
Methods for Large Scale Hydraulic Fracture Monitoring

Gregory Ely and Shuchin Aeron
Dept. of ECE, Tufts University, Medford, MA 02155
Email: gregory.ely@tufts.edu, shuchin@ece.tufts.edu

Abstract—In this paper we propose computationally efficient and
robust methods for estimating the moment tensor and location of micro-
seismic event(s) for large search volumes. Our contribution is two-fold.
First, we propose a novel joint-complexity measure, namely the sum of
nuclear norms which while imposing sparsity on the number of fractures
(locations) over a large spatial volume, also captures the rank-1 nature
of the induced wavefield pattern. This wavefield pattern is modeled as
the outer-product of the source signature with the amplitude pattern
across the receivers from a seismic source. A rank-1 factorization of the
estimated wavefield pattern at each location can therefore be used to
estimate the seismic moment tensor using the knowledge of the array
geometry. In contrast to existing work this approach allows us to drop
any other assumption on the source signature. Second, we exploit the
recently proposed first-order incremental projection algorithms for a fast
and efficient implementation of the resulting optimization problem and
develop a hybrid stochastic & deterministic algorithm which results in
significant computational savings.

I. INTRODUCTION

Seismic hydraulic fracture monitoring (HFM) can both mitigate
many of the environmental risks and improve reservoir effectiveness
by providing real time estimates of locations and orientations of
induced fractures. Determining the location of these microseimsic
events remains challenging due to high levels of pumping noise,
propagation of seismic waves through highly anisotropic shale, and
the layered stratigraphy leading to complex wave propagation [1].
Classical techniques for localization involves de-noising of individual
traces [2], [3] followed by estimating the arrival time of the events
at each individual trace. The angle of arrival of the incident array, or
polarization, is achieved via Hodogram analysis [4] or max-likelihood
type estimation [5]. Once the angle and time arrival of the events
has been estimated, the events are back-propagated using a forward
model under known stratigraphy to determine the location [5]. In
contrast to these approaches which tend to separate the de-noising of
the signal from the physical model, recently the problem of moment
tensor estimation and source localization was considered in [6] for
general sources and in [7], [8] for isotropic sources which exploit
sparsity in the number of microseimsic events in the volume to be
monitored. This approach is shown to be more robust and can handle
processing of multiple time overlapping events.

Our approach, although similar to the technique proposed in [6],
differs in that we do not use source waveform information from
the Green’s function and introduce a group low-rank penalization.
Here we don’t use the amplitude of the received waveform, but
only the fact that the received signal across the seismometers is
common across all seismometers with varying delays dictated by a
known velocity model of the stratigraphy and the source receiver
configuration. Since we are not using any amplitude information, we
usually have more error in estimation and require more receivers for
localization. Nevertheless when the computation of Green’s function
is costly or accurate modeling of the stratigraphy is not available, our
method can be employed. Furthermore, due to amplitude independent
processing our methods can be extended to handle the anisotropic case
using just the travel-time information for inversion [9].
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Fig. 1. This figure shows the geometry and coordinate system used throughout
this paper.

II. PHYSICAL MODEL

In this paper we focus on propagation in isotropic media, although
our approach can easily be extended to anisotropic and layered media.
Figure 1 shows the physical setup in which a seismic event with
a symmetric moment tensor M ∈ R3×3 is recorded at a set of J
tri-axial seismometers indexed as j = 1, 2, ..., J with locations rj
and I denotes the location of the seismic event l. The seismometer
record compressional wave denoted by p, and vertical and horizontal
shear waves denoted by sv and sh respectively. Assuming that the
volume changes over time does not change the geometry of the source,
Equation (1) describes the particle motion vector uc(l, j, t) at the
three axes of the seismometer j as a function of time t.

uc(l, j, t) =
Rc(θ, φ)

