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Abstract—Designing resource allocation strategies for power
constrained sensor network in the presence of correlated data
often gives rise to intractable problem formulations. In such sit-
uations, applying well-known strategies derived from conditional-
independence assumption may turn out to be fairly suboptimal. In
this paper, we address this issue by proposing an adjacency-based
spatial whitening scheme, where each sensor exchanges its obser-
vation with their neighbors prior to encoding their own private in-
formation and transmitting it to the fusion center. We comment on
the computational limitations for obtaining the optimal whitening
transformation, and propose an iterative optimization scheme to
achieve the same for large networks. We demonstrate the efficacy
of the whitening framework by considering the example of bit-
allocation for distributed estimation.

I. INTRODUCTION

Wireless sensor networks consist of spatially distributed noisy
sensors that cooperatively monitor environmental conditions.
Since the individual sensor nodes are characterized by limited
energy, bandwidth and computational capability, the task of
the fusion center (FC) is to make accurate inference about the
phenomenon by requesting as little information from the sensor
nodes as possible [1]. Depending on the particular application
and set of constraints, the FC often has to adopt smart strategies
to collect and process data [2]. While the design of optimum
strategies in some cases is relatively easy under the assumption
of conditional independence1 across sensors, it is well known
that the design gets harder and sometimes the optimum strategy
is intractable when correlation has to be taken into account [3].
In particular, when the sensors are geographically close, they
are expected to possess significant correlation among themselves
and the optimum strategies derived for the independent case will
no longer be optimal. In this paper, we introduce a framework
called spatial whitening (to be formalized later) to deal with this
problem.

Our framework stems from this idea: If two sensors in a
network are highly correlated, they are also likely to be spatially
close, which means that they should be able to communicate
and exchange information among themselves in a relatively in-
expensive manner (avoiding routing overheads and long distance

1Here, ‘independence’ refers to the statistical independence of sensor data
conditioned on the parameter of interest. For additive Gaussian observation
noise, this is equivalent to the covariance matrix of noise being diagonal. The
observations are still marginally dependent, since they are observing the same
parameter.
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communications). Each sensor in the network can now use the
information from neighboring nodes to achieve a local whitening
transformation. If each of such local transformations can be
coordinated, one can aim to achieve global whitening, and the
transformed observations can then be transmitted to the FC using
optimum encoding strategies (for inference, resource allocation,
etc) that were derived for conditionally independent scenarios.
Hence, this two-stage (whitening followed by encoding) frame-
work potentially enables the use of several earlier known results
in the presence of correlated noise.

We introduce the log-determinant divergence based formula-
tion of spatial whitening in Section II. To illustrate the potential
usage of this framework, we employ the problem of distributed
parameter estimation [1], where several sensor nodes quantize
their individual observations before sending them to FC. The
goal is to minimize the expected distortion of the estimated
parameter subject to a constraint on the total number of bits
transmitted to the FC. We demonstrate that an optimal strategy
for bit allocation (derived for independent scenario [3]) deliv-
ers increasingly better performance with increasing degree of
whitening.

The whitening transformation described in this paper re-
quires local message passing which is certainly not without
cost. However, in this paper, we assign no cost to whitening,
acknowledging fully that any actual implementation of a system
would have to consider the tradeoff between the benefits of
whitening and the cost of it. Investigations on this tradeoff is a
worthy topic for future research.

The concept of whitening, in general, has mostly been ad-
dressed in a global framework till now. It is well known that
the Karhunen-Loève Transform (KLT) [4] (also referred to as
Principal Components Analysis, PCA) of a random vector with
covariance matrix Σ = UΛUT provides the unique whitening
transformation (UT ) that is also orthogonal. However, PCA is
ill suited for our problem, since those whitening transformations
are not local, while the orthogonality property serves no addi-
tional purpose. The Cholesky decomposition Σ = LLT , which
provides the unique lower triangular whitening transformation
(L−1), also requires non-local transformations. Moreover, the
lower-triangular property imposes a tree-type dependence struc-
ture while in fact there is no natural ordering of spatially
correlated data [5]. Other sparsity-inducing decompositions like
Sparse-PCA [6] and vector Sparse-PCA [7] are exploratory2 in
nature, which means that the resulting transformations are not
guaranteed to be local. In [8], a hardware-friendly technique was

2The placeholders for non-zero coefficients are not known/specified before-
hand.
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proposed to achieve generic spatial whitening transformations
that were also global in scope. In distributed-KLT [4], individual
nodes observe non-overlapping portions of a random vector and
perform dimensionality-reduction (without collaboration with
neighbors) for optimum reconstruction at the FC.

