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Abstract—All sciences, including astronomy, are now entering 
the era of information abundance.  The exponentially increasing 
volume and complexity of modern data sets promises to 
transform the scientific practice, but also poses a number of 
common technological challenges.  The Virtual Observatory 
concept is the astronomical community's response to these 
challenges: it aims to harness the progress in information 
technology in the service of astronomy, and at the same time 
provide a valuable testbed for information technology and 
applied computer science.  Challenges broadly fall into two 
categories: data handling (or "data farming"), including issues 
such as archives, intelligent storage, databases, interoperability, 
fast networks, etc., and data mining, data understanding, and 
knowledge discovery, which include issues such as automated 
clustering and classification, multivariate correlation searches, 
pattern recognition, visualization in highly hyperdimensional 
parameter spaces, etc., as well as various applications of machine 
learning in these contexts.  Such techniques are forming a 
methodological foundation for science with massive and complex 
data sets in general, and are likely to have a much broather 
impact on the modern society, commerce, information economy, 
security, etc.  There is a powerful emerging synergy between the 
computationally enabled science and the science-driven 
computing, which will drive the progress in science, scholarship, 
and many other venues in the 21st century. 

Index Terms—Astronomy; Data management; Information 
technology; Knowledge acquisition; Knowledge representation; 
Scientific visualization. 

I. INTRODUCTION

E are on the cusp of the second stage of the information 
technology revolution.  The past 2 or 3 decades have 

been dominated – and the world transformed – by the advent 
of increasingly more powerful, less expensive, and ubiquitous 
computing, and the appearance of the World Wide Web and 
related technologies.  But the rise of information technology 
(IT) has also generated a whole new set of challenges: the 
world is drowning in a tidal wave of data, which increase 
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exponentially both in the volume and complexity.  Coping 
with the challenge of effective utilization of information-rich 
data sets forms the battleground of the second stage of this 
new scientific and industrial revolution. 

One could consider the modern computation and 
communication hardware mainly as the enabling technology 
for the information processing (in the broadest sense) software 
technology, which in itself is essentially an enabling 
technology for the new methodology of science, engineering, 
and operating practices of modern industry, commerce, and 
indeed all fields of contemporary human endeavor. 

In order to illustrate these concepts, in this paper we 
consider a specific example of the development of 
information-rich astronomy, and the technological responses 
our community has devised in order to cope with the 
challenge and opportunity posed by massive and complex data 
sets.  Similar issues apply to many other sciences, with 
potential utility and applications well beyond the academia. 

II. THE VIRTUAL OBSERVATORY CONCEPT

The data volume in astronomy grows exponentially, with a 
doubling time scale of ~ 1.5 years [1].  The similarity with the 
Moore’s law is no accident: the same technology (mainly 
VLSI) is also responsible for the growth of astronomical 
detectors (e.g., CCDs and other imaging arrays) and 
computer-based data systems used to gather the observations.  
There are now (~ early 2005) estimated 0.5 – 1 Petabytes (PB) 
in various accessible astronomical archives and data 
depositories [2], with at least a comparable amount of legacy 
data yet to be ingested; this does not include planetary 
astronomy and space physics.  The current data generation 
rate in astronomy is about 1 Terabyte (TB) per day (mainly 
night, actually).  Note that both data volume and data rate 
grow exponentially. 

It is not only the data volume which is increasing, but also 
data complexity, homogeneity, and overall quality.  Most of 
the data come from wide-field surveys, which now span a full 
range of wavelengths, from radio to -rays, typically 
generating tens or hundreds of TB, detecting millions to 
billions of sources (stars, galaxies, etc.), and measuring tens to 
hundreds attributes per source.  Data come usually in some 
multidimensional form as images, spectra, data cubes, time 
series, etc. We are building a more complete, fully 
panchromatic picture of the physical universe.  Modern 
astrophysical theory is also a prolific producer of comparable 
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volumes of highly complex data generated by numerical 
simulations. Much of the new science comes from federation 
of such massive and already complex data sets, thus leading to 

Figure 1.  A multi-wavelength view of the nearby spiral galaxy M51, 
illustrating the different appearance of complex astrophysical objects in 
different wavelength regimes.  From the left: an X-ray image from the 
Chandra observatory; a UV image from the GALEX satellite; a visible light 
image; a near-IR image from the 2MASS survey; and a 6 cm radio continuum 
image from the Effelsberg telescope. 

even greater data handling and analysis challenges. The only 
hope of understanding many complex astrophysical 
phenomena, e.g., star and planet formation, galaxy and large-
scale structure formation and evolution, explosions of 
supernovae, etc., is in having sufficiently complex and 
comprehensive data and theoretical simulations, and being 
able to combine them is a scientifically valid and effective 
manner. 