4πdljρc3
Plj
c ψc

(
t− dlj

vc

)
(1)

where dlj is the radial distance from the source to receiver; c ∈
{p, sh, sv} is the given wave type, and ρ is the density, and Rc is
the radiation pattern which is a function of the moment tensor, the
take off direction parameters θj , φj with respect to the receiver j. Plj

c

is the unit polarization vector for the wave c at the receiver j. Up to
a first order approximation [10] we assume that ψc(t) ≈ ψ(t) for all
the wave types and henceforth will be referred to as the source signal.
Note that for non-anisotropic formations the compressional waves Plj

p

aligns with the direction of ray propagation. The polarization vectors
for the sh and sv correspond to the other mutually perpendicular
directions. The radiation pattern depends on the moment tensor M
and is related to the take off direction at the source with respect to the
receiver j defined as the radial unit vector erj relative to the source
as determined by (θj , φj), see Figure 1. Likewise we denote the unit
vectors eθj and eφj to be the radial coordinate system orthogonal to
radial unit vector. The radiation pattern for a compressional source
Rp(θj , φj) is then given by,

Rp(θj , φj) = eTrjMerj M =

 Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 (2)

The radiation energy at a receiver can then be simplified and described
as the inner product of the vectorized compressional unit vector
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product, epj , and the vectorized moment tensor m; where (·)T denotes
the transpose operation.

Rp(θj , φj) = eTpjm; m = [Mxx,Mxy,Mxz,Myy,Myz,Mzz]
T

eTpj = [e2rjx , 2erjxerjy , 2erjxerjz , e
2
rjy , 2erjyerjz , e

2
rjz ]T

(3)

The above expression can then be extended to construct a vector of
radiation pattern ap ∈ RJ across the J receivers, with take off angles
of (θj and φj) corresponding to compressional unit vectors epj , given
by ap = Epm where Ep = [ep1 , ep2 , ..., epJ ]T .

Similarly we have ash = Eshm and asv = Esvm. Therefore we
can write the radiation pattern across J receivers for the three wave
types as the product of an augmented matrix with the vectorized
moment tensor.

a =

 ap
ash
asv

 =

 Ep

Esh

Esv


︸ ︷︷ ︸

E

m (4)

Thus the radiation pattern across the receivers, a, can then be de-
scribed as the product of the E matrix, which depends on the location
of the event and the configuration of the array, and the vectorized
moment tensor, derives solely from the geometry of the fault. Under
the above model for seismic source and wave propagation, given the
noisy data at the tri-axial seismometers, the problem is to estimate
the event location and the associated moment tensor. This separability
will be exploited in our dictionary construction to better recover the
location and characteristics of the source.

Fig. 2. This figure shows an example propagator from a single seismic source
for our dictionary construction.

III. DICTIONARY CONSTRUCTION

Our approach relies on the construction of a suitable repre-
sentation of the data acquired at the receiver array under which
seismic events can be compactly represented. We then exploit this
compactness to robustly estimate the event location & moment tensor.

Under the assumption that the search volume I can be discretized
into nV locations indexed by l = l1, l2, ..., li, .., lnV , we construct
an over complete dictionary of space time propagators Γi,j,kc . Where
Γi,j,kc describes the noiseless data at the single receiver, j, as excited
by an impulsive hypothetical seismic event i at location li and time tk
of wave type c (p,sh or sv). Figure 2 shows a pictorial representation
of a single propagator.

Γi,j,kj′c (t) =

{
δ(t− tk − τcij ) Pij

c if j′ = j

~0 if j′ 6= j,
(5)

Note that τcij =
dlij
vc

is the time delay and Γi,j,kj′c ∈ R|Tr|×J×3. We
then construct a dictionary Φ of propagators for all locations, source
time indices, wave types, and receiver indices, where each row of the
dictionary represents a vectorized propagator,

Φ = [Γi,1,kc (:),Γi,2,kc (:), . . . ,Γnv,J,kc (:)] (6)

where (:) denotes the MATLAB colon operator which vectorizes the
given matrix starting with the first dimension. Because the dictionary
covers all possible locations, receiver responses, time support of the
signal, and wave types, an observed seismic signal Y in the presence
of Gaussian noise N can be written as the superposition of numerous
propagators,

Y = ΦX(:) + N (7)

where X is the coefficient tensor of size 3 · J × |Ts| × nV and each
of there dimensions correspond to 1st wave type receiver index, 2nd

source time index, and 3rd location index as shown in Figure 2.

