for K cells is then given by:

|A| = (|Q| × |Bw| × |Rw|)K . (10)

In view of this, the action space size can get very large, even
for a moderate number of parameter values. For example, for
|Q| = 2, |Bw| = 7 and |Rw| = 3, the total number of possible
actions is |A| = 42K . Assuming all cells experience similar
load and that we change one parameter at a time for each cell,
the number of possible actions is reduced to |Ã| = 7, which
is reasonable for efficient Q-learning implementation.

Next, we reformulate the average horizon problem of (4)-
(5) into an equivalent discounted infinite horizon problem. In
order to incorporate the above constraints, the Lagrangian can
be applied to formulate an optimization problem [18]. We can
express the Lagrangian via a discounted sum over a reward
function rλ(st, at) as:

min
λ>0

max
π
L(π, λ) = E

[ ∞∑
t=0

γtrλ(st, at)
∣∣∣π], (11)

where

rλ(st, at) =

K∑
k=1

ρFH
t,k + λg(st), (12)

g(st) = 1(τ < τmax)− d. (13)

We choose d in accordance with [19] to ensure the optimal
policy π∗ does not violate the constraint (6). Discounted
infinite horizon problems are known to be equivalent to the
average reward problems with γ sufficiently close to 1 [20].

The Lagrangian in (11) can be solved with RL techniques
through alternating between optimizing over the policy and the
Lagrange multipliers [18]. Due to the discrete action space, we
use value-based methods which are more sample-efficient than
policy gradient methods [21], [22]. We also set the Lagrange
multipliers to 1, as FH utilization for K cells at slot t is upper
bounded by 1, see (7). We do this to avoid having to optimize
the Lagrange multiplier in parallel with the policy, which we

found in our experiments to be very challenging. In DQN we
define our training objective as:

JQ = E(si,ai,s′i)∼D

[1
2

(
yθ̄(si, ai, s

′
i)−Qθ(si, ai)

)2]
, (14)

where yθ̄ is the Bellman backup [22] which in this work is
modified to be the Double Deep Q-Network (DDQN) [23]
targets. We also utilize prioritized experience replay [24] and
Boltzmann exploration which is the behaviour policy given by:

βα(a|st) =
eQ(st,a)/α∑
b∈A eQ(st,b)/α

. (15)

The constant α is the temperature which controls the entropy
of the distribution and is annealed towards zero during the
training. The distribution will tend towards the greedy policy
for α→ 0. In our experiments these techniques had the most
impact on the learning speed/performance of the algorithm and
are therefore highlighted in this work. The training procedure
is summarized in Algorithm 1.

Algorithm 1 DRL-FC based on DDQN with prioritized
experience replay and Boltzmann exploration.

Require: θ (Weights), α (Temperature)
1: θ̄ ← θ
2: for each environment step do
3: at ∼ βα(a|st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D∪{(st, at, st+1)}%Append experience to buffer
6: end for
7: for each iteration do
8: (si, ai, s

′
i) ∼ D %Sample from the experience buffer

9: Compute importance weights w and estimate JQ, ac-
cording to (14)

10: θ ← θ − η∇JQ %Gradient update
11: θ̄ ← (1− τ)θ̄ + τθ
12: end for
13: return θ

IV. NUMERICAL EVALUATION

We conduct system-level simulations to evaluate the scenario
explained in Section II-A. For this, an in-house developed
BasebAnd System Simulator (BASS) based on ns-3 has been
used which was run on a 40-core 2.8 GHz Intel(R) Xeon(R)
CPU ES-2680 with 250 GB of RAM memory. BASS models
the DL transmission of data and precoding weights between
the BBH and the BBL via a FH based on the eCPRI protocol.
BASS receives configuration messages from the AI controller
and can provide various key performance indicators (KPIs)
to it, e.g., air interface throughput, FH utilization, and FH
latency. In this way, BASS acts as the environment for the RL
agent that resides in the AI controller. The new state reflecting
the impact of the taken action is signalled from BASS to the
AI controller via the measured KPIs. The system parameters
and values used for the simulations are shown in Table I.
The number of scheduled PRBs (N PRB

t,k ) is randomized at each



(a) Medium load, N PRB
= 175. (b) High load, N PRB

= 273.

Fig. 2: Behaviour of DRL-FC and comparison to the reference scheme for (a) medium load and (b) high load. The heat maps show how many cells use a
certain compression configuration. DRL-FC converges to a fixed configuration.

TABLE I: Simulation parameters.

Parameter Symbol Value
Bandwidth B 100 MHz

Number of available PRBs N PRB
B,µ 273

Number of scheduled PRBs N PRB
t,k 1. . . 273

variance of scheduled PRBs σN PRB 1
Number of REs per RB NRE 12× 14 = 168
Subcarrier spacing index µ 1 (∆fSCS =30kHz)

Symbol duration Tµ
symb 33.33 µs

Slot duration Tµ
slot 0.5 ms

Number of cells K 3
Number of antennas Nant 64

Number of layers υlay 12
Modulation order qt,k Q = {6, 8}

Number of weight bits bwt,k Bw = {16, . . . , 22}
Precoder granularity rwt,k Rw = {1, 2, 4}