Yet, it is clear that our understanding of the universe does 
not double every year and a half.  We are not yet utilizing the 
full information content of these rich (and usually expensive) 
data sets.  There seems to be a methodological bottleneck in 
the conversion of masses of data bits into actual knowledge. 

The Virtual Observatory (VO) concept is the astronomical 
community’s response to these challenges and opportunities.  
VO is an emerging, open, web-based, distributed research 
environment for astronomy with massive and complex data 
sets.  It assembles data archives and services, as well as data 
exploration and analysis tools.  It is technology-enabled, but 
science-driven, providing excellent opportunities for 
collaboration between astronomers and computer science (CS) 
and IT professionals and statisticians.  It is also an example of 
a new type of a scientific organization, which is inherently 
distributed, inherently multidisciplinary, with an unusually 
broad spectrum of contributors and users. 

The concept was defined in late 1990’s through many 
discussions and workshops, culminating in a significant 
endorsement by the U.S. National Academy’s influential 
“decadal survey” report [3], and a white paper [4] and other 
contributions to the first major conference on the subject [5].  
It was then further refined by the U.S. National Virtual 
Observatory Science Definition Team, whose report provided 
the most comprehensive description of the concept and the 
background up to that point [6].  More international 
conferences followed [5,7,8], and a good picture of this 

emerging field can be found in papers contained in their 
proceedings.  VO projects have been initiated world-wide, 
with a good and growing international collaboration between 
various efforts [9,10].  More links can be found on the 
author’s website [11]. 

While any individual function envisioned for the VO can be 
accomplished using existing tools, e.g., federating a couple of 
massive data sets, exploring them in a search for particular 
type of objects, or outliers, or correlations, in most cases such 
studies would be too time-consuming and impractical; and 
many scientists would have to solve the same issues 
repeatedly.  VO would thus serve as an enabler of science 
with massive and complex data sets, and as an efficiency 
amplifier.  The goal is to enable some qualitatively new and 
different science, and not just the same as before, but with a 
larger quantity of data.  We will need to learn to ask different 
kinds of questions, which we could not hope  to answer with 
the much smaller and information-poor data sets in the past. 

VO: Conceptual Architecture

Data ArchivesData Archives

Analysis toolsAnalysis tools

Discovery toolsDiscovery toolsUser

Gateway

Figure 2.  A conceptual architecture of a VO, from a science user’s 
viewpoint.  A user should be able to discover the available data for their 
study,  which generally reside in distributed archives, federate them, and 
pipe the output into a set of DM/KDD data analysis and discovery tools, 
which may be implemented as web services, and may involve use of AI 
and machine learning tools, coupled with sophisticated visualization 
environments. 

Looking back at the history of astronomy we can see that 
technological revolutions lead to bursts of scientific growth 
and discovery.  For example, in the 1960’s, we saw the rise of 
radio astronomy, powered by the developments in electronics 
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(which were much accelerated by the radar technology of the 
World War II and the cold war).  This has led to the discovery 
of quasars and other powerful active galactic nuclei, pulsars, 
the cosmic microwave background (which firmly established 
the Big Bang cosmology), etc.  At the same time, the access to 
space opened the fields of X-ray and -ray astronomy, with an 
equally impressive range of fundamental new discoveries: 

Figure 3.  A schematic VO structure from a system architect’s viewpoint.  
Much of the development so far has centered on the development of data 
and communications infrastructure.  However, the principal scientific 
returns will come as the top layers get more developed, with a variety of 
DM/KDD tools applied on the great data sets already in hand, as well as 
the forthcoming ones.  Figure courtesy of Roy Williams.

