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Abstract—GROUSE (Grassmannian Rank-One Update Sub-
space Estimation) [1] is an incremental algorithm for identifying
a subspace of Rn from a sequence of vectors in this subspace,
where only a subset of components of each vector is revealed
at each iteration. Recent analysis [2] has shown that GROUSE
converges locally at an expected linear rate, under certain
assumptions. GROUSE has a similar flavor to the incremental
singular value decomposition algorithm [4], which updates the
SVD of a matrix following addition of a single column. In
this paper, we modify the incremental SVD approach to handle
missing data, and demonstrate that this modified approach is
equivalent to GROUSE, for a certain choice of an algorithmic
parameter.

I. INTRODUCTION

Subspace estimation and singular value decomposition have
been important tools in linear algebra and data analysis for
several decades. They are used to understand the principal
components of a signal, to reject noise, and to identify best
approximations.

The GROUSE (Grassmannian Rank-One Update Subspace
Estimation) algorithm, described in [1], aims to identify a
subspace of low dimension, given data consisting of a se-
quence of vectors in the subspace that are missing many of
their components. Missing data is common in such big-data
applications as low-cost sensor networks (in which data often
get lost from corruption or bad communication links), recom-
mender systems (where we are missing consumers’ opinions
on products they have yet to try), and health care (where
a patient’s health status is only sparsely sampled in time).
GROUSE was developed originally in an online setting, to be
used with streaming data or when the principal components of
the signal may be time-varying. Several subspace estimation
algorithms in the past [6] have also been developed for the
online case and have even used stochastic gradient, though
GROUSE and the approach described in [3] are the first to
deal with missing data.

Recent developments in the closely related field of matrix
completion have shown that low-rank matrices can be recon-
structed from limited information, using tractable optimization
formulations [5], [7]. Given this experience, it is not surprising
that subspace identification is possible even when the revealed
data is incomplete, under appropriate incoherence assumptions
and using appropriate algorithms.

GROUSE maintains an n × d matrix with orthonormal
columns that is updated by a rank-one matrix at each iter-
ation. The update strategy is redolent of other optimization
appoaches such as gradient projection, stochastic gradient, and

quasi-Newton methods. It is related also to the incremental
singular value decomposition approach of [4], in which the
SVD of a matrix is updated inexpensively after addition of
a column. We aim in this note to explore the relationship
between the GROUSE and incremental SVD approaches. We
show that when the incremental SVD approach is modified in
a plausible way (to handle missing data, among other issues),
we obtain an algorithm that is equivalent to GROUSE.

II. GROUSE

The GROUSE algorithm was developed for identifying an
unknown subspace S of dimension d in Rn from a sequence
of vectors vt ∈ S in which only the components indicated by
the set Ωt ⊂ {1, . . . , n} are revealed. Specifically, when Ū is
an (unknown) n× d matrix whose orthonormal columns span
S, and st ∈ Rd is a weight vector, we observe the following
subvector at iteration t:

(vt)Ωt = (Ūst)Ωt (1)

(We use the subscript Ωt on a matrix or vector to indicate
restriction to the rows indicated by Ωt.)

GROUSE is described as Algorithm 1. It generates a
sequence of n × d matrices Ut with orthonormal columns,
updating with a rank-one matrix at each iteration in response
to the newly revealed data (vt)Ωt . Note that GROUSE makes
use of a steplength parameter ηt. It was shown in [2] that
GROUSE exhibits local convergence of the range space of
Ut to the range space of Ū , at an expected linear rate, under
certain assumptions including incoherence of the subspace S
with the coordinate directions, the number of components in
Ωt, and the choice of steplength parameter ηt.

III. INCREMENTAL SINGULAR VALUE DECOMPOSITION

The incremental SVD algorithm of [4] computes the SVD of
a matrix by adding one (fully observed) column at a time. The
size of the matrices of left and right singular vectors Ut and Vt
grows as columns are added, as does the diagonal matrix of
singular values Σt. The approach is shown in Algorithm 2.
Note that when the new vector vt is already in the range
space of Ut, we have rt = 0, and the basic approach can
be modified to avoid adding an extra dimension to the U , V ,
and Σ factors in this situation. If all vectors vt lie in a subspace
S of dimension d, the modified method will not need to grow
Ut beyond size n× d.
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Algorithm 1 GROUSE
Given U0, an n× d orthonormal matrix, with 0 < d < n;
Set t := 1;
repeat

Take Ωt and (vt)Ωt
from (1);

Define wt := arg minw ‖[Ut]Ωtw − [vt]Ωt‖22;
Define pt := Utwt; [rt]Ωt := [vt]Ωt − [pt]Ωt ;
[rt]ΩC

t
:= 0; σt := ‖rt‖ ‖pt‖;