Fig. 3. This figure shows the block sparsity.The lateral slice of the dictionary
coefficients corresponding to the correct location is a rank-1 outer product of
the source signal and the amplitude pattern.

Therefore, for the case of a single seismic event with some
radiation pattern and arbitrary source signal, the coefficient tensor
X will be block sparse along the lateral slice, with the only non-zero
slice corresponding to location index l, see Figure 3. Furthermore,
the observed source signal will be common across all of receiver
indices of the dictionary with its amplitude modulated by the radiation
pattern. Therefore, the dictionary elements will not only be block
sparse, but the non-zero slice can be written as, ψ aT , i.e. a rank-1
outer-product of the radiation pattern at the source wave signal. This
notion can be extended to the case of (small number of) multiple
events where X will have now have a few non-zero rank-1 slices.
This is the key observation which we exploit in this paper as discussed
below.

IV. ALGORITHMS FOR LARGE SCALE HFM

Under the above formulation and the assumption that for a given
recorded signal contains only a few seismic events, we exploit the
block-sparse/low-rank, structure of X for robust HFM by proposing
a complexity penalized recovery methods.

In [8] we proposed the following group sparse penalized opti-
mization set-up [11] for robust localization of the seismic event,

X̂ = arg min
X

||Y(:)−ΦX(:)||22 + λ

nV∑
i=1

||X(:, :, i)||2 (8)

where ||X(:, :, i)||2 denotes the `2 (Frobenius) norm of the i-th slice,
λ is a sparse tuning factor that controls the group sparseness of X, i.e.
the number of non-zero slices, versus the residual error. The parameter
λ is chosen depending on the noise level and the anticipated number
of events. The location estimate is then given by selecting the slices
with the largest Frobenius norm above some threshold.



In order to exploit the block low-rank structure of the dictionary
coefficients, we propose the following group nuclear norm penalized
optimization set-up,

X̂ = arg min
X

||Y(:)−ΦX(:)||22 + λ

nV∑
i=1

||X(:, :, i)||∗ (9)

where ||X(:, :, i)||∗ represents the nuclear norm, i.e. the sum of the
singular values of the i-th slice.

Iterative Algorithms: To solve either of the optimization prob-
lems given in Equations (8) & (9) we implemented three different
forms of first order algorithms, Iterative Shrinkage (ISTA), Fast
Iterative Shrinkage (FISTA) [12] and stochastic gradient descent
with incremental proximal methods [13]. ISTA being the simplest
to implement is given by two operations: a gradient descent step, and
a shrinkage operation like so,

Xk+1 = prox λ
α

(Xk − 1

α
ΦT (ΦXk −Y)) (10)

where α is the step size and proxτ (z) is the shrinkage operator
for one of the two norms. For the group sparse minimization the
shrinkage operation is given by,

proxl12τ (Z) = arg min
X

1

2
||X− Z||22 + τ

nV∑
i=1

||Z(:, :, i)||2 (11)

and for the group low-rank the prox-operator is equivalent to a
shrinkage on the singular values of each of the lateral slices X(:, :, i)
of X.

proxnucτ (Z(:, :, i))

= arg min
X

1

2
||X(:, :, i)− Z(:, :, i)||22 + τ ||Z(:, :, i)||∗ (12)

Iterative shrinkage can be increased in speed with minimal overhead
by adding an interpolation term resulting in the FISTA algorithm.

Z = Xk + k−1
k+2

(Xk −Xk−1)

Xk+1 = prox λ
α

(Z− 1
α

ΦT (ΦZ−Y))
(13)

The resulting FISTA algorithm achieves convergence in O(1/k2)
iterations vs O(1/k) for ISTA. In the case of the group low-rank
penalization the proximal iteration can be expensive to calculate given
the large number of SVDs that need to be computed.