the very existence of  the cosmic X-ray sources and the 
cosmic X-ray background, -ray bursts (GRBs), and other 
energetic phenomena.  Then, over the past 15 years or so, we 
saw a great progress powered by the advent of solid-state 
detectors (CCDs, IR arrays, bolometers, etc.), and cheap and 
ubiquitous computing, with discoveries of extrasolar planets, 
brown dwarfs, young and forming galaxies at high redshifts, 
the cosmic acceleration (the “dark energy”), the solution of 
the mystery of GRBs, and so on.  We are now witnessing the 
next phase of the IT revolution, which will likely lead to 
another golden age of discovery in astronomy.  VO is the 
framework to effect  this process. 

In physical sciences, and astronomy in particular, new 
discoveries can be classed as conceptual (e.g., the quantum 
theory, relativity, strings/branes, etc.), or as phenomenological 
(e.g., quasars, cosmic backgrounds, dark matter and dark 
energy, etc.).  Phenomenological discoveries are usually made 
either by opening a new domain of the parameter space (e.g., 
radio astronomy, X-ray astronomy, etc.), by pushing further 
along some axis of the observable parameter space (e.g., 
deeper in flux, higher in angular or temporal resolution, etc.), 
by expanding the coverage of the parameter space and thus 
finding rare types of objects or phenomena which would be 
missed in sparse observations, or by making connections 
between different types of observations (for example, optical 
identification of radio sources leading to the discovery of 

quasars).  In a more steady mode of research, application of 
well understood physics, constrained by observations, leads to 
understanding of various astronomical objects and 
phenomena; e.g., stellar structure and evolution. 

This implies two kinds of discovery strategies: covering a 
large volume of the parameter space, with many sources, 
measurements, etc., as is done very well by massive sky 
surveys; and connecting as many different types of 
observations as possible (e.g., in a multi-wavelength, multi-
epoch, or multi-scale manner), so that the potential for 
discovery increases as the number of connections, i.e., as the 
number of the federated data sets, squared.  Both approaches 
are naturally suited for the VO. 

III. SOME GENERAL PROBLEMS AND CHALLENGES

There are many non-trivial technological and 
methodological problems posed by the challenges of data 
abundance.  We note two important trends, which seem to 
particularly distinguish the new, information-rich science from 
the past: 

(1) Most data will never be seen by humans.  This is a novel 
experience for scientists, but the sheer volume of TB-scale 
data sets (or larger) makes it impractical to do even a most 
cursory examination of all data.  This implies a need for 
reliable data storage, networking, and database-related 
technologies, standars, and protocols.  The problem of 
automated data quality control is particularly significant, and 
may require AI-based tools. 

(2) Most data and data constructs, and patterns present in 
them, cannot be comprehended by humans directly.  This is a 
direct consequence of a growth in complexity of information, 
mainly its multidimensionality.  This requires the use or 
development of novel data mining (DM) or knowledge 
discovery in databases (KDD) and data understanding (DU) 
technologies, hyperdimensional visialization, etc.  The use of 
AI/machine-assisted discovery may become a standard 
scientific practice. 

This is where the qualitative differences in the way science 
is done in the 21st century will come from; the changes are not 
just quantitative, based on the data volumes alone. 

Thus, a modern scientific discovery process can be outlined 
as follows: 

Data gathering: raw data streams produced by various 
measuring devices.  Instrumental effects are removed and 
calibrations applied in the domain-specific manner, usually 
through some data reduction pipeline (DRP).  Depending on 
the complexity of data and sources of noise, use of automated, 
machine-learning tools can be very useful at this stage. 

Data farming:  storage and archiving of the raw and 
processed data, metadata, and derived data products, including 
issues of optimal database architectures, indexing, 
searchability, interoperability, data fusion, etc.  While much 
remains to be done, these challenges seem to be fairly well 
understood, and much progress is being made. 

Data mining:  including clustering analysis, automated 
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classification, outlier or anomaly searches, pattern recognition, 
multivariate correlation searches, and scientific visualization, 
all of them usually in some high-dimensional parameter space 
of measured attributes or imagery.  This is where the key 
technical challenges are now.  These are the tools which must 
be developed for the new, information-rich science of the 21st

century.  It is likely that many of them would have to include 
some form of machine intelligence. 