Max. latency safety parameter δ 10−3

Max allowed latency τmax 260 µs
FH capacity CFH 25 Gb/s

Discount factor γ 0.95
Q learning rate η 10−3

Soft update frequency κ 5 · 10−3

Number of parameters in NN 1.8 · 106

slot and for different cells according to a truncated Gaussian
distribution, i.e., N PRB

t,k ∼ min(N PRB
B,µ ,N (N

PRB
, σN PRB)). Here,

N
PRB

and σN PRB denote the mean and the variance of scheduled
PRB number, respectively. For the compression configuration
ct,k different values can be chosen by the DRL-FC scheme
according to the allowed parameter sets Q, Bw, along withRw

defined in Table I. The DRL-FC scheme will select the most
suitable compression configuration parameters to maximize
the FH utilization while meeting the specified FH latency
constraint. We will compare the DRL-FC scheme performance
against a reference scheme in which a static compression
configuration is applied to guarantee FH capacity is below
CFH = 25 Gb/s under full load conditions. Python’s PyTorch
library has been used for automatic differentiation.

Fig. 2 shows the behaviour of the DRL-FC scheme for
medium and high load. Specifically, top-most subplots show
the main KPIs provided by BASS against the simulation

Fig. 3: Average FH utilization for DRL-FC and reference scheme against
mean PRB number (N PRB). The shaded regions show two sample standard
deviations. The black dashed arrows show the gain in comparison to the
reference policy, the annotations are the percentage gain compared to the
reference policy.

time, namely, the average FH utilization, FH latency and
air interface throughput. Bottom-most subplots, on the other
hand, illustrate, via a heat map, the number of cells with
a certain compression configuration (i.e. modulation order,
precoder granularity, and precoder weight bitwidth) as per the
utilized DRL-FC scheme. For medium load, see Fig. 2a, the
modulation order is set to qt,k = 6 for all cells, while precoder
granularity starts with rwt,k = 4 for all cells and then cell-
wise moves to lower granularity values, changing first from
rwt,k = 4 to rwt,k = 2 and then from rwt,k = 2 to rwt,k = 1
until reaching a steady configuration with rwt,1 = rwt,2 = 2
and rwt,3 = 1 after t exceeds roughly 20 timesteps (×10
Tslot). Similar behaviour can be observed also for the weight
bitwidth, where initially all cells use bwt,k = 16 bits and then
cells one by one move to higher bitwidth values until a stable
configuration is reached, i.e., bwt,k = 20 bits for all cells. As
observed in Fig. 2a, moving to lower precoder granularity and
increasing the precoder weight bitwidth leads to higher FH



utilization (top-left subplot of Fig. 2a) and higher air interface
throughput (top-right subplot of Fig. 2a) but also FH latency
increases (top-center of Fig. 2a). Fig. 2b shows the high load
case, where it can be seen that using qwt,k = 6 and rwt,k = 4 for
three cells as well as bwt,k = 16 bits for two cells and bwt,k = 17
bits for one cell maximizes the FH utilization (see top-left
subplot of Fig. 2b) while satisfying maximum FH latency
constraint (top-centre subplot of Fig. 2b). For both medium
and high load DRL-FC is compared to a reference scheme,
which is dimensioned for the maximum FH load, i.e., for the
case that all 273 RBs are scheduled and ensures that FH rate
does not exceed the FH capacity CFH = 25 Gb/s. Clearly, DRL-
FC outperforms the reference scheme both in terms of average
FH utilization and air interface throughput while satisfying the
maximum latency constraint.

Fig. 3 depicts the average FH utilization against the average
number of occupied PRB for both the DRL-FC and the refer-
ence scheme. As expected, with increasing load, i.e., number
of scheduled PRBs, the FH utilization increases for both
the proposed solution framework and the reference scheme
until it reaches maximum for 273 PRBs. DRL-FC exhibits
significantly higher FH utilization compared to the reference
scheme over the wide range of scheduled PRB values due
to better adaptability to varying FH loads. In particular, the
highest observed FH utilization gain is obtained for a mean
PRB number of N

PRB
= 50 PRBs, with a gain of 121%. By

examining Fig. 3 we extract that the average FH utilization
is improved 68.7% on average, when using DRL-FC with
respect to the reference case. As expected, when approaching
high PRB loads, the FH utilization of DRL-FC converges to
reference scheme.

V. CONCLUSIONS

In this paper, we have investigated an adaptive FH com-
pression scheme which can operate under latency constraints
and limited FH capacity. We have formulated this problem
mathematically as a constrained optimization problem, aimed
at maximizing the FH utilization constrained on FH latency
through controlling the modulation order, precoder granularity,
and precoder weight bitwidth. Finding the exact solution is
hard and computationally expensive as it is a combinatorial
problem and requires accurate modelling, which is very diffi-
cult to obtain for realistic scenarios. Then, we have proposed a
DRL-FC scheme as a data-driven solution framework, which
considers the underlying system as a black-box and requires no
model of the environment. The simulation results have shown
that DRL-FC successfully learns a FH compression policy
that maximizes FH utilization, and consequently air inter-
face throughput, while satisfying some FH latency constraint
independent of FH load. The proposed solution framework
outperforms a reference scheme both in terms of FH utilization
and air interface throughput. On average, the FH utilization
is improved by 68.7%. As a future work, we aim to expand
the action space to account for uneven cell load scenarios and
per-user compression configurations. This will require a policy
gradient approach due to the increased size of action space.

In addition, validating our framework over a real testbed will
be also prioritized as our next steps.
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