Choose ηt > 0 and set

Ut+1 := Ut + (cos(σtηt)− 1)
pt
‖pt‖

wTt
‖wt‖

+ sin(σtηt)
rt
‖rt‖

wTt
‖wt‖

. (2)

t := t+ 1;
until termination

Algorithm 2 Incremental SVD [4]
Start with null matrixes U0, V0, Σ0;
Set t := 0;
repeat

Given new column vector vt;
Define wt := arg minw ‖Utw − vt‖22 = UTt vt;
Define

pt := Utwt; rt := vt − pt;

(Set r0 := v0 when t = 0);
Noting that[
UtΣtV

T
t vt

]
=
[
Ut

rt
‖rt‖

] [Σt wt
0 ‖rt‖

] [
Vt 0
0 1

]T
,

compute the SVD of the update matrix:[
Σt wt
0 ‖rt‖

]
= Û Σ̂V̂ T , (3)

and set

Ut+1 :=
[
Ut

rt
‖rt‖

]
Û , Σt+1 := Σ̂,

Vt+1 :=

[
Vt 0
0 1

]
V̂ .

t := t+ 1;
until termination

IV. RELATING GROUSE TO INCREMENTAL SVD

Algorithms 1 and 2 are motivated in different ways and
therefore differ in significant respects. We now describe a vari-
ant — Algorithm 3 — that is suited to the setting addressed by
GROUSE, and show that it is in fact equivalent to GROUSE.
Algorithm 3, includes the following modifications.
• Since only the subvector (vt)Ωt

is available, the missing
components of vt (corresponding to indices in the com-
plement ΩCt := {1, 2, . . . , n} \ Ωt) must be “imputed”
from the revealed components and from the current
subspace estimate Ut.

• The singular value matrix Σt is not carried over from one
iteration to the next. In effect, the singular value estimates
are all reset to 1 at each iteration.

• We allow an arbitrary rotation operator Wt to be applied
to the columns of Ut at each iteration. This does not affect
the range space of Ut, which is the current estimate of
the underlying subspace S.

• The matrix Ut is not permitted to grow beyond d columns.

Algorithm 3 iSVD for Partially Observed Vectors
Given U0, an n× d orthonormal matrix, with 0 < d < n;
Set t := 1;
repeat

Take Ωt and (vt)Ωt
from (1);

Define wt := arg minw ‖(Ut)Ωt
w − (vt)Ωt

‖22;
Define

[ṽt]i :=

{
[vt]i i ∈ Ωt

[Utwt]i i ∈ ΩCt
;

pt := Utwt; rt := ṽt − pt;

Noting that[
Ut ṽt

]
=
[
Ut

rt
‖rt‖

] [I wt
0 ‖rt‖

]
,

we compute the SVD of the update matrix:[
I wt
0 ‖rt‖

]
= ŨtΣ̃tṼ

T
t , (4)

and define Ût to be the (d + 1) × d matrix obtained by
removing the last column from Ũt.
Set Ut+1 :=

[
Ut

rt
‖rt‖

]
ÛWt, where Wt is an arbitrary

d× d orthogonal matrix.
t := t+ 1;

until termination

Algorithm 3 is quite similar to an algorithm proposed in [3]
(see Algorithm 4) but differs in its handling of the singular
values. In [3], the singular values are carried over from
one iteration to the next, but previous estimates are “down-
weighted” to place more importance on the vectors (vt)Ωt

from recent iterations. This feature is useful in a scenario
in which the underlying subspace S is changing in time.



GROUSE also is influenced more by more recent vectors than
older ones, thus has a similar (though less explicit) down-
weighting feature.

We show now that for a particular choice of ηt in Algo-
rithm 3, the Algorithms 1 and 3 are equivalent. Any difference
in the updated estimate Ut+1 is eliminated when we define the
column rotation matrix Wt appropriately.

Theorem 1: Suppose that at iteration t of Algorithms 1 and
3, the iterates Ut are the same, and the new observations vt
and Ωt are the same. Assume too that wt 6= 0 and rt 6= 0.
Define the following (related) scalar quantities:

λ :=
1

2
(‖wt‖2 + ‖rt‖2 + 1)+

1

2

√
(‖wt‖2 + ‖rt‖2 + 1)2 − 4‖rt‖2; (5a)

β :=
‖rt‖2 + ‖wt‖2

‖rt‖2 + ‖wt‖2 + (λ− ‖rt‖2)2
(5b)

α :=
‖rt‖(λ− ‖rt‖2)

‖rt‖2 + ‖wt‖2 + (λ− ‖rt‖2)2
(5c)

ηt :=
1

σt
arcsinβ =

1

σt
arccos(α‖wt‖), (5d)

and define the d× d orthogonal matrix Wt by

Wt :=

[
wt
‖wt‖

|Zt
]
, (6)

where Zt is a d × d − 1 orthonormal matrix whose columns
span the orthogonal complement of wt. For these choices of
ηt and Wt, the iterates Ut+1 generated by Algorithms 1 and
3 are identical.