And finally, we reach the as-yet murky area of data 
understanding, leading to the actual new knowledge.  The 
problems here are essentially methodological in nature.  We 
need to learn how to ask new types of questions, enabled by 
the increases in the data volume, complexity, and quality, and 
the advances provided by IT.  This is where the scientific 
creativity comes in.  However, we may be making machine-
assisted discoveries, driven by the extreme complexity of data 
constructs, and the needs to visualize hyperdimensional 
spaces; human intuition is closely coupled to our ability to 
visualize the processes and phenomena we study. 

To give some specific examples of challenges ahead, let us 
consider the general area of exploration of observable 
parameter spaces, which would be a typical VO activity in 
exploring the massive sky surveys and their federation, and 
clustering analysis in particular [12–16]. Generally, original 
image data are processed and catalogs of detected sources are 
derived, and many parameters (attributes) measured for each 
source.  A typical survey may detect ~ 109 sources and 
provide measurements or upper limits for ~ 102 – 103

parameters for each one.  The problem thus becomes one of 
characterizing the distribution of N ~ 109 data vectors in a 
parameter space of D ~ 102 – 103 dimensions.  This forms a 
highly non-trivial problem setup for clustering analysis. 

Figure 4.  A schematic illustration of the problem of clustering analysis in 
some parameter space. In this example, there are 3 dimensions, p1, p2, and 
p3 (e.g., some flux ratios or morphological parameters), and most of the 

data points belong to 3 major clusters, denoted dc1, dc2, and dc3 (e.g., 
stars, galaxies, and ordinary quasars). One approach is to isolate these 
major classes of objects for some statistical studies, e..g, stars as probes of 
the Galactic structure, or galaxies as probes of the large scale structure of 
the universe, and filter out the “anomalous” objects. A complementary 
view is to look for other, less populated, but statistically significant, 
distinct clusters of data points, or even individual outliers, as possible 
examples of rare or unknown types of objects. Another possibility is to 
look for holes (negative clusters) within the major clusters, as they may 
point to some interesting physical phenomenon, or to a problem with the 
data.  

Typical questions one may ask include: How many distinct 
types of objects are there, and what are the classification 
probabilities for each object and class?  What are the outliers 
(possibly rare new types of objects)?  Are there significant 
multivariate correlations present in the data, possibly in some 
subset of dimensions (e.g., one could imagine a significant 65-
variate correlation embedded in a 312-dimensional parameter 
space – and then face the challenge of interpreting it!).  A 
crude illustration of the clustering problem is shown in Fig. 4, 
and  a real-life example (from a mere 2-dimensional parameter 

space) in Fig. 5. 

Figure 5.  A simple example of clustering in a parameter space as a means 
to astrophysical discovery, from the real data collected in the DPOSS 
survey (see [12,13,14] for more details).  What is show are two colors 
(green to red, and red to infrared) derived from the survey measurements.  
Only objects morphologically classified as stars (i.e., PSF like in the 
images) are used.  The dots represent normal Galactic stars.  The solid 
circles are high-redshift quasars, and the open circles are the so-called 
Type 2 quasars, and both classes are rare and astrophysically interesting.  
They are clearly separated from the locus of stars in this parameter space.  
Analysis of highly-multidimensional parameter spaces from individual or 
federated sky surveys promises to yield more such discoveries, and should 
become a standard technique in a VO. 

The first technical challenge comes from the size and 
dimensionality of the data sets, i.e., the scalability of the 
clustering and classification (or indeed any other DM/KDD) 
algorithms.  For the number of data vectors N, in an D-
dimensional parameter space, most clustering or correlations 
algorithms scale as N log N, or even N2, and as D2, or even 
steeper.  Bayesian and likelihood methods tend to scale even 
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more steeply, as Nm, where m > 3, and Dk, where k > 1.  
Clustering analysis then becomes a computationally 
prohibitively expensive problem, especially driven by the 
hyperdimensionality of these data sets.  Computational brute 
force is not always a practical or even a viable solution; better 
algorithms are needed.  The problem is even sharper if one 
requires active, real-time (or time-critical) data mining in 
massive data streams, as expected, e.g., in the synoptic sky 
surveys. 