Local communication among sensors has mostly been used to
address in-network inference problems till now. Distributed con-
sensus problems [9] aim at designing iterative message passing
schemes in order to compute (some linearly weighted) average
at all the nodes. Graphical model based problems involve the
selection of structured inverse-covariance matrices (example 2.5
in [10]) and the subsequent design of message passing schemes
for (posterior) belief computation [11] at all nodes. In this paper,
we address the fixed FC based problem - where the inference
is performed at the FC rather than inside the network.

Our primary contribution in this paper is the formulation of
a whitening framework that harnesses (some minimal) local
communication among sensors for efficient resource allocation
in fixed FC applications.

II. PROBLEM STATEMENT

We consider N sensors in a network that is observing an
unknown, deterministic, scalar parameter of interest θ in the
presence of zero-mean, correlated Gaussian noise with covari-
ance Σ. Hence the sensor observations x = [x1, x2, . . . , xN ]
follow

x ∼ N (1θ,Σ), 1 , [1 · · · 1]T ∈ RN . (1)

Note that the sensor observations xk-s are conditionally-
independent when Σ is a diagonal matrix. Let the neighborhood
structure among the various nodes be represented by the N×N
adjacency matrix A, Aij ∈ {0, 1}, which is expected to be
sparsely populated. Entries Aij = 1 signify that node i is a
neighbor of node j. A low-cost link for local communication is
assumed to be available between two neighboring links. Since
each node is trivially connected to itself, Aii = 1. We denote
the set of all A-sparse matrices as

SA , {W ∈ RN×N : Wij = 0 if Aij = 0}. (2)

Note that because A is the adjacency matrix, all linear transfor-
mations of the form

x̃ = Wx ∼ N (W1θ,WΣW T ), W ∈ SA, (3)

can be realized relatively inexpensively through local data
transmissions, i.e., node k realizes the transformation x̃k =∑

j∈Nk
Wkjxj by collaborating with its set of neighbors Nk ,

{j1, j2, . . . , j|Nk|}, i.e., all the columns-indices of A such that
Ak,ji = 1.

The goal is to find the optimal mean-preserving, whitening
transformation, i.e., one for which W1 = 1, and WΣW T is as
near to some diagonal matrix as possible. The mean-preserving
condition ensures that the problem framework is preserved,
i.e., any resource allocation algorithm previously designed for
the observation domain x is applicable to new transformed
domain x̃. The whitening condition helps induce conditional
independence across sensors (in some optimal sense). We chose
the log-determinant divergence [12] as our metric for matrix-
nearness, a point that we will elaborate later. The idea is that
the nodes can use (optimally) whitened observations x̃k (instead
of original correlated observations xk) as the information to be
encoded and relayed to the FC. This way an encoding strategy
that was derived using conditional independence assumption

across sensors can be used to enhance the performance of the
system. We will consider the application of optimal encoding
for distributed estimation in Section IV and show the resulting
improvement in performance due to the two-stage processing.
But before that we describe our approach towards finding
the optimum whitening transformation and comment on the
computational aspects.

In the domain of symmetric positive-definite N×N matrices,
the log-determinant divergence of P from Q is defined [12] as

L(P ;Q) , Tr Q−1P − log detP −N + log detQ. (4)

It is well known that L(P ;Q) is a Bregman-divergence [12]
and hence convex in P for any fixed Q. Also L(P ;Q) ≥ 0
for all P and Q with equality if and only if P = Q. We
formulate the spatial whitening problem as finding an A-sparse,
mean-preserving transformation W and a diagonal matrix (with
positive entries) D such that the divergence L(WΣW T ;D) is
minimized,

min
W ,D

L(WΣW T ;D) s.t. W ∈ SA,W1 = 1. (5)

We note from definition (4) that

L(WΣW T ;D) = L(D−
1
2WΣW TD−

1
2 ; I), (6)

where I is the identity matrix. Using (6), we obtain an equivalent
formulation of (5),

min
Z

L(ZΣZT ; I) s.t. Z ∈ SA, (7)

where W = δ−1(Z1)Z, D = δ−2(Z1), (8)

where δ(·) is the diagonalization3 operator. We note that (7) is
a significantly simplified re-formulation of (5). Using (4), we
define the cost function w.r.t. Z as

l(Z) , L(ZΣZT ; I) = Tr ZΣZT − log detZZT + c0, (9)

where c0 , −N− log det Σ is a constant. We refer to (7) as the
log-determinant divergence based spatial whitening problem. If
the cardinality of non-zero elements of A is nz(A) ≤ N2, then
(7) is an optimization problem in Rnz(A).