Proof: We drop the subscript t freely throughout the
proof.

We first derive the structure of the matrix Ût in Algorithm 3,
which is key to the update formula in this algorithm. We have
from (4) that[

I w
0 ‖r‖

] [
I 0
wT ‖r‖

]
=

[
I + wwT ‖r‖w
‖r‖wT ‖r‖2

]
= Ũ Σ̃2ŨT ,

(7)
and thus the columns of Ũ are eigenvectors of this product
matrix. We see that the columns of the d×(d−1) orthonormal
matrix Zt defined in (6) can be used to construct a set of
eigenvectors that correspond to the eigenvalue 1, since[

I + wwT ‖r‖w
‖r‖wT ‖r‖2

] [
Zt
0

]
=

[
Zt
0

]
. (8)

Two eigenvectors and eigenvalues remain to be determined.
Using λ to generally denote one of these two eigenvalues and
(yT : β)T to denote the corresponding eigenvector, we have[

I + wwT ‖r‖w
‖r‖wT ‖r‖2

] [
y
β

]
= λ

[
y
β

]
. (9)

The first block row of this expression yields

y + w(wT y + ‖r‖β) = λy,

which implies that y has the form αw for some α ∈ R. By
substituting this form into the two block rows from (9), we
obtain

α(1− λ)w + w(α‖w‖2 + ‖r‖β) = 0

⇒ α(1 + ‖w‖2 − λ) + ‖r‖β = 0, (10)

and
α‖r‖‖w‖2 + (‖r‖2 − λ)β = 0. (11)

We require also that the vector[
y
β

]
=

[
αw
β

]
has unit norm, yielding the additional condition

α2‖w‖2 + β2 = 1. (12)

(This condition verifies the equality between the “arcsin” and
“arccos” definitions in (5d).)

To find the two possible values for λ, we seek non-unit roots
of the characteristic polynomial for (7) and make use of the
Schur form

det

([
A B
C D

])
= (detD) det(A−BD−1C),

to obtain

det

[
I + wwT − λI ‖r‖w
‖r‖wT ‖r‖2 − λ

]
= (‖r‖2 − λ) det

[
(1− λ)I + wwT − ‖r‖2

‖r‖2 − λ
wwT

]
= (‖r‖2 − λ) det

[
(1− λ)I − λ

‖r‖2 − λ
wwT

]
= (1− λ)d(‖r‖2 − λ)

(
1− λ‖w‖2

(‖r‖2 − λ)(1− λ)

)
= (1− λ)d−1

(
(‖r‖2 − λ)(1− λ)− λ‖w‖2

)
= (1− λ)d−1(λ2 − λ(‖w‖2 + ‖r‖2 + 1) + ‖r‖2),

where we used det(I + aaT ) = 1 + ‖a‖2. Thus the two non-
unit eigenvalues are the roots of the quadratic

λ2 − λ(‖w‖2 + ‖r‖2 + 1) + ‖r‖2. (13)

When r 6= 0 and w 6= 0, this quadratic takes on positive
values at λ = 0 and when λ ↑ ∞, while the value at λ = 1 is
negative. Hence there are two roots, one in the interval (0, 1)
and one in (1,∞). We fix λ to the larger root, which is given
explicitly by (5a). The corresponding eigenvalue is the first
column in the matrix Ũt, and thus also in the matrix Ût. It
can be shown, by reference to formulas (5a) and (13), that
the values of β and α defined by (5b) and (5c), respectively,
satisfy the conditions (10), (11), (12). We can now assemble
the leading d eigenvectors of the matrix in (7) to form the
matrix Û as follows:

Û :=

[
αw Zt
β 0

]
.



Thus, with Wt defined as in (6), we obtain

ÛWT
t =

[
αw Zt
β 0

] [
wT

‖w‖
ZTt

]
=

[
α
‖w‖ww

T + ZtZ
T
t

β
‖w‖w

T

]
.

Therefore, we have from the update formula for Algorithm 3
that

Ut+1 =
[
Ut

r
‖r‖

]
ÛWT

t

= Ut

(
α

‖w‖
wwT + ZtZ

T
t

)
+ β

r

‖r‖
wT

‖w‖
.

By orthogonality of Wt, we have

I = WWT =
wwT

‖w‖2
+ ZtZ

T
t ⇒ ZtZ

T
t − I −

wwT

‖w‖2
.

Hence, by substituting in the expression above, we obtain

Ut+1 = Ut

(
α
wwT

‖w‖
+

(
I − wwT

‖w‖2

))
+ β

r

‖r‖
wT

‖w‖

= Ut +

[
(α‖w‖ − 1)

w

‖w‖
+ β

r

‖r‖

]
wT

‖w‖
,

which is identical to the update formula in Algorithm 1
provided that

cosσtηt = α‖wt‖, sinσtηt = β.