One technique which can simplify the problem of data 
volume and hyperdimensionality is the multi-resolution 
clustering. In this regime, parameters expensive to estimate, 
such as the number of classes and the initial broad clustering 
are quickly estimated using traditional techniques, and then 
one could proceed to refine the model locally and globally by 
iterating until some objective statistical (e.g., Bayesian) 
criterion is satisfied. One can also use intelligent sampling 
methods where one forms prototypes of the case vectors and 
thus reduces the number of cases to process. Prototypes can be 
determined from simple algorithms to get a rough estimate, 
and then refined using more sophisticated techniques. A 
clustering algorithm can operate in prototype space. The 
clusters found can later refined by locally replacing each 
prototype by its constituent population and reanalyzing the 
cluster.  Various techniques for dimensionality reduction, 
including principal component analysis and others can be used 
as preprocessing techniques to automatically derive the 
dimensions that contain most of the relevant information. 

Aside from the computational challenges with large 
numbers of data vectors and a large dimensionality, this poses 
some highly non-trivial statistical problems. The problems are 
driven not just by the size of the data sets, but mainly  by the 
heterogeneity  and  intrinsic complexity of the data. 

For example, some of the source parameters would be 
primary measurements, and others may be derived attributes, 
such as the star-galaxy classification, some may be flags 
rather than numbers, some would have error-bars associated 
with them, and some would not, and the error-bars may be 
functions of some of the parameters, e.g., fluxes. Some 
measurements would be present only as upper or lower limits. 
Some would be affected by glitches due to instrumental 
problems, and if a data set consists of a merger of two or more 
surveys, e.g., cross-matched optical, infrared, and radio (and 
this would be a common scenario within a VO), then some 
sources would be misidentified, and thus represent erroneous 
combinations of subsets of data dimensions. Surveys would be 
also affected by selection effects operating explicitly on some 
parameters (e.g., coordinate ranges, flux limits, etc.), but also 
mapping onto some other data dimensions through 
correlations of these properties; some selection effects may be 
unknown. 

Additional complications may derive from the intrinsic 
nature of clustering and distributions present in the data. For 
example:  The object classes form multivariate “clouds” in the 
parameter space, but these clouds in general need not be 
Gaussian: some may have a power-law or exponential tails in 

some or all of the dimensions, and some may have sharp 
cutoffs, etc.  The clouds may be well separated in some of the 
dimensions, but not in others. How can we objectively decide 
which dimensions are irrelevant, and which ones are useful?  
The topology of clustering may not be simple: there may be 
clusters within clusters, holes in the data distribution (negative 
clusters?), multiply-connected clusters, etc. 

Perhaps the first methodological choice in this type of 
exploration is the question of supervised vs. unsupervised 
classification. If the number of object classes k is known (or 
declared) a priori, and training data set of representative 
objects is available, the problem reduces to supervised 
classification, where tools such as Artificial Neural Nets or 
Decision Trees can be used. Searches for known types of 
objects with predictable signatures in the parameter space 
(e.g., high-redshift quasars, in the example shown in Fig. 5) 
can be also cast in this way. 

However, a more interesting and less biased approach is 
where the number of classes k is not known, and it has to be 
derived from the data themselves. This opens a possibility of 
discovery of genuinely new types of astronomical objects or 
phenomena.  The problem of unsupervised classification is to 
determine this number in some objective and statistically 
sound manner, and then to associate class membership 
probabilities for all objects. Majority of objects may fall into a 
small number of classes, e.g., normal stars or galaxies. What is 
of a special interest are objects which belong to much less 
populated clusters, or even individual outliers with low 
membership probabilities for any major class. 

There is a history of use of supervised and unsupervised 
classifiers in astronomy, primarily for automated star-galaxy 
separation in digital sky surveys, e.g., [17-23], but a full-scale 
application to major digital sky surveys, aside frim the star-
galaxy classification in visible-light surveys, yet remains to be 
done. We can expect a much broader use of such techniques 
in the future. 