Since Z is not restricted to the set of symmetric positive-
definite matrices (denoted by S++), our objective function (9)
does not inherit the convexity property of well known max-det
problems [10]. Neither does the first-order gradient condition,
written in matrix-derivative notations [13],

dl(Z)

dZ
= 2(ZΣ−Z−T ) ◦A = 0, (10)

where ◦ denotes the element-wise (or Hadamard) product,
lend itself to any known closed-form solution except in the
trivial situation when A is the all-1 matrix (in which case,
ZΣZT = I , and any orthogonal multiple of the Cholesky
factor L−1 is a solution for Z). In the next section, we provide
an iterative algorithm that finds (locally) optimal solutions to
problem (7). Multiple runs using good4 starting points must
be used to mitigate the local-maxima problem and obtain a
satisfactory solution. It may be noted here that in most of
existing literature, matrix factorization problems of this nature
(involving sparsity/structure) are inherently non-convex and can

3Function X = δ(x) is defined as δ : RN → RN×N such that x
corresponds to the diagonal elements of X , other elements being zero.

4l(Z) is convex in the smaller subset SA
⋂

S++, the minima within which
can be efficiently computed and considered a good starting point.



only guarantee locally optimal solutions [4], [6], [7].

III. ITERATIVE ALGORITHM FOR SPATIAL WHITENING

In our iterative approach to solving problem (7), we update
each row of elements in Z to achieve the optimum decrement
in divergence, while keeping the rest of the matrix unchanged.
This process is repeated until convergence. Each such iteration
is a convex optimization problem and we obtain closed form
expressions for the updates. Some of the details in this section
is skipped for the sake of brevity and relegated to [14].

Optimizing (7) with respect to the row-vector zk , Zk,Nk
∈

R|Nk| while keeping all the other elements of Z constant is
equivalent [14] to minimizing

g(zk) =
1

2
zT
k Σkzk − log(zT

k ck), (11)

Σk ∈ R|Nk|×|Nk|, ck ∈ R|Nk|,

where Σk denotes the Nk-clique covariance matrix extracted
from Σ, and the elements of ck are defined by

(ck)i , (−1)k+ji det(Z−k,ji), i = 1, 2, . . . , |Nk|, (12)

with Z−k,ji denoting the matrix obtained after truncating the
kth row and jth

i column of Z. The first-order gradient condition
of (11) implies (zT

k ck)Σkzk = ck, solving which one obtains
the unique extremum of (11),

z∗k =
Σ−1k ck√
cTk Σ−1k ck

. (13)

That z∗k is the minimizer follows from the convexity of (11) (the
Hessian is (Σk + (zT

k ck)−2ckc
T
k ), which is positive definite).

Each rank-one update of the form (13) can be efficiently
computed using the well-known Woodbury-formula, details of
which are relegated to [14]. Since the overall divergence of (7)
decreases at each of the iterations of (11), and the minimum
divergence is lower bounded (see equation (10)) by

sup
Z∈SA

l(Z) ≥ sup
Z∈RN×N

l(Z) = l(L−1) = 0, (14)

this iterative algorithm is guaranteed to converge. It may be
noted that these kind of iterative techniques are sometimes called
block-coordinate-descent or terminal-by-terminal optimization
[4].

In the remainder of this paper, we will focus on the application
of spatial whitening to distributed estimation.

IV. EXAMPLE: BIT-ALLOCATION FOR DISTRIBUTED
ESTIMATION

We consider the practical parameter-estimation problem
where individual sensors in a network are required to quantize
their real-valued local measurements to an appropriate length
and send the resulting discrete message to the FC, while the
latter combines all the received messages to produce a final
estimate [1]. The critical resource that needs to be conserved is
the bandwidth or equivalently, the rate of transmission. Assume
that the network consisting of N nodes is allowed to transmit
only B bits in totality for a one-shot estimation problem. The
question then is how to judiciously allocate the B bits among
the various sensors such the the resulting distortion of estimate
is minimized at the FC [3], [15]. For the sake of simplicity,
we assume that each sensor incurs an equal per-bit cost for
transmission.

We would use the quantization and bit allocation framework
outlined in [3]. All observations xk-s are assumed to be bounded
to a finite interval [−U,U ] and a uniform probabilistic quanti-
zation is performed. An observation is quantized with bk-bits as
follows. The quantization points a(k)j ∈ [−U,U ], j = 1, . . . , 2bk

are uniformly spaced such that a(k)j+1 − a
(k)
j = 2U/(2bk − 1) ,

∆k. Suppose that xk ∈ [a
(k)
j , a

(k)
j+1). Then xk is quantized to

either a(k)j+1 or a(k)j according to

P (mk = a
(k)
j ) = q, P (mk = a

(k)
j+1) = 1− q, (15)

where mk is the resulting message and q = (a
(k)
j+1 − xk)/∆k.

