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An Empirical-Bayes Approach to Recovering
Linearly Constrained Non-Negative Sparse Signals

Jeremy Vila and Philip Schniter

Abstract—We propose two novel approaches for the recovery of Although this problem is convek[12], finding a solution can b

an (approximately) sparse signal from noisy linear measumments
in the case that the signal is a priori known to be non-
negative and obey given linear equality constraints, such s
a simplex signal. This problem arises in, e.g., hyperspedt
imaging, portfolio optimization, density estimation, and certain
cases of compressive imaging. Our first approach solves a éarly

computationally challenging in the high-dimensional negi
Also, while a larger) is known to promote more sparsity

in x, determining the best choice of can be difficult in
practice. For example, methods based on cross-validatien,
L-curve, or Stein’s unbiased risk estimator can be used (see

constrained non-negative version of LASSO using the max- [13] for discussions of all three), but they require much enor

sum version of the generalized approximate message passin

(GAMP) algorithm, where we consider both quadratic and
absolute loss, and where we propose a novel approach to tumgn
the LASSO regularization parameter via the expectation mai
mization (EM) algorithm. Our second approach is based on the
sum-product version of the GAMP algorithm, where we propose
the use of a Bernoulli non-negative Gaussian-mixture sigia
prior and a Laplacian likelihood, and propose an EM-based
approach to learning the underlying statistical parametes. In
both approaches, the linear equality constraints are enfared by
augmenting GAMP’s generalized-linear observation model vih
noiseless pseudo-measurements. Extensive numerical esipents
demonstrate the state-of-the-art performance of our propsed
approaches.

I. INTRODUCTION

Ycomputation than solving{2) for a fixed For this reason[{2)

is often considered under the special case0 [14], where it
reduces to linearly constrained NN-LS.

For the recovery of{-sparse simplex-constrained signals,
a special case of the general problem under consideratien, t
Greedy Selector and Simplex Projector (GSSP) was proposed
in [6]. GSSP, an instance of projected gradient descenatés

EH_I =Pk (-'/B\l - Stepi vay - Aiz”%)v (3)

where Pk (-) is the Euclidean projection onto thi-sparse
simplex,z’ is the iteration: estimate step’ is the iteration:
step size, an,, is the gradient w.r.&. For algorithms of this
sort, rigorous approximation guarantees can be derivechwhe

We consider the recovery of an (approximately) spars¢ obeys the restricted isometry property [[15]. Determining

signalz € RY from the noisy linear measurements
y=Ax +wcRY, (1

where A is a known sensing matrixp is noise, and// may

the best choice of{ can, however, be difficult in practice.

In this paper, we propose two methods for recovering a
linearly constrained NN sparse vectar from noisy linear
observationsy of the form [1), both of which are based

be < N. In this paper, we focus on non-negative (NN) signalsn the Generalized Approximate Message Passing (GAMP)
(i.e., z, > 0 Vn) that obey known linear equality constraintslgorithm [16], an instance of loopy belief propagationttha

Bx = ¢ € R”. A notable example isimplexconstrained
signals, ie.x € AY £ {z e RN : 2, > 0Vn, 1Tz =

has close connections to primal-dual optimization altomi
, [18]. When run in “max-sum” mode, GAMP can be

1}, occurring in hyperspectral image unmixirid [2], portfoliqysed to solve optimization problems of the for@ =

optimization [3], [4], density estimatiori [5]/[6], and @h

argming S0 hy([Az]) + SN g,(2,), whereZ can

applications. We also consider the recovery of NN sparge interpreted as thenaximum a posterior(MAP) estimate

signals without the linear constraidx = ¢ [7]-[9], which
arises in imaging applications [10] and elsewhére [11].

One approach to recovering linearly constrained NN sparse
x is to solve thel;-penalized constrained NN least-squares

(LS) problem [[2) (see, e.gl.1[4]) for some> 0:

Z =argminilly — Az|3 + \|z|1 st Bzx=c. (2
x>0
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of = under the assumed signal priél (4) and likeliholgd (5):

f(x) o ngl exp(—gn(rn)) 4)
f(ylAz) o [Ty exp(—hm([Az]n)). (5)

When run in “sum-product” mode, GAMP returns an approxi-
mation of the minimum mean-squared error (MMSE) estimate
of = under the same assumptions. In either case, the linear
equality constraintdBx = ¢ can be enforced through the use
of noiseless pseudo-measurements, as described in thel.sequ
The first of our proposed approaches solves (2) using
max-sum GAMP while tuning\ using a novel expectation-
maximization (EM)[19] procedure. We henceforth refer tis th
approach as EM-NNL-GAMP, where NNL is short for “non-
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negative LASS@’ We demonstrate, via extensive numericare denoted using serif typeface (eqg.¢, X), while random
experiments, that 1) theintimeof our approach is much fasterquantities are denoted using san-serif typeface (.d.,X).
than the state-of-the-art TFOCS soler|[22] for a fixedand For random variable, we write the pdf asfx(z), the expec-
that 2) the MSEperformanceof our A-tuning procedure is on tation asE{x}, and the variance asar{x}. For a Gaussian
par with TFOCS undepracle tuning. We also consider therandom variablex with meanm and variance, we write the
special case of\ = 0, yielding “non-negative least squaregdf asN (x;m,v) and, for the special case &f (x;0,1), we
GAMP” (NNLS-GAMP), whose performance and runtimebbreviate the pdf ag(z) and write the complimentary cdf
compare favorably to Matlabssql i n routine. In addition, as®.(z). Meanwhile, for a Laplacian random variablevith
we consider a variation ofil(2) that replaces the quadrasie Idocationm and scalev, we write the pdf asC(z;m,v). For
1lly — Az||3 with the absolute los§y — Az|;, for improved the point mass at = 0, we use the Dirac delta distribution
robustness to outliers iw [23], and demonstrate the potentiali(x). Finally, we useR for the real field andf, g(x)dx for
advantages of this technique on a practical dataset. the integral ofg(z) overz € [0, c0).

The second of our proposed approaches aims to solve not an
optimization problem like[{2) but rather an inference pesbi
compute theMMSE estimateof a linearly constrained NN
sparse vector from noisy linear observationg. This is in  As described in Sefl I, the generalized approximate message
general a daunting task, since computing the true MMSE dssing (GAMP) algorithm[[16] is an inference algorithm
timate requires i) knowing both the true signal pride) and Capable of computing either MAP or approximate-MMSE
likelihood f(y|Az), which are rarely available in practice, andstimates ofz € RY, wherez is a realization of random
ii) performing optimal inference w.r.t that prior and likebod, Vectorx with a prior of the form[(6), from generalized-linear
which is rarely possible in practice for computational s Observationg € R* that yield a likelihood of the form{7),

However, when the coefficients iw are i.i.d and the () HN Fro (@) 6)
observation matrix4d in (@) is sufficiently large and random, XA & L=y P in
recent work[[24] has demonstrated that near-MMSE estimatio Fyz@wl Az) o< [Tn_y fy (20 (Um | [AZ]), @)
is indeed possible via the following methodology: place an N . ,
ii.d Gaussian-mixture (GM) model with parametayson wherez = Ax represents “noiseless” transform outputs.

the coefficients{x,, }, run sum-product GAMP based on that GAMP generalizes DO“‘,’hO' Maleki, and Montanari's Ap-
model, and tune the model parametgissing an appropriately proximate Message Passing (AMP) aIgonth_[ZfEl:I [29]
designed EM algorithm. For such, the asymptotic optimality from th? case of AWGN-corrupted linear observ_anon_s to the
of GAMP as an MMSE-inference engine was established %ngrallzed-lmear modd]](?). As we shall see, t.h's gerxergl
[16], [25], and the ability of EM-GAMP to achieve consistenfon is useful when enforcing the linear equality constisin
estir,nates, ofy was established i [26] Bz = c and when formulating non-quadratic variations[df (2).
In this work, we show that the EM-GM-GAMP approactl) (_BAMP is der_ived from particular apprqximations of I_oo_py
from [24] can be extended tmearly constrained non-negative elief propagation (based on Taonr-sengs and ?enmit"l,'
signal models through the use of a non-negative Gaussidhgorem arg_uments) th"_ﬂ yield ComP“t_""“‘_’”a”y S'”_‘p'e tfirs
mixture (NNGM) model and noiseless pseudo-measureme/t&ler” algorithms bearing strong similarity to primal-dua
and we detail the derivation and implementation of the tesuf90rithms [17], [18]. Importantly, GAMP admits rigorous
ing algorithm. Moreover, we demonstrate, via extensive ndnalysis in the large-system limit (i.el/, N’ — oo for fixed
merical experiments, that EM-NNGM-GAMP’s reconstructioﬁat"? M/_N) under i.i.d sub-Gaus.S|am [18], [@] Wh_ere
MSE is state-of-the-art and that its runtime compares fivigr its iterations obey a state evolution whose fixed points are
to existing methods optimal whenever they are unique. Meanwhile, for finiteediz