Given this computational and statistical complexity, blind 
applications of the commonly used (commercial or home-
brewed) clustering algorithms could produce some seriously 
misleading or simply wrong results. The clustering 
methodology must be robust enough to cope with these 
problems, and the outcome of the analysis must have a solid 
statistical foundation. It is then fair to say that adequate 
toolbox of properly scalable DM/KDD algorithms for analysis 
of such massive and complex data sets simply does not yet 
exist.  This is an example of a potentially great synergy 
between domain scientists (in this case astronomers) and 
information and computer scientists and statisticians. 

Another key issue is interoperability and reusability of 
algorithms and models in a wide variety of problems posed by 
a rich data environment such as federated digital sky surveys 
in a VO. Implementation of clustering analysis algorithms 
must be done with this in mind. 

In many situations, scientifically informed input is needed 
in designing the clustering experiments. Some observed 
parameters may have a highly significant, large dynamical 
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range, dominate the sample variance, and naturally invite 
division into clusters along the corresponding parameter axes; 
yet they may be completely irrelevant or uninteresting 
scientifically. Design and application of clustering algorithms 
should be based on a close, working collaboration between 
astronomers and computer scientists and statisticians. There 
are too many unspoken assumptions, historical background 
knowledge specific to the given discipline, and opaque jargon; 
constant communication and interchange of ideas are 
essential. 

The second, and perhaps even more critical part of the 
“curse of hyperdimensionality” is the visualization of these 
highly-dimensional data parameter spaces.  Humans are 
biologically limited to visualize patterns and scenes in 2 or 3 
dimensions, and while some clever tricks have been 
developed to increase the maximum visualizable dimensions, 
in practice it is hard to push much beyond D = 4 or 5.  
Mathematically, we understand the meaning of clustering and 
correlations in an arbitrary number of parameter space 
dimensions, but how can we actually visualize such 
structures?  Yet, recognizing and intuitively comprehending 
such complex data constructs may lead to some crucial new 
astrophysical insights. This is an essential part of the intuitive 
process of scientific discovery, and critical to data 
understanding and knowledge extraction. 

Effective and powerful data visualization, applied in the 
parameter space itself, must be an essential part of the 
interactive clustering analysis. Good visualization tools are 
also critical for the interpretation of results, especially in an 
iterative environment. While clustering algorithms can assist 
in the partitioning of the data space, and can draw the 
attention to anomalous objects, ultimately a scientist guides 
the experiment and draws the conclusions.  This may be 
another area  where AI-assisted exploration of complex data 
sets would become a necessary  part of a scientist’s toolkit. 

IV. THE EVOLVING ROLE OF SCIENTIFIC COMPUTING

The modern scientific methodology originated in the 17th

century, and a healthy interplay of analytical and experimental 
work has been driving the scientific progress ever since.  But 
then, in mid-20th century, something new came along: 
computing as a new way of doing science, primarily through 
numerical simulations of phenomena too complex to be 
analytically tractable.  Simulations are thus more than just a 
substitute for analytical theory: there are many phenomena in 
the physical universe where simulations (incorporating, of 
course, the right physics and equations of motion) are the only
way in which some phenomena can be described and 
predicted.  Recall that even the simplest Newtonian mechanics 
can solve exactly only a 2-body problem; for N  3, numerical 
solutions are necessary.  Other examples in astronomy include 
star and galaxy formation, dynamics and evolution of galaxies 
and large-scale structure, stellar explosions, anything 
involving turbulence, etc.  Simulations relate, can stimulate, or 
be explained by both analytical theory and experiments or 

observations. 
While numerical simulations and other computational 

means of solving complex systems of equations continue to 
thrive, there is now a new and growing role of scientific 
computing, which is data-driven. 

Data- or information-driven computing, which spans all of 
the aspects of a modern scientific work described above, and 
more, is now becoming the dominant form of scientific 
computing, and an essential component of gathering, storing, 
preserving, accessing, and – most of all – analyzing massive 
amounts of complex data, and extracting knowledge from 
them.  It is fundamentally changing the way in which science 
is done in the 21st century. 