These relationships hold because of the definition (5d) and the
normality relationship (12).

Algorithm 4 Another iSVD approach for Partial Data [3]
Given U0, an arbitrary n× d orthonormal matrix, with 0 <
d < n; Σ0, a d × d diagonal matrix of zeros which will
later hold the singular values.
Set t := 1;
repeat

Compute wt, pt, rt as in Algorithm 3.
Compute the SVD of the update matrix:[

βΣt wt
0 ‖rt‖

]
= Û Σ̂V̂ T ,

for some scalar β ≤ 1 and set

Ut+1 :=
[
Ut

rt
‖rt‖

]
Û , Σt+1 := Σ̂.

t := t+ 1;
until termination

V. SIMULATIONS

To compare the algorithms presented in this note, we ran
simulations as follows. We set n = 200 and d = 10, and
defined Ū (whose columns span the target subspce S) to
be a random matrix with orthonormal columns. The vectors
vt were generated as Ūst, where the components of st are
N (0, 1) i.i.d. We also computed a different n× d matrix with
orthonormal columns, and used that to initialize all algorithms.

We compared the GROUSE algorithm (Algorithm 1) with
our proposed missing data iSVD (Algorithm 3). Although, as
we show in this note, these algorithms are equivalent for a
particular choice of ηt, we used the different choice of this
parameter prescribed in [2]. Finally, we compared to the
incomplete data iSVD proposed in [3], which is summarized
in Algorithm 4. This approach requires a parameter β which
down-weights old singular value estimates. We obtained the
performance for β = 0.95; performance of this approach
degraded for values of β less than 0.9. The error metric on
the y-axis is d−‖UTt Ū‖2F ; see [2] for details of this quantity.

VI. CONCLUSION

We have shown an equivalence between GROUSE and a
modified incemental SVD approach. The equivalence is of
interest because the two methods are motivated and con-
structed from different perspectives — GROUSE from an
optimization perspective, and incremental SVD from linear
algebra perspective.

REFERENCES

[1] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification
and tracking of subspaces from highly incomplete information. In
Proceedings of the Allerton conference on Communication, Control, and
Computing, 2010.

[2] Laura Balzano and Stephen J. Wright. Local convergence of an algorithm
for subspace identification from partial data. Submitted for publication.
Preprint available at http://arxiv.org/abs/1306.3391.

[3] M. Brand. Incremental singular value decomposition of uncertain data
with missing values. European Conference on Computer Vision (ECCV),
pages 707–720, 2002.

[4] James R. Bunch and Christopher P. Nielsen. Updating the singu-
lar value decomposition. Numerische Mathematik, 31:111–129, 1978.
10.1007/BF01397471.

[5] Emmanuel Candès and Benjamin Recht. Exact matrix completion
via convex optimization. Foundations of Computational Mathematics,
9(6):717–772, 2009.

[6] Pierre Comon and Gene Golub. Tracking a few extreme singular values
and vectors in signal processing. Proceedings of the IEEE, 78(8), August
1990.

[7] Benjamin Recht. A simpler approach to matrix completion. Journal of
Machine Learning Research, 12:3413–3430, 2011.

http://arxiv.org/abs/1306.3391


0 2000 400010−5

100

10% entries observed

an
gl

e 
bt

w
 e

st
 a

nd
 tr

ue
 s

ub
sp

ac
e

0 2000 400010−5

100

30% entries observed

no
is

e 
va

r =
 0

.0
01

0 2000 400010−5

100

50% entries observed

0 2000 4000

10−5

100

95% entries observed

0 2000 4000

10−5

100

100% entries observed

 

 

Alg 1 with step as in [2]
Alg 3
Alg 4 `=1 [3]
Alg 4 `=.95 [3]

0 2000 400010−10

10−5

100

no
is

e 
va

r =
 1

e−
07

0 2000 400010−20

10−10

100

0 2000 400010−20

10−10

100

# vectors observed
0 2000 400010−20

10−10

100

0 2000 400010−20

10−10

100

Fig. 1. Results for the algorithms described in this paper. Algorithm 4 with β = 1 and full data is equivalent to the original incermental SVD (Algorithm 2).
This algorithm performs the best when all entries are observed or when just a small amount of data is missing and noise is present. Algorithm 4 with β = 0.95
and full data at first converges quickly as with β = 1 but flatlines much earlier. GROUSE (Algorithm 1) with the step as prescribed in [2] does the best when
a very small fraction of entries are observed, approaching the theoretical minimum (see [2] for details). With low noise and missing data, our iSVD method
(Algorithm 3) averages out the noise, given enough iterations. Otherwise the algorithms perform equivalently.
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