Both of our proposed approaches can be classified Q{é)bl_ems and gent_eri;A, max-sum GAMP yields the MAP
“empirical-Bayes” [27] in the sense that they combinéomt'on whenever it converges, whereas sum-product GAMP

Bayesian and frequentist approaches: GAMP performs (M nimizes a certain mean-field variational _objepti@_l [1ATE _
or MMSE) Bayesian inference with respect to a given prio ough perfprmance guarantees for generic f|n|te-d|m_e|a$|o
where the parameters of the prior are treated as determinié‘% are lacking except in special cases (e.0.] [18]), in-depth

and learned using the EM algorithm, a maximum-likelih008mpirical studies have demonstrated that (G)AMP performs
(ML) approach relatively well for theA typically used in compressive sensing

Notation For matrices, we use boldface capital |etter§pplications (see, e_.gL__U24]). ) )
like A, and we useA”, tr(A), and ||A|[» to denote the Table [I summarizes the GAMP algorithm. Effectively,

transpose, trace, and Frobenius norm, respectively. Rooree CAMP converts the computationally intractable MAP and
we use boldface small letters like, and we use|z||, = MMSE high-dimensional vector inference problems to a se-

>, lza|?)/? to denote the¢, norm, with z, =[], quence of scalarinference_problems.In@hg end, its_, corﬂplex
is dominated by folr matrix-vector multiplies per iteration:
steps (R1), (R2), (R9), (R10). Furthermore, GAMP can take

II. GAMP OVERVIEW

representing thex! element ofz. Deterministic quantities

1In the absence of the constrai@x = ¢, the optimization problem12)
can be recognized as a non-negatively constrained versithie @ ASSO [20] 2Two matrix multiplies per iteration, those in (R1) and (R@gn be
(also known as basis-pursuit denoisifigl[21]). Similanythie special case of eliminated using the “scalar variance” modification of GAM#h vanishing
A=0, (@) reduces to non-negative LIS[14]. degradation in the large-system lindit [16].



advantage of fast implementations of the matrix-vectortmul (inputs: Vi, n Fans Iy, (2> Amn, Tinax, €gamp > 0, MaxSum € {0, 1}
plies (e.g., FFT) when they exist. For max-sum GAMP, scal&fefinitions: ; (o) Ao
inference is accomplished by lines (R3) and (R11), whigh,,pp,, (=17 1") £ 1 y;;“: y(’;mz‘)zwz(f;w) o
involve the proximal operator 1 P o (| 5 7 2 fﬁ(:&f)\f J\(fm(z?:ul) 02)
W . . initialize:
prox, (v; u*) = arg min g9(z) + o |z — o (8) ¥n: En(1) = [, @ fu(@) (1)
* Yo pg (1) = [ | —Zn(1)] fi,(2) (12)
for generic scalar functio( ), as well as lines (R4) and | t_Vflﬂ.:;im(O) =0 3)
(R12), which involve the derivative of the prox operatr (8 o o u’;az‘t’) SN P (1) RY)
. . . . - Hm - n=1 Kimn n
with respect to its first argument. Me:_;mwhlle, fo_r sum-pratdu VI Bn(t) = SN Apn @ (8) — 1 (8) S (t — 1) R2)
GAMP, scalar inference is accomplished by lines (R5) and if MaxSum then ~
(R6), which compute the mean and variance of GAMPYs ¥ : Zm(l) =ProX_ya g\, (B (0); i (1)) (R3)
iteration approximation to the marginal posterior ap,, v s g (8) = pm (O Prox_y, g (Bm (1) pn (1) (R4)
else
Sz 19, (2 | P (b); 11, (1) < fy, 12,0, (Y| 2)N (25 B (), 15, (1)), VM : 2 (t) = E{Zm|P,,, =Pm (1); s (1)} (RS)
9) ijf; t i (t) = var{Zm|p,,, =Pm (t); pim (£)} (R6)
enal
and by lines (R13) and (R14), which compute the mean and  Vm : up,(t) = (1 - ufn(Q/u%(t))p/u%(t) R7)
variance of the GAMP-approximate marginal posterioxqn Ym s Sm(t) = Z’”](é) _pm(té)/“m(t),l (R8)
Vs () = (X1 Amnl uhf}z(t)) R9)
Fo @ T @); puh (1) oc fx ()N (237, (t), ub(t)).  (10) VT (t) = Zn(t) + i (8) me1 A Sm(t) (R10)
nlfn n " n f MaxSum th
| axsum then
We now provide background on GAMP that helps to ex- Vn:Zn(t+1) =prox_, p (7n(t); g7, (1) (R11)
plain (@)-[I0) and Tablél I. First and foremost, GAMP can Vl’“%(t“) = Hp (1) Prox_yy, g, (P (8); 1 (1) (R12)
. . . . . . ese
be interpreted as an iterative thresholding algorithm,he t| '~ Fn(t-+1) = Exn|tn =7 (8); 4 (1)} (R13)
spirit of, e.g., [30], [31]. In particular, when the GAMP-| vp : 2 (t-+1) = var{xn |rn =7 (t); u7 (t)} (R14)
assumed distributions are matched to the true ones, trableri | endif S N e
7. (t) produced in (R10) isin approximately AWGN-corrupted endlfzn:l |Zn (t+1) = Zn ()] < egamp 35— [T (t)[7, break  (R15)
version of the true coefficient,, (i.e.,T,.(t) = X, + T, (t) _ = N o R
with 1, (t) ~ N(0,u%(t)) independent of,) where u7 (t) outputs: ¥rm, m : Zm(8), i (£), P (0), pin (1) En (£ 1), i (E1)

is computed in (R9) and the approximation becomes exact in TABLE |
the large-system limit with i.i.d sub-Gaussiah [16], [25]. THE GAMP ALGORITHM FROM [L6] WITH MAX ITERATIONS Tinax AND
Note that, under this AWGN corruption model, the pdf of STOPPING TOLERANCEEGAwP -

X, givenT,(t) takes the form in[{10). Thus, in sum-product

mode, GAMP sets,, (#+1) at the scalar MMSE estimate o}, Indeed, what sets GAMP (and its simpler incarnation AMP)
given, (t), as computed via the conditional mean in (R13), o1t from other iterative thresholding algorithms is that
apd I setmfl_(ﬁl) as the cor_respondmg MMS',E’ as computeffie thresholder inputs,, (t) and p,,(t) are (approximately)
via the condmonaIAvarlance in (R14). Meanwh|lez in maxmsu n\vGN corrupted observations af, andz,,, respectively, en-
rr?ode,AGAMP setf, (¢+1) at the scalar MAP estimate OIL suring that the scalar thresholding steps (R3)-(R6) andJR1
givenr,, (t), as computed by the prox step in (R11), and it S€{& 1 4 are well justified from the MAP or MMSE perspectives.
i (t+1) in accordance with the sensitivity of this proximalyoreqver, it is the “Onsager” correction-u? (£)3, (t—1)” in
t_hresholdlng, as .computed in (R12). This explains (10) a"CQZ) that ensures the AWGN nature of the corruptions; withou
lines (R9)-(R14) In T"’}bl_EI . , , it, AMP reduces to classical iterative thresholdingl[28hieh

. e )[:'Jerforms much worsé [32]. Computing the Onsager correction
(R6) in Tablel). When the GAMP distributions are matched tQ 6| es (R7)-(R8). To our knowledge, the simplest intetgr
the true onespy, () produced in (R2) isan approximately yio, of the variables,, () and ., (t) computed in (R7)-(R8)
AWGN-corrupted version of the true transform outp  ;omes from primal-dual optimization theory, as estabtishe
(e, Pp(t) = Zm + P, (t) With p,, (1) ~ N0, 45, (1) [18]: whereasz, (t) are estimates of the primal variables,
independent op,, (1)) wherey, (¢) is computed in (R1) and 5., (t) are estimates of the dual variables; and wheyexs)

the approximation becomes exact in the large-system "”Pﬁates to the primal sensitivity at the poit, (¢), 1, (1)

with i.i.d sub-Gaussiar [16], [25]. Under this model, the pdf .o 4tes to the dual sensitivity at, (¢)
of z,,, givenp,, (t) andy,,, takes the form in[{9). Thus, in sum- '

product mode, GAMP sefs,,(¢) at the scalar MMSE estimate [1l. OBSERVATION MODELS
of z,,, givenp,,(t) andy,,, as computed via the conditional 14 anforce the linear equality constraiftz — ¢ € R”

mean in (RS), and it sefg;, (t) as the corresponding MMSE, ;5ing GAMP, we extend the observation mode! (1) to
as computed via the conditional variance in (R6). Meanwhile

in max-sum mode, GAMP sets,,(t) at the scalar MAP [y] — [A} T+ [“’] (11)
estimate oz, givenp,,(t) andy,,, as computed by the prox ¢ B 0

operation in (R3), and it setg? (¢) in accordance with the and exploit the fact that GAMP supports a likelihood func-
sensitivity of this prox operation, as computed in (R4). tion that varies with the measurement index Defining



72 [y, A2 [ATB"]", andz £ Ax, the likelihood

associated with the augmented model (11) can be written as

m=1,...,M
m=M+1,...,

(12)

55, 120 G Zm) = {fy'Z(ymlzm) M+P

where fy|, is the likelihood of the first\/ measurement§l(1).
Note that, for either max-sum or sum-product GAMP, the

quantities in (R3)-(R6) of Tablg | then become

m=M+1,...,
m=M+1,...,

M+P
M+P,

(13)
(14)

wherec,,_ s are elements oé.