It is an interesting epistemological question whether this 
advent of information and computing intensive science 
represents something qualitatively new, on par with the 
traditional analytical theory and experiments (i.e., quantitative 
measurements), or numerical theory, or is it just an extension 
of the traditional experimental/observational work, which 
simply uses IT as a tool.  At what point is the quantitative 
change, brought by a many orders of magnitude increase in 
the data volumes and complexity, becoming a qualitative one?  
This is hard to answer, since the new methodology for the 
information-rich science is still in its nascent state. 

Another, mildly provocative idea, is that applied computer 
science is now playing the role which mathematics did from 
the 17th through the 20th centuries: providing an orderly, 
formal framework and exploratory apparatus for other 
sciences.  Aside from its apparently happy affair with the 
string theory, it is hard to tell what mathematics is doing for 
other sciences today; most of the mathematics scientists use 
today was developed over a century ago. 

There are also sociological changes afoot.  As the data 
become ever cheaper, more available, and easily accessible, 
the focus of values will shift from the ownership of data (or 
instruments used to gather them) to the ownership of expertise 
and ideas.  Computationally astute scientists will grow from a 
status of nearly second-class citizens in the academic 
pantheon today, to become the dominant experts in every 
field. 

Computationally driven and enabled science also plays 
another, very important societal role: it is empowering an 
unprecedented pool of talent.  With distributed scientific 
frameworks like VO, which provide open access to data and 
tools for their exploration, anyone, anywhere, with a decent 
internet connection can do a first rate science, learn about 
what others area doing, and communicate their results.  This 
should be a major boon for countries without expensive 
scientific facilities, and individuals at small or isolated 
institutions.  The human talent is distributed geographically 
much more broadly than money or other resources.  By 
broadening access to anyone with good ideas and good work 
habits, science will prosper at a much faster rate that it has 
done historically, with all of the subsequent societal benefits 
that implies. 

The web is of course a supreme public outreach medium.  
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As the science migrates to web-based research  environments 
such as the VO, public outreach and education at all levels, 
from pre-school to graduate school, will discover some 
powerful “weapons of mass instruction”. 

V. CONCLUDING REMARKS

As the preceding discussion implies, the critical challenges 
in scientific computing are now in the arena of software 
(broadly speaking): from various database and data farming 
tasks, to DM/KDD , and data exploration and understanding.  
Computing hardware is to a first approximation becoming 
infinitely powerful and infinitely cheap (yet somehow 
hardware producers continue to make money!).  On the other 
hand, the beneficial exponential improvement in 
price/performance does not apply in the world of software and 
algorithm development.  Therefore, the most valuable long-
term investments will be on the side of software and 
methodology. 

The key technological challenges today are  in the 
development of efficiently scalable DM/KDD algorithms, 
hyperdymensional visualization, and other techniques for data 
exploration.  Equally important are challenges of effective 
visualization of highly hyperdimensional spaces and data 
constructs.  Such techniques are necessary  in order to make 
the full use of the rich information content of massive and 
complex data sets. 

However, as the visualization problem clearly shows, we 
may be reaching limits of human intuitive comprehension of 
extremely complex data structures and constructs, either from 
the measurements or from numerical simulations.  Use of 
machine learning and AI techniques may become an essential 
part of a scientific methodology.  Just as computers now help 
us handle numbers, text, images, etc., on scales and at speeds 
well beyond unaided human ability, software machinery of the 
future may help us grasp and understand complexities which 
are beyond our reach now. 

Just as technology derives from a progress in science, 
progress in science, especially experimental/observational, is 
driven by the progress in technology.  This positive feedback 
loop will continue, as the IT revolution unfolds. Practical 
CS/IT solutions cannot be developed in a vacuum; having 
real-life testbeds, and functionality driven by specific 
application demands is essential. Recall that the WWW 
originated as a scientific application, and noone could have 
predicted its ultimate impact at the time. Today, grid 
technology is being developed by physicists, astronomers, and 
other scientists.  The needs of information-driven science are 
broadly applicable to information-intensive economy in 
general, as well as other domains (entertainment, media, 
security, education, etc.).  Who knows what world-changing 
technology, perhaps even on par with the WWW itself, would 
emerge from the synergy of computationally enabled science, 
and science-driven information technology? 
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