When the noise is Gaussian and independent across sensors,
the subsequent near-optimal strategy [3] is particularly simple
and allocates

bk = ROUND
[
log2

(
1 +

1

λσ2
k

)]
(16)

bits to the kth sensor, where σ2
k is the individual variance,

λ > 0 controls the overall sum of bits
∑N

k=1 bk = B and
the rounding is performed to the nearest integer. The idea is
that FC broadcasts a lower value of λ when a more precise
parameter estimate is needed. However, when the noise is
correlated, strategy (16) is suboptimal and this is where spatial
whitening can be of help. Once we perform a spatial whitening
transformation in the observation space, the idea is that we
effectively de-correlate the noise without losing any information
and hence a strategy like (16) applied on the modified space can
still deliver near-optimal performance.

Next we state the distortion metric derived in [3] which we
shall use for comparing the performance of various schemes.
For a random variable y ∼ N (1θ,C) that is effectively range
limited in [−U,U ], the mean-square-error (MSE) for estimating
θ̂ at FC (when yk is quantized to mk using bk bits) following
the scheme in (15), is given by

MSE(θ̂) ≈ 1TC−1(C + Q)C−11

(1TC−11)2
, (17)

where Q is the diagonal matrix with elements Qkk =
(U2)/(2bk − 1)2. It is assumed that FC is using the optimally
weighted fusion rule θ̂ = (1TC−11)−11TC−1m (see [16]) on
the quantized observations.

Our simulation setup is as follows. The spatial placement
and neighborhood structure is modeled as a Random Geometric
Graph RGG(N, r) [17], where sensors are uniformly distributed
over a unit square with communication links present only for
pairwise distances of at most r. The noise is modeled as an
exponentially correlated Gaussian covariance matrix Σ,

x ∼ N (1θ,Σ), Σi,j = σiσjα
di,j , (18)

where α ∈ (0, 1) is indicative of the degree of spatial correlation.
A smaller value of α indicates lower correlation with α → 0
signifying completely independent observations.

We consider N = 50 nodes and the particular RGG used for
our simulation is depicted in Figure 1. The individual sensor
variances σ2

k are generated by uniform random numbers in the
range [0.5, 1.5] and the correlation parameter α = 0.02. The
range-limit of observations is taken as U = 20.

In Figure 2, we compare the distortion performance MSE(θ̂)
(17) corresponding to the three scenarios when strategy (16) is
applied to various transformations of the data. The line labeled



not whitened corresponds to the naive case of strategy (16) being
directly applied to the observation space x. Expectedly, the
performance of this scheme is suboptimal. In spatially whitened
cases, we use the transformed variable (see (8))

x̃ = W rx, W r = δ−1(Zr1)Zr,Dr = δ−2(Zr1), (19)

where Zr is the minimum-divergence solution (7) subject to
constraints that [Zr]ij = 0 if dij > r. We note that

x̃ ∼ N (1θ,W rΣW T
r ), (20)

which implies that x̃k possess the same mean as the signal, but
corrupted only with approximately independent Gaussian noise
with variance γ2k , Var(x̃k) ≈ [Dr]k,k = ([Zr1]k)−2. Strategy
(16) is then applied on whitened space x̃ with σ2

k replaced by γ2k
in Equation (16). We have shown the performance for r = 0.1
and r = 0.5 in Figure 2. As the range r increases, we have more
whitening and consequently the performance increases. Thirdly,
we display the results for orthogonally whitened (or PCA) case,
where we consider the well known eigenvalue decomposition
Σ = UΛUT and consequently the whitening transformation

x̃ = D−1UTx, D , δ(UT1). (21)

Since PCA fully whitens Σ (by definition), its performance is
expected to provide a lower bound on that of other schemes.
This is confirmed by Figure 2. However, since the weights
in PCA are not designed to be zero for sensors that are far
apart, such a transformation may be impossible to realize in
a power constrained network and hence not realistic. Finally,
the Cramer-Rao lower bound CRB = 1/(1TΣ−11) is also
displayed, which confirms that in the asymptotic regime with
sufficient quantization bits per sensor, all these schemes perform
identically.
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Fig. 1. Random Geometric Graph with 50 nodes, used for example in Section
IV. Edges are shown of pairwise distance less than 0.18.

V. CONCLUSION

In this paper, we have considered a two-stage framework for
distributed signal processing in the presence of spatially corre-
lated data. The first stage is designed to whiten the observation
space by communicating only with neighboring sensors. In the
second stage, each sensor encodes these whitened observations
following well-known strategies derived using conditional inde-
pendence assumption. We consider the example of bit-allocation
for distributed estimation to demonstrate the potential applica-
bility of this framework. Many research questions remain to be
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Fig. 2. Distortion reduction achieved by spatial whitening.

addressed. Some of them are efficient computation of the spatial
whitening transformation, cost considerations for the whitening
stage, extension of the framework to vector parameter scenarios
and potential applicability in hypothesis testing problems.
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