A. Additive white Gaussian noise

When the noisaw is modeled as additive white Gaussian

noise (AWGN) with variance), the likelihood f,, in (12)
takes the form

N(y; z,9). (15)

fylz(y|z) =

Zm = ym"' Co (p —V uimh(s ) Z (ﬁ'nz_'— V anh(EM))
(22)
f = En V(s (23)
Hm = C Mmg (p - Hm )
Cm
+ Com (ng Hm (Pm—F V Hmh Rm ) ) ym—Zm)27
wheregm £ Dm + Vb, Doy, £ Dm — Y,
Cop 2 Sexp (V4 50°08,) Pe(k,,) (24)
Cm £ %GXP (_U) + %¢2an) (I)C(Em)v (25)
Cpn 2 Coy + Crny B, 2D [\ 1y B = =P/ V/ i and
A ¢(a)
h(a) - <I>C(a) (26)
g(a) =1 = h(a)(h(a) - a) (27)

IV. NON-NEGATIVE GAMP
A. NN Least Squares GAMP

In this case, for either max-sum or sum-product GAMP, the We first detail the NNLS-GAMP algorithm, which uses
quantities in (R3)-(R6) of Tablg | becomie [16] (omitting thénax sum GAMP to solve tha = 0 case of [(R). Noting that

t index for brevity)

P

Zm:ﬁm"’—ué:ﬁw(ym_ﬁm) m=1,....,M  (16)
¥

i, = Hm¥ m=1,...,M. (17)
fim + 1

B. Additive white Laplacian noise

he > 0 constraint in [[R) can be thought of as adding an
|nf|n|te penalty to the quadratic term when any < 0 and
no additional penalty otherwise, we model the elements of
as i.i.d random variables with the (improper) NN prior pdf

1 >0
fX(x)_{o z<0’
and we assume the augmented modell (12) with AWGN

(28)

The additive white Laplacian noise (AWLN) observatiotikelihood (I3) (of variance) = 1), in which case max-sum
model is an alternative to the AWGN model that is more robu&AMP performs the unconstrained optimization

to outliers [23]. Here, the noisa is modeled as AWLN with
rate parameter) > 0, and the corresponding likelihoof,
in (I2) takes the form

fy\z(y|2’) = L(y; z,9) S

and so, for the max-sum case, (R3) in Tdble | becomes

%GXP(—Wy— Z|)a (18)

(Zm - ﬁm)2
24m )
The solution to[(IB) can be recognized ag,ashifted version

of “soft-thresholding” function, and so the max-sum qutedi
in (R3) and (R4) of Tablél | become, usipg, = p,,

Zm = argmin |z,
zm ER

— Ym| + (19)

_ym;
—wﬂfn @nZlﬂan
Zm =8 Dm + VP, Dm < —voub, m=1,...,M, (20)
Ym else
0 [pm| <ouk
an_{ , [m] < uf, m=1,...,M. (21)
ub  else

Meanwhile, as shown in Appendix_BlA, the sum-product
GAMP quantities (R5) and (R6) (i.e., the mean and variance

of the GAMP approximated,,, posterior [9)) become

argnnn Zln]]-mn>0 Inlpg=c+ ||y Az|3, (29)

n=1

wherel, € {0,1} is the indicator function of the evem.
Hence, [ZD) is equivalent to the constrained optimizat@n (
when\ = 0.

Under the i.i.d NN uniform prior[{28), it is readily shown
that the max-sum GAMP steps (R11) and (R12) become

0 7, <0

zn_{A e (30)
Tn Th>0

. 0 <0

un—{r . : (31)
Wy, T >0

B. NN LASSO GAMP

Next we detail the NNL-GAMP algorithm, which uses max-
sum GAMP to solve the\ > 0 case of[(R). For this, we again
employ the augmented modE[{12) and AWGN likeliholad (15)
(with variancey)), but we now use i.i.d exponentig},, i.e.,

exp(—xx) x>0
ful) = {x (—x)

32
0 else (32)



for x > 0. With these priors and the augmented observationFrom [10) and[(36), it follows that GAMP’s approximation
model [11), NNL-GAMP solves the optimization problem to the posterior activity probability Px, # 0|y} is

:’ﬁzargminﬁ”?:l—Ang—i—waﬂl st. Bz =c¢, (33)
x>0

(45)

which reduces td{2) undey = ).
It is then straightforward to show that the max-sum lines

(R11) and (R12) in Tabld | reduce to V. EM LEARNING OF THE PRIOR PARAMETERS

Ty = {T" = X Tn 2 X (34)  In the sequel, we will use to refer to the collection of
0 else prior parameters. For example, if NNGM-GAMP was used
N i with the AWGN observation model, thep= [r,w, 0, ¢, ].
=910 else (35) Since the value of that best fits the true data is typically
unknown, we propose to learn it using an EM procedureé [19].

The EM algorithm is an iterative technique that is guarashtee
to converge to a local maximum of the likelihogdy; q).
C. NN Gaussian Mixture GAMP To understand the EM algorithm, it is convenient to write

Finally, we detail the NNGM-GAMP algorithm, which the log-likelihood as([24]
employs sum-product GAMP under the i.i.d Bernoulli non-

negative Gaussian mixture (NNGM) prior pdf far, i.e., n f(y;a) = Qp(y; @) + DBl fuy (ly; @), (46)

L where p is an arbitrary distribution orx, D(p||g) is the
Fulz) = (1 =71)5(x) + 7Y we Ny (350, d0), (36) Kullback-Leibler (KL) divergence betweehand g, and

=1
where N, (-) denotes the non-negative Gaussian pdf, Qp(y; ) = Ep{ln fiy (X, y3 )} + H(p), (47)

N@b9) 5> where H(p) is the entropy ofx ~ p. Importantly, the non-

Ni(2:0,9) = {(;DC(H/\/@ v <0’ (37) negativity of KL divergence implies tha@;(y; g) is a lower

bound on [(4b). Starting from the initializatiog®, the EM
T € (0, 1] is the sparsity rate, and, 6, and¢, are the weight, algorithm iteratively improves its estimatg at each iteration
location, and scale, respectively, of tH& mixture component. i € N: first, it assignsp’(-) = fxy(|y;q") to tighten the
For now, we treat the NNGM parametersw, 6, ¢| and the bound, and then it seig’! to maximize [(4¥) withp = p'.

model orderL as fixed and known. Since the exact posterior pdfy (-|y; ") is difficult to
As shown in Appendik C-A, the sum-product GAMP quanealculate, in its place we use GAMP’s approximate posterior
tities in (R13) and (R14) of Tablé | then become 1, fxu i (-[Pns pitr; @) from (@0), resulting in the EM update
L ~ .
7 =7 = E{l ;q) | viq' 48
= ;ﬁnx(w + Tnh(om.y)) (38) q arg max B{ln £(x, y: q) [y: 4}, (48)

L = . . .
e _ T 2\ o where E denotes expectation using GAMP’s approximate
Hn = gn;ﬁ"’é (V"’fg(a”’é)—F(V"’é—i_V Vn eh(an.c) ) Tn> posterior. Also, because calculating the joint updategfan
=1 (39) (@8) can be difficult, we perform the maximizatidn {48) one
component at a time, known as “incremental EM”][33]. Note

where(, is the normalization factor that, even when using an approximate posterior and updat-
I ing incrementally, the EM algorithm iteratively maximizas
Con 2 (1= TIN(0; 7, i) + Tzﬁn,éa (40) lower-bound to the log-likelihood.
— Whereas[[24] proposed the use [6fl(48) to tsnen-product
' . . AMP, where the marginal posterio |7 s g*) from
h(-) andg(-) were defined in[(26) and{27), respectively, an&q) are computed forguse i$1 steps{%llrrég-|(Rlli) o?'l)'ble I, we
A —nt hereby propose the use ¢f{48) to tumax-sumGAMP. The
Ont = VPt (41) reasoning behind our proposal goes as follows. Although-max
. ?n/% + 0,/ 0 sum GAMP dges not cpmpute marginal _po_steriors (_but rather
M S T gy (42) joint MAP estimates), its large-system-limit analysis den
" i.i.d sub-Gaussiamt) [25] shows thaf’, (¢) can be modeled as
Uno = — (43) an AWGN-corrupted measurement of the tnygwith AWGN
1/, i‘ 1/ ¢ . varianceu!, (t), revealing theopportunityto compute marginal
Brs 2 wWeN (P O, i, +P0) Pe(n.0) (44) posteriors via[(ZI0) as an additional step. Doing so enahkes t

De(—00/v/ d0) ' use of [@8) to tune max-sum GAMP.,



A. EM update of AWGN variance Sxie(@n|Pns py,) = Ny (2n; 70, py,). Note that this procedure,

We first derive the EM update of the AWGN noise varianc@hen used in conjunction with the AWGN variance learning
¥ (recall [I5)). This derivation differs from the one im24]procedure, automatically “tunes” the LASSO regularizatio
in that here we use as the hidden variable (rather tharParameten in @), a difficult problem (see, e.g[. [13]).

z), since experimentally we have observed gains in the low-

SNR regime (e.g..SNR < 10 dB). Because we can writep, EM updates for NNGM parameters and model-order se-
F(@,9:9) = DIy fyiz(ymlaj,;v) with a y-invariant jection

term D, the incremental update ef from (48) becomes Noting that f(z,y:q) — DHle Fu(@niw, 0, ) with

- Mo . _ [w, 8, ¢]-invariant D, the incremental EM updates become
Y = argmax > E{In fyz(ymlarx;v) |y} (49) N
> m=1 . ~ . .
: ot = E{1 i Ok, gt . q 57
In Appendix[A, we show tha{{39) reduces to k arigﬁ’(; (I fx(%n: 01 alo,) w0}, (57)
. 1 1 M . N o , .
v = iy - AZ|E + 47 > adup. (50) it =argmax Y E{In fx(xn; ¢x. qly,) |v:q'}, (58)
m=1n=1 >0
W = argmax Z E{ In fx(Xpn; w, qz\w) | Y; qz}, (59)
B. EM update of Laplacian rate parameter w>0:3 k=1 =y
As in the AWGN case above, the incremental update of thehere we use d{w" to denote the vectog® with w compo-
Laplacian rate) from (48) becomes nents removed (and similar fg, andg!, ). As derived in
M Appendix[C-B, the updates above can be approximated as
+1 — argmax E{ln mlal X; ptY (51 N =
P %>0 mZ:l { fYIz(y @, X; 1)) ’y P } (51) git1 _ anl ﬁnﬂnyk (’Yn,k + ,/Vnykh(an_’k)) (60)
kT N =
but where nowfy, is given by [(I8). In Appendix_B-B, we 2n=1TnBnk
show that[(5lL) reduces to 1 PO T Bk (Ynok + /rh (o i) — Hk)z
i+1 M HgoT i) = SN B
it =M (Zm:l E{|amx — Yml ’y,z/J }) (52) N B n=1TnPn k
—1 "B kVnkg(0n,
where + Lnm1 Nﬁ L _kg( £) (61)
~ T . z m -z Zn:l ﬂ—nﬁn,k
_ b A m ) (5 m N =
btsrlayon (B) (B () ot

~ - k I a—

~a () (s Vi (22) B T -

Hm Hm where the quantities.,, ¢, Vn.¢, Vn.e, Bn.e, T, Were defined in

(#D)-@3) andp,, , = Bnk/ >, Bn.e- The EM update of the

for Z,, 2 al & — y,, 412, defined in line (R1) of TablB I, and NNGM sparsity rater (recall [38)) is identical to that for the

h(-) defined in [2B). GM sparsity rate derived il [24]:

C. EM update of exponential rate parameter T = N Z Tp.- (63)
Noting that f(z,y;q) = DI, fx(za;x) with x- _ o !

invariant D, the incremental EM update of the exponentialSince the quantities i {(60)-(63) are already computed by

rate parametey is NNGM-GAMP, the EM updates do not significantly increase

the complexity beyond that of NNGM-GAMP itself.

N
il = , i The number of components in the NNGM model [(3b)
X7 = ar%{géaX;E{lﬂfx(XmX) | y:x' (54) " can be selected using the standard penalized log-likedihoo
B N approach to model-order-selection[34], i.e., by maximizi
= argmax Nlogx - x; E{x,|y;x'}  (55) In f(y; qr) —n(L), (64)

which, after zeroing the derivative df{55) w.rt, reduces to Whereg;, is the ML estimate ofg under the hypothesig
B (for which we would use the EM estimate) amdL) is a

p N Tn penalty term such as that given by the Bayesian information
X =N (Z Tn 1 \/“—:lh (‘ m)) (56) criterion (BIC). Since this model-order-selection progelis
n=1 " identical to that proposed for EM-GM-GAMP ih [24], we refer
for 7, £ 7, — xu, p.. defined in line (R9) of Tablg I, and interested readers to [24] for more details. In practicefing
h(-) defined in[ZB). The derivation of (b6) uses the fact thdfat the fixed choice of. = 3 performs sufficiently well (see
the posterior used for the expectation [n](55) simplifies ®ec[V]).




o N =100 N = 250 N =500
E. EM initialization fime fime fime

With EM, a good initialization is essential to avoiding ba NMSE_|NNLS-GAMP|| 5l i n|| NMSE_|NNLS-GAMP) sl in|| NMSE |NNLS-GAMP|| sql in
local mini ' For EM-NNL-GAMP t setting thez -161.d 0.068 [0.05([161. 0.080 |0.55(161. 0.159 |5.414
local minima. For EM-NNL- » We suggest setling Nt 155 167,71 0.069 [0.021154.3 0.080 |0.205[161.5 0.154 |1.497
initial exponential rate parametgf = 10~2, as this seems to |”|T000F162.1 0.068 [0.017[161.7 0.079 [0.074161.5 0.151 |0.50
perform well over a wide range of problems (see $e¢. VI). TABLE Il

For EM-NNGM-GAMP, we suggest the initial sparsity rateNNLS-GAMPVS. LSQLI N: AVERAGE COMPARATIVENMSE [DB] AND

RUNTIME [SEC] FOR SIMPLEX SIGNAL RECOVERY

0 : M M
70 = min { ¥ pse(45), 1 — €} (65)

. L . . K =50 K = 100 K = 150
wheree > 0 is set arbitrarily small angse(-) is the theoretical fime fime fime
noiseless phase-transition-curve (PTC) far recovery of RWMSE |NNL-GAMP] TFoCS|| NWISE | NNL-GAWP] TFOCS|| RWSE |NNL-GAMP[ TFOCS
; . ~<|0.001 F125.4 0.026 |0.13(122.9 0.026 |0.148[117.q 0.027 [0.17

orm expression 0.0001F113.2 0.035 [0.256 1134 0.036 [0.262[112.4 0.036 |0.292
1= (1/0)[(1+c2)®(—c) — colc

>0 1+ —[(142)P(—c) — cp(c)] NNL-GAMP vs. TFOCS:AVERAGE COMPARATIVENMSE [DB] AND
RUNTIME [SEC] FOR K -SPARSE NONNEGATIVE SIGNAL RECOVERY.
where®(-) and ¢(-) denote the cdf and pdf of the standard

normal distribution. We then propose to set the initial ealu

of the NNGM weights{w,}, locations{f,}, and scaled#,} and sampling ratioM /N = 3. Table[dl reports the result-
at the values that best fit the uniform pdf in/3¢°], which ing comparativeNMSE £ ||Zynis-camp — Zisqiinll3/]| 3
can be computed offline similar to the standard EM-baseqid runtime averaged ovét = 100 realizations for signal
approach described i [B5, p. 435]. Under the AWGN modingths N = [100, 250, 500]. From the table, we see that
(I5), we propose to set the initial variance of the noise alNNLS-GAMP and | sql i n return identical solutions (up

signal, respectively, as to algorithmic toleran¢®, but that NNLS-GAMP’s runtime
lyll2 yl2 — My® scales likeD(N?) whilel sql i n’s scales likeO(N?3), making
PO = 2 0= 172 (67) NNLS-GAMP much faster for larger problem dimensiaNs

TOoND o N1 90 — T A2 0

(SNR +1)M | AllF7° Moreover, we see that NNLS-GAMP’s runtime is invariant
where, without knowledge of the tr@\R 2 || Az||2/|w||3, 0 SNR, wherea$sql i n’s runtime quickly degrades as the
we suggest using the val@\R =100. Meanwhile, under the SNR decreases.
i.i.d Laplacian noise mode[{18), we suggest to initialine t ~Next, we examine the performance of our proposed algo-

rate asy® = 1 and¢° again as in[{67). rithms on the non-negative LASSO problef (2) with> 0.
In particular, we compare NNL-GAMP to TFOE$22]. For
VI. NUMERICAL RESULTS this, K-sparse non-negative and noisy observationg were

) i , ) constructed as before, but now withh = 1000, N = 500,
The subsections below describe numerical experiments used nr 5nd SNR = 20 dB. Table[Tll shows the runtimes
to_ascertain the performance _Of the proposed mekhaals and comparativBlMSE between NNL-GAMP and TFOCS for
existing methods for non-negative signal recovery. various combinations of sparsity and regularization weight
A. Table[ shows that the solutions returned by the two
A. Validation of NNLS-GAMP and NNL-GAMP algorithms were identical (up to algorithmic tolerance) that

We first examine the performance of our proposed alghNL-GAMP ran about4 to 8 times faster than TFOCS.
rithms on the linearly constrained NNLS problem (2) with-
0. In particular, we compare the performance of NNLS-GAMB. Noiseless Empirical Phase Transitions
to Matlab’s solver sql i n. To do this, we drew realizations |t has been established (see, elg.] [28]) that, for the ezgov
of K-sparse simplexc € A%, where the nonzero elementsof a non-negativeés-sparse signat € RV from noiseless ob-
{z;}1—, were placed uniformly at random and drawn from gervationgy= Az € R, there exists a sharp phase-transition
symmetric Dirichlet distribution with concentratian i.e., separating problem sizéa/, N, K) that are perfectly solvable

I'(aK) HK 221z, € [0,1] (with very high probability) from those that are not. The
flzy, .. 2 q) = {F(aV‘ k=1=k 0 =k ' (68a) precise location of the phase-transition curve (PTC) diffe

0 else among algorithms, presenting an avenue for comparison.
flegley, . 2 q) =001 -2y — —zg), (68b) Below, we present empirical PTCs for the recovery of

. . L ) K-sparseN-length simplex signals from\/ noiseless mea-
wherel'(-) is the gamma function. For this first experiment, W§ .o ments. To compute each PTC, we fix¥d— 500 and

1 i i K—1 o ;
useda”_ L, Whlc.h Case{gk}kél are ""hd uniform on[O,dl], ._constructed &0 x 20 uniformly spaced grid on th%-versus-
as well ask = N(|.e.],wno sparsllty).Wet en constructe _n0|s% plane for% € 0.05, 1] and% € [0.05, 1]. At each grid
measurementy € R according to[{ll) usingd with i.i.d

N(0,M~1) entries,SNR £ | Az[3/]|w||3 = [10, 100, 1000], 4The algorithms under test include user-adjustable stgpfuiterances. As
these tolerances are decreased, we observe that the ctivephildSE also
SWe implemented the proposed algorithms using the GAMPIng8&] decreases, at least down to Matlab’s numerical precisiuit. li
package available at http://sourceforge.net/projeatsfgnatlab/. 5We used Matlab code from http://cvxr.com/tfocs/download/



http://sourceforge.net/projects/gampmatlab/
http://cvxr.com/tfocs/download/
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Fig. 1. Empirical PTCs and;-SNN theoretical PTC for noiseless recoveryFig. 2. Empirical PTCs and;-SNN theoretical PTC for noiseless recovery

of lengthN = 500, K-sparse, simplex signals with Dirichlet concentrationof length-V = 500, K-sparse, simplex signals with Dirichlet concentration
a =1 from M measurements. a = 100 from M measurements.

point, we drewR = 100 independent realizations of the pail
(A, z), whereA was drawn from i.i.dV'(0, M ~1) entries and
x € RY had K nonzero elementéz, } X | (placed uniformly
at random) drawn from a symmetric Dirichlet distributi@B)6
with concentration parameter. For the r*" realization of
(A, x), we attempted to recover non-negative sparsieom
the augmented observatioh$] = [ 3] z, which implicitly
enforce the simplex constraint. The resulting recoveényas
considered to be “successful” NMSE = ||:1: - .’/IJ\H%/”.’B”% < Fig. 3. Sparse non-negative image of a satellite: origimage on left and
106. Using S, =1 to record a success aisil =0 a failure, the EM-NNGM-GAMP recovery athl = 1 on right.
average success rate was then computef &st -7 | S,
and the corresponding empirical PTC was plotted as the . . .
S=0.5 level-curve using Matlab’'sont our command. C. Sparse Non-negative Compressive Imaging

Figuredl anfl]2 show the empirical PTCs under the DirichletAs a practical example, we experimented with the recov-
concentratioru=1 (i.e., i.i.d uniform{gk}fgf) anda=100 ery of a sparse non-negative image. For this, we used the
(i.e., z, ~ + Vk), respectively, for our proposed EM-tunedV = 256 x 256 satellite image shown on the left of Figl 3,
NNGM-GAMP and NNL-GAMP algorithms, in comparisonwhich containeds’ =6678 nonzero pixels an&v —K = 58858
to the GSSP approach [(B) proposed inl[6]. We did notzero-valued pixels, and thus was approximate§j, sparse.
consider NNLS-GAMP and sql i n because, forA drawn Measurementyy = Ax + w € RM were collected un-
i.i.d Gaussian, the solution to the non-negative LS probleder i.i.d Gaussian noisew whose variance was selected to
“argmingq |y — Az||3” is not guaranteed to be uniqueachieve arSNR =60 dB. Here,x represents the (rasterized)
when M < N [14, Thm. 1], which is the setting consideredmage andA a linear measurement operator configured as
here. Figure§]1 and 2 also showe (%) from (€8), i.e., the A = @¥S, where® € {0,1}*" was constructed from
theoretical large-system-limit PTC fah-based recovery of rows of the N x N identity matrix selected uniformly at
sparse non-negative (SNN) signals. random, ¥ € {—1,1}*" was a Hadamard transform, and

Looking at Figured]l anfll2, we see that the empiricdl € RV*YN was a diagonal matrix with-1 diagonal entries
PTCs of EM-NNL-GAMP are close to the theoretical chosen uniformly at random. Note that multiplicationAycan
PTC, as expected, and significantly better than those of GSBE® executed using a fast binary algorithm, making it ativact
More striking is the far superior PTCs of EM-NNGM-GAMP.for hardware implementation. For this experiment, no linea
We attribute EM-NNGM-GAMP's success to three factorsquality constraints exist and so the observation model was
i) the generality of the NNGM prior[(36), ii) the ability not augmented as ifi_(IL1).
of the proposed EM approach to accurately learn the priorAs a function of the sampling ratiéé, Fig.[4 shows the
parameters, and iii) the ability of sum-product GAMP t&NMSE and runtime averaged ovét=100 realizations ofA
exploit the learned prior. In fact, Fif] 2 shows EM-NNGM-and w for the proposed EM-NNGM-GAMP and EM-NNL-
GAMP reliably reconstructing(-sparse signals from only GAMP in comparison to EM-GM-GAMP from_[24], genie-
M = K measurements in the compressive (i&l, < N) tuned non-negative LASSO via TFOCS [@]and genie-
regime.

“Using EM-NNL-GAMP’'s #, we ran TFOCS over anll-point
8For GSSP, we used code provided by its authors, but foundtshperfor-  grid of hypothesized non-negativé; penalty A\ € {0.5]|AT(y —
mance was greatly enhanced by initializing the algorithrthatBasis Pursuit AZ)|«, . .., 2||AT(y — AZ)|| } and then reported the total runtime and

solution (as computed by SPGL1 [37]) and using the stepHMHHAH%. bestNMSE.



: : ; b A 1 M _
== evwwon which can be time-averaged to yiejd = 37> 7y =

o emomonve | %ATL and then (assuming stationarity) desigrthat mini-
PR mizes the variance around a target sum-returp,dfe.,

—a— genie SPGL1

NMSE [dB]
5

Z =argmin||1p — Az|3 + \|z||; st p'z=p. (69)
ze AN

In (89), the use of sparsity promoting regularization [[4]
aims to help the portfolio designed from past détg, }2_,
generalize to the future data, ;. Without /; regularization,
the solutions to[(89) are often outperformed by the “naive”
portfolio @nave = 41 in practice [38].

Noting that [69) is a special case 61 (2), MV portfolio opti-
MIN mization is a natural application for the algorithms depeld

Fig. 4. RecoveryNMSE (top) and runtime (botiom) versudl for the in this paper. We thus tested our proposed algorithms aEams

sparse NN satellite image for the proposed EM-NNGM-GAMPEMINNL- | sS4 i_n and cross-vali_dated (C_ TFOCS using the FF
GAMP compared to EM-GM-GAMP, non-negative LASSO via oradeed — portfolio databas@ which consists of monthly returns for

TFOCS, and standard LASSO via oracle-tuned SPGL1. N = 49 securities from July 1971 (i.ex;) to July 2011
(i.e., 7481). In particular, starting from July 1981 and moving

tuned standard LASSO implemented via SPE;[EI]. NNLS forward in yearly incremgntAs, we collected the past= 129
methods were not considered because of the non—uniquer{BQchs of return data 'm(l):[r?Q(i—_lHl’ o ’le(i—l)ﬂ”]A
of their solutions in thel/ < N regime (recall[I4, Thm. 1]). alnd cppputed the corresponding time-average ref(i =
Figure[ shows that the proposed EM-NNGM-GAMP algoar A(1) 1, wherei € {1,...,30} indexed the years from
rithm provided the most accurate signal recoveries for il u1981 t© 2010. Then, we chose the target sulrr}-repn(nn
dersampling ratios. Remarkably, its phase-transitiorumed © P€ that of the naive scheme, i.p(i) = yu(i)'1, and
at & ~ 0.25, whereas that of the other algorithms occurregPmputed the portfolia(i) from {A(i), (i), p(i)} for each
at % ~ 0.35. The gain of EM-NNGM-GAMP over EM- algonthmﬁunder test. The resultirag(i) was evaluated on the_
GM-GAMP can be attributed to the former's exploitation ofUturé 7' =12 months of return data using the Sharpe ratio
signal non-negativity, whereas the gain of EM-NNGM-GAMPR (1) = p(i)/5 (i), where
over non-negative LASSO (either via EM-NNL-GAMP or 1 Z
T ~
T z; T12(i—1)+M+tm(Z)v (70)
t=

time [sec]

[
(o)
=)

0.2 0.25 0.3 0.35 0.4 0.45 0.5

[I>

genie-tuned TFOCS) can be attributed to former's learn- p(1)
ing/exploitation of the true signal distribution. Finallthe

gain of non-negative LASSO over standard LASSO can be o a1 T . IR

attributed to the former’s exploitation of signal non-ntagty. o°() = % > (Mlago1y @) — (@), (71)
Figure[4 also demonstrates that the LASSO tuning proce- t=1

dure proposed in Selc]V works very well: tNeMSE of EM- For I sgl i n, the constraints were specified directly. For

NNL-GAMP is nearly identical to that of oracle-tuned TFOCNNLS-GAMP, EM-NNL-GAMP, and EM-NNGM-GAMP,

for all sampling ratiosM/N. the constraints were enforced usifgl(11) wigh= [u, 1]" and

Finally, Fig.[2 shows that EM-NNGM-GAMP was abodit ¢ = [p, 1]T, and for CV-TFOCS, the constraints were enforced
times as fast as EM-GM-GAMP, betweénto 15 times as using the augmentation

fast as SPGL1 (implementing standard LASSO), and between ()1 - AD)
10 to 20 times as fast as TFOCS (implementing non-negative = {50%@)] and A = [500,1(1-@ , (72)
LASSO). The proposed EM-NNL-GAMP was aboitto 4 500 50017

faster than EM-NNGM-GAMP, although it did not performwhere the gain of500 helped to weight the constraints

as well in terms oNMSE. above the loss. Lastly, we tried our GAMP-based approaches
using both the AWGN likelihood(15) as well as the AWLN
D. Portfolio Optimization likelihood (I8).

, . , . Table [IM reports the average Sharpe rati&@R =
As another practical example, we consider portfolio opti . . .
P P b P 301 SR(¢) and runtimes for each algorithm under test.

mization under the return-adjusted Markowitz mean-vamsn 30 <i=l . :
(MV) framework [3]: if z € AY is a portfolio andt c RN In addition, it reports the average squared constraintrerro
: T M+1

A 1 B0 T o 2 i ]

is a random vector that models the returns\ocommodities 5 = 35 i1 |1(0) @(i) — p(i)]*, showing that all algo .

at the future timeM + 1, then we desire to design so that ”th_nlSA rjear-p.erfectly met the target sum-return_ constrain

the future sum-returm?, = has relatively high mean and“(l) 2(i)=p(i). The table shows that Matlabssql i n and
M+1

low variance. Althouglr /4, is unknown at design time, we 9We were not able to configure GSSP in a way that maintajn&@ = p,
assume knowledge of the pasft returnsA = [ry, ..., 7x/]7,  even approximately, after the simplex projection ster[n (3
10For CV-TFOCS, we used-fold cross-validation to tung over al5-point
8We ran SPGL1 in “BPDN mode,” i.e., solvingning ||z||1 s.t. |y — grid between0.001 and0.1.
Az||2 < o for hypothesized toleranceg® € {0.3,0.6,. .., 1.5} x M+ and The FF49 database and other financial datasets can be abtaome
then reported the total runtime and b&8vISE. http://mba.tuck.dartmouth.edu/pages/faculty/kendhédata library.html.


http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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SR time (sec) [ &£ (dB)

naive 0.3135 - -00
Isqglin 0.3725 0.06 -307.4
CV-TFOCS 0.3747 31.92 -56.9
Z | NNLS-GAMP 0.3724 0.68 -72.0
g EM-NNL-GAMP 0.3725 1.48 -60.9
< | EM-NNGM-GAMP | 0.3900 6.98 -41.5
Z | NNLS-GAMP 0.3818 1.80 -56.1
§' EM-NNL-GAMP 0.3829 5.14 -43.2
< [ EM-NNGM-GAMP | 0.3995 2.95 -42.3

TABLE IV

AVERAGE SHARPE RATIO SR, CONSTRAINT ERRORE (IN DB), AND
RUNTIME (IN SEC) VERSUS ALGORITHM FOR THEFF49DATASET.

Fig. 5. RGB image of the cropped scene of the SHARE 2012 dajéQg

AWGN NNLS-GAMP (which solve the same NNLS problem)

yielded identical Sharpe ratios, which wetel9% larger than SHARE 2012 Avon datadet [40], which usesM = 360
the naive value. Meanwhile, CV-TFOCS and AWGN EMspectral bands, corresponding to wavelengths betwiien
NNL-GAMP (which solve the same NN LASSO problemland 2450 nm, over a large rural scene. To do this, we first
yielded very similar Sharpe ratios, alse 19% larger than cropped down to the scene shown in Eify. 5, known to consist
the naive value. As in previous experiments, AWGN EMprimarily of pure grass, dry sand, black felt, and white TigVe
NNGM-GAMP OutperformEd both NNLS and NN LASSO,[@] We then extracted the endmembetsfrom Y using

in this case improving on the naive Sharpe ratic2dyo. The vCA. Finally, we estimated the simplex-constrained colsmn
table also shows that the use of an AWLN likelihood (robugf X from (Y, A) using NNLS-GAMP, EM-NNL-GAMP,

to outliers [23]) resulted in across-the-board improvetsém ENM-NNGM-GAMP, | sqlin (known in the hyperspectral
Sharpe ratio. Among the algorithms under test, ANLN EMiterature as “fully constrained least squaréds’|[42]), SBISP.
NNGM-GAMP yielded the best performance, improving thgor hoth EM-NNL-GAMP and EM-NNGM-GAMP, we opted
naive Sharpe ratio by7%. to learn the prior parameters separately for eamh of X,

In terms of runtimes, Matlab’d sql i n was by far the since the marginal distributions can be expected to differ
fastest algorithm, CV-TFOCS was by far the slowest, and th@ross materials. For GSSP, we assumed that each pixel was
AMP approaches were in-between. NNLS-GAMP and NNLat most K = 3-sparse and used a step size3gf|A| %, as
GAMP were slower here than in Talflé Il and Tallg 11l becausRese choices seemed to yield the best results.
the matrix A in this financial experiment had correlated Since we have no knowledge of the true abundankes
columns and thus required the use of a stronger dampingfaci@ are unable to present quantitative results on estimation
in the GAMPmatlab implementation [B6]. accuracy. However, a qualitative comparison is made plessib

using the fact that most pixels in this scene are known to be
pure [40] (i.e., contain only one material). In particuleach
E. Hyperspectral Image Inversion row of Fig.[8 shows théV =4 abundance maps recovered by a

As a final practical example, we consider hyperspectrﬂil"en algorithm, and we see that all recoveries are nearlg.pu
image inversion[[2]. A hyperspectral image is like a coloffowever, the recoveries of EM-NNGM-GAMP are the most
image, but instead of spectral bands (red, green, and blue) RU"®: @s evident from the deep blue regions in the first amd thi

containsM > 3 spectral bands. Witli' = 71 <75 spatial pixels, columns of Fig[B, as well as the deep red regions in the first
such an image can be represented by a maifixx RM*T and second columns. In terms of runtime, GSSP was by far

and, under the macroscopic model, “unmixed” into the slowest algorithm, whereas all the other algorithmsewer

similar (with | sql i n beating the others by a small margin).

Y=AX+W (73)
VII. CONCLUSIONS
where thenth column inA € RM*N is the spectral signature
(or “endmember”) of thenth material present in the scene
the nth row in X € RYX" is the spatial abundance of
that material, andW is additive noise. Theth column of
X, henceforth denoted as;, describes the distribution of
materials within thefth pixel, and so for a valid distribution
we needx; € Aﬁ. We will assume that the endmembeds
have been extracted frof¥ (e.g., via the well known VCA
algorithm [39]) and therefore focus on image inversion, ighe
the goal is to estimat&X in (Z3) givenY and A. In particular,
the goal is to estimate a (possibly sparse) simplex-canstia
x, from the observationy, = Az, + w, at each pixel. 12The SHARE 2012 Avon dataset can be obtained from
We evaluated algorithm performance using thitp://www.rit.edu/cos/share2012/.

The problem of recovering a linearly constrained non-
hegative sparse signal from noisy linear measurements
arises in many applications. One approach is to pose a gparsi
inducing convex optimization problem likgl (2) and then gppl
standard solvers likesql i n (when\ = 0) or TFOCS (when
A > 0), although doing so requires also solving the non-trivial
problem of optimizing\ [13]. Another approach is to solve
for the MMSE estimate ofc, but doing so is made difficult
by the need to estimate the prior distribution ®fand then
compute the resulting posterior mean.


http://www.rit.edu/cos/share2012/
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(@)l sql i n (runtime= 2.26 sec): APPENDIX A

j/s EM UPDATE FORAWGN VARIANCE
E s Inserting the Gaussian likelihood {15) info{49), we seé tha
" the EM update for the noise variangebecomes

(b) NNLS-GAMP (runtime= 2.84 sec): , 1 ~ .
. Pitt :argmax%lnl—ﬂE{Hy—AXH%{y;W}, (74)

4I5 P 2 7/)
where, for the joint posteriof, |y (|y; ¢*), we use the product
of the approximate marginal GAMP posteriors frdml(10). By

(c) EM-NNL-GAMP (runtime= 3.23 sec): zeroing the derivative of the objective in_{74) w.it, we find

1 that

415 . 1 ~ .
I H n i o LBy axiE ). 09

" where the expectation simplifies to

d) EM-NNGM-GAMP (runtime= 4.37 sec = i
o ( ) Billy — Ax |3 | y:}

s =y'y — y"AZ + E{x"AT Ax | y; '} (76)
» =y'y —yTAZ + tr(ATAS) + 2'ATAZ  (77)

= |ly — AZ|3 + tr(ATAZ). (78)
(e) GSSP (runtime= 170.71 sec):

! Here,X is the posterior covariance matrix »f which—based
- on our assumptions—is diagonal witk],,, = u¥. Plugging
b 25 in (Z8) into [7%), we obtain the EM updafe{50).

Fig. 6. Each row shows th& = 4 abundance maps estimated by a given APPENDIXB

algorithm. From left to right, the materials are: grass, dand, black felt, D L
and white TyVek. Figur€l5 shows the RGB image of the same scene ERIVATION OF LAPLACIAN LIKELIHOOD QUANTITIES

G

A. Laplacian likelihood steps for sum-product GAMP

In this paper, we proposed new solvers fol (2) based oninserting the Laplacian likelihood(IL8) into the GAMP-
the min-sum AMP methodology, yielding NNLS-GAMP (forapproximated posteriof](9), the posterior mean in line (R5)
A = 0) and NNL-GAMP (for A > 0), and we demonstratedof Table[] becomes (removing the subscript for brevity)
computational advantages relative to standard solversen t 1
large<V regime. In addition, we proposed a novel EM-based z 2 E{z|p=p; MP}:—/ZE(Z;y;w)N(Zﬁ wr)  (79)
approach to optimizing\ that, in our empirical experiments, ¢ J.
worked nearly as well as cross-validation and oracle methogyhere the scaling constaft is calculated as
Moreover, we proposed a hew approximate-MMSE estimation
schemg that_ modelg using an.i.i._d B.ernoulli non—qegative C:/ (239, V)N (2 B, 1P) (80)
Gaussian-mixture, learns the distributional parametershe

EM algorithm, and exploits the learned distribution via sum ' ro~ »
product AMP. In all of our experiments, the resulting EM- _/ L0, 9N (5P =y, 7) (81)
NNGM-GAMP algorithm yielded superior performance while ¥

intaini i iCi i Nz )1/)de+ Nz Ple V2dz
maintaining a reasonable computational efficiency. Fyné&lr b, P, 1
problems where the noise may be non-Gaussian, we developed —
Laplacian likelihood models for both min-sum and sum- Eyel £C (82)
product GAMP, in addition to EM-tuning procedures, and
demonstrated performance gains on practical datasets. ~ Wherep = p—y. The expressions far' andC reported in[(24)-

(25) result after completing the square inside the expaalent
terms in the integrands il (B2) and simplifying.

Following similar techniques (i.e., shifting by y and
splitting the integral), it can be shown th&t79) becomes

ACKNOWLEDGMENTS C el
+ E/ZN_(z;ﬁ, wP) + ol /ZN+(Z;57 ur),  (83)

We would like to thank Jason Parker and Justin Ziniel fawvhere A/, (+) is defined in [(37) and wherd/_(x;a,b?) is
suggestions on the Laplacian likelihood and EM-NNL-GAMPRhe pdf that results from taking a Gaussian with mean
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and variance?, truncating its support ta: € (—oo,0], and Defining z,, £ a! # — y,,, and using a derivation similar to
normalizing. Supposing that ~ A/ (a, b?), [43] shows that  that used for[(83), leads t6 (53).
_ cq. b2) = _a
E{uju>0} = /uuNJr(u,a,b ) =a+bh(—%), (84) APPENDIX C
DERIVATION OF NNGM-GAMP QUANTITIES

A. BNNGM prior steps for sum-product GAMP

wheren(-) is defined in[(25). Inserting (84) and (85) info83) |serting the Bernoulli NNGM prior[{36) into the GAMP

yields the posterior mean expression[in](22). approximated posteriof {1L0), the posterior mean in line3)R1

To calculate the posterior variangé used in line (R6) of of Table[l becomes (removing the subscript for brevity)
Table[l, we begin with

E{u|u<O}:/u./\/,(u;a,bQ):a—bh(%), (85)

B p=pt) = 3 [ ALV @) T EHIr=T) IR 57)
1 . L
C/ (2 + 9)2L(; 0, )N (55, 17) @) =7 [ o) (0= n)de)r S e (o 01, )
+ (=1
—2E-y) i+ g [ FLEGONER) @) - N
cJ. i =23 [ AN (@i 3, ), (98)
C - C ~ = +
=27 -y’ + 5 /ZQN—(Z;p,u”) + 5/22N+(Z;p, pP).
z z 89 where¢ £ f fx(@)N (z;7, ") is a scaling factor. Using the
(89) Gaussian-pdf muItlpllcat|on ruf we get
Given thatu ~ N (a, b?), [43] shows that
E{u?|u>0} = var{u|u>0} + E{u|u>0}? CZWN L 99@’/”\;)‘”) / e Ny, ), (99)
¢ +
— b2g(—2) + (a+bh(-9))%,  (90) _ _
E{u? [u<0} = var{u|u<0} + E{u|u<0}? with e an_d Ve deflned_ in [4P) andﬂ_S), respectively.
5 Using similar techniques, the scaling factor
=b%g(%) + (a —bh(%))", (91) 5
where g(") is defined in [(27). Inserting (90) and{91) into ¢ — N(:z: )((1 ) +Tzwe/\/+($;9e,¢e))
(89) and noting thatar{z|p=p; u”} = E{z*|p=p; u"} — P
E{z|p P: iP}2, we obtain [ZB). (100)
can be shown to be equivalent [g{40). Finally, using the mean
B. EM update for Laplacian rate of a truncated Gaussiah (84), and insertind (40) inid (9¢), w

Inserting the Laplacian likelihoo@{L8) into(51), we seatth 9et the NNGM-GAMP estimate (B8).
the EM update for the Laplacian rate parametelbecomes. To calculate the variance of the GAMP approximated pos-

| Mo | terior (10), we note that
P = arg max > E{lnLlymiapx,¥) [ y; v} (92) 1 2 var{x|r =7 u"}
m=1
Y — [ @ rEn) < Bixlr =7y @on)
=argmax Mny - ¥ > Eflal,x — yml|y: v} (93) +
m=1 Following (97)-{99) and using the Gaussian-pdf multigiica

Zeroing the derivative of the objective ii7{93) w.ri.yields rule, we find the second moment to be
the update[{52). The expectation [n](93) can be written as

E{|a,TnX — Ym| ’y;wi} :/ |a;w—ym|fx‘y(:n|y;wi), (94) /+x S (|75 1) Z CBZ / N N (z;7ve,ve)
(102)
where 3, and o, are given in[(44) and(41), respectively.
Leveraging the second moment of a truncated Gaudsian (90)

n ([I02), and then insertind (B8) and (102) info (101), we
obtaln the NNGM-GAMP variance estimafe {39).

where f, |y (x|y; ') is taken to be the product of the approx-
imated GAMP marginal posteriors ih {10).

In the large system limit, the central limit theorem |m
plies thatz,, £ a! x, when conditioned ory = y, is
N(al & YN | afmug), yielding the approximation

E{lag,X = ym| | y; '}

z/| Yl N (em: a3,
Zm

B. EM updates of NNGM parameters

a?, i) (95) We first derive the EM update fat, the k' component
- location, given the previous parameter estimgteThe max-
imizing value off; in (&4) is necessarily a value @}, that

lez

/ |Zm|N( m?a :E ymvzamnﬂn (96)
n=1

. . o .a/A+b/B
8 N (2 a, A)N (w3 b, B) =N (x YAtz m) N(a;b, A+B).
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zeros the derivative of the sum, i.e., that satigfies Similarly, the maximizing value of;. in (58) is necessarily
a value of¢,, that zeroes the derivative, i.e.,

d9 Z : fx|r xn|rn,,u,n, ) In fy (xn;ek,qiek)zo ;
=1 n (103) Z fx|r $n|rn7una )d¢ lnfx(xn, ¢k’q\¢k) =0.
n=17%n
(110)

= Z fx‘r T[T 1, @ )dz In fy (:vn; 0y, qiek) =0. Using t_he p_rior given in(36), and simultaneously applying t
k approximation®.(—6;, //¢r) = ®.(—0;//¢}), we see that
(104) the derivative in[{I10) can be written as

For all 2,, > 0, the derivative in 4) can be written as 4 i 1 n—00)% 1
[(104) v ——In fx(@n; Ok, @\, ) =5 <u - —> (111)
d_i, i N(@nibrioh) don 2 ¢ Pk
d 0" ko, (0, /\/8) TN (20; Ok, 3%) /@ (—0k /\/PL)

— In fx(zn; O, vk (105 : RV \Tn; Vks Pk )/ Fel Tk .
dok fX( b Q\ek) fx(l’n,ek7ql\9k) ( ) X(I_Tl)(s(x”)_FTL(wkN‘F(mna9k7¢k)+2€;£kwlN+(xn;9z7d)z))
Because plugging[{ID5) inta (1104 ylelds an _intractabletegrating [IID) separately ovér-oo,¢) and [e, c0), and
integral, we use the approxima (—=0k/\/¢}) ~ takinge — 0, we see that thé—oo, €) portion vanishes, giving

.(~0}/\/},), yielding
d ; Tn — Ok Z/ xn|xn7é0 ¥ 9 DwiN (@n; 0}, dx)/ Pe(—04/v/ 0
E In fx(ZCnS 91’“ q\9k) = < ¢z ) (106) + Cn wk xn» ka (bk) + Zé;ﬁk WZN(:E7H 9;, ¢£))
y | TN (0 Ok, $4) /P (= 01/ \/BL) . " ((xn —0:)? B 1) o (112)
(1=7)0(wp -7 (WkNJr(xna9k7¢k)+2e;ssz-/v+(xn5ezvﬁbz)) Pk

We also note thaf{I06) is zero at, = 0 due to the Dirac Again, this integral is difficult to compute, so we apply the
delta function in the denominator. approximation\ (z,; 0, ¢,) ~ N(w,:0;,¢}) in both the

Now, plugging in [Z0B) and the approximated GAMP postdlumerator and denominator. After some cancellation (as in
HOT fyir(n|7ns 127, ¢') from (T0), integrating[{104) separately(07)), we get the necessary condition

over[e, c0) and its complement, and takimg— 0, we find that ) 0 _ i)
the (—oo, €) portion vanishes, giving the necessary condition Z/ M m"’r"’“”)‘?jw(x"’ i 04) <(m” e k) )—0

i N (o)) (2n — 01) N (113)

/ ﬁ(:anCn # 0,y§qi) k@ - 01/\/(#—7)

- - —— =0, To find the value Ofd)k that solves[(113), we expard,, —
<n wlN xn;eka(bz + WN xn7911¢1 7 7 i ' 'n
+n (N k) D Wiy (7m0 E))(107) 00)2 = a2 — 2x,0. + (0.)*> and apply the Gaussian-pdf

Whereﬁ(xnlxn 7& an;qi) = fx\r(xn|?n7$n 7& O;M:wqi)' mUItIpllcatlon rU|e yleldmg

Since this integral cannot be evaluated in closed form, wé Bnk 22 =2z, 05+ (0%

apply the approximation\V (z,,; 0k, ¢%) ~ N(zp;6},6%) /N T3 Yk Vn k) o 1)=0.

in both the numerator and denominator, and subsequentfy! Pel (114)

exploit the fact that, forx,, > 0, p(z,|z, # 0,y;¢") =

N (T Ty 1) Sy wiNG (2307, %) from (@Q) to cancel Using similar techniques as in Appen@ix @-A and simplifying

terms, where we obtain the necessary condition we see thatb}jl in (&1) is the value ofp;, that solves[(114).

Finally, we calculate the EM update ifi_{59) for positive
Z/ wi N ( xnyrnaun)N+(«rn79k’¢k)( T — 0) = 0. w under the pmf constrain}.r_, w, = 1 by solving the
Cn unconstrained optimization problemax,, ¢ J(w, £), where
(108) is a Lagrange multiplier and

Now using the Gaussian-pdf multiplication rule, we get N .
23 E{n fxniw. ql,,) |y;qi}—§<zwe—1>.
n=1 =1

(115)

N

Zq)ﬂ"’“ /an,%k,ynk)( —0x) =0. (109)

ank

Following similar technigues as in Appendix G-A and noting; rst, we set _J — 0, which yields
that3,, x = 7.8, ., We see that the updaé™ in (€0) is the st W (w,€) = 0, which yi

value of#,, that sat|sf|es|:(E9) N Feln: @N (@n: P i) d

14By employing the Dirac approximatiod(z) = N (x;0,¢) for fixed =i/ Cn dwy,
arbitrarily smalle > 0, the integrand and its derivative w.gj, become (116)
continuous, justifying the exchange of differentiationdantegration via the
Leibniz integration rule. We apply the same reasoning foreathanges of where, for non- negatlven,
differentiation and integration in the sequel.

In fx(zn;w,qt,) =€

15This approximation becomes more accurate;i-g\):s@c(—ek/\/m) tends d In f ( ' ; ) B TiN+ (iCn; 927 Qﬁc) (117)
to zero, i.e., whe //¢; gets large, which was observed for the real-world —dwk N Jx(Tn; W, 4\, ) = f (:c W qi ) :
experiments considered in SEC] VI. XA ¥ H\w



Inserting [11V) into[(116), we get

al /fx(l'n;qi)N(xn;?n7M:z) TN (@03 04, 0)
Cn

. . (118
Famwal,) o P

As in (I07) and[(112), the above integral is difficult to ek

and

so we apply the additional approximatiorr w?, which

reduces the previous equation to

We then multiply both sides by} for k =1,...,

SN
Cn

(T3 Ty i)

(119)

gzi/ TiN—ﬁ-(xn;elica
n=1 +

L, and sum

over k. Leveraging the fact = ), wi, and simplifying, we
obtain the equivalent condition

3

- i / Sy Wi (o D GINLEnT ) (10
N i L
i N.In,'yn k,(bnk

Plugging I(Ile) mtoIZﬂQ) and multiplying both sides by,

the

WE =

where, if we useu;, ~ w! on the right of [1I6), then we obtain

the

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]
(23]

derivative-zeroing value ofy is seen to be
SN [T N (2 04, G )N (@3 P 1)/
N
anl Tn

, (122)

approximate EM update;"" in (&2).
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