Incremental Proximal Method: For large scale problems it
becomes computationally infeasible to calculate the full proximal
iteration. As the problem scales, the gradient also becomes more
expensive to calculate at each iteration. Stochastic gradient descent
with incremental proximal iterations can alleviate the computation
burden by descending along a random subset of the full gradient
and only applying the proximal shrinkage to a few random slices
at each iteration [13]. Given that the penalty term in Equation (9)
can be written as the sum of nuclear norms, the calculation of the
shrinkage operation can be significantly reduced by only applying
the shrinkage to a few slices per iteration. In this application of
stochastic gradient descent our forward operator Φ is sparse resulting
in negligible difference in computational cost if the full or partial
gradient is calculated. Therefore we can apply the full gradient at
each iteration k and the proximal minimization operation to a subset
J ⊂ {1, 2, ..., nV } of size mk, Algorithm 1. We implemented two
forms of the incremental proximal method: ‘dynamic’ where the
number of subsets on which the shrinkage operation is applied is

0
200

400
600

800

0

500

200

400

600

 

North Distance (m)

East Distance (m)

 

D
e
p

th
 (

m
)

Recievers

Event

search volume

  Inf −7.55 −13.6 −17.1 −19.6 −21.5
0

5

10

15

20

25

SNR (dB)

M
e
a
n

 L
o

c
a
ti

o
n

 E
rr

o
r 

(m
e
te

rs
)

 

 

  Inf −7.55 −13.6 −17.1 −19.6 −21.5
0

0.1

0.2

0.3

0.4

0.5

M
e
a
n

 M
o

m
e
n

t 
T

e
n

s
o

r 
E

rr
o

r

Location Error

Moment Tensor Error

Fig. 4. Left: This figure shows the setup for the deviated well and the search
volume used in the experiment section. Right: This figure show location and
moment tensor error as a function of SNR.

increased linearly per iteration, i.e. mk+1 = min(mk+β, nV ) where
β is a positive integer, or ‘fixed’ where mk remains constant, say m0,
for all iterations.

Algorithm 1 Incremental Proximal: solves (Eq. 9)
X = 0, m0 //Initialize variables.
Option = “dynamic” or “fixed”
while Not Converged do

if (Option == dynamic) mk = min(mk−1 + β, nv),
else if (Option == fixed) mk = m0

J = randperm(mk, nV ) // generate group index
Z = X− 1

ρ
ΦT (ΦX− Y) // Gradient calculation

X = Z
//Apply shrinkage operator only to indices ∈ J
for j ∈ J do

X(:, :, j) = proxnucλ
ρ

[Z(:, :, j)]

end for
end while

Moment tensor estimation from the slices: To estimate the
moment tensor we use the predicted event location source-receiver
array configuration to construct the matrix E. Then using the estimate
of the radiation pattern â from the left singular vector of the active
slice we construct the inverse problem â = Em and apply Tikhonov
regularization to mitigate the ill-conditioning of the E operator. The
moment tensor vector m is estimated via,

m̂ = ((ETE + λmI)−1ET )â (14)

where λm is again tuned using some estimates on the uncertainty in
estimation of a and according to the amount of ill-conditioning of E.

V. EXPERIMENTS

In order to test the effectiveness of the proposed algorithm
we simulated an array of 10 seismometers equally spaced within
a deviated well consisting of a 500 meter vertical and 500 meter
horizontal section dipping at 20 degrees relative to horizontal and
aligned with the Y axes, as shown in Figure 4 left. For the sake of
simplicity, the earth is considered to be isotropic with compressional
velocity of 1500 and shear velocity of 1100 meters per second. A
search volume of 500× 500× 500 meters was placed perpendicular
to well centered at (500, 300, 500) meters with varying resolution
depending on the specific experiment conducted.

Performance in Noise: In order to determine the effectiveness
of the algorithm in the presence of noise, an explosive event with
a shear component event was generated in the center of the search
volume was generated with an increased grid resolution of 5 meters
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Fig. 5. This figure shows the convergence of the objective function,
Equation (9), as a function of number of SVDs computed.

in the presence of various noise levels varying from 0 to -21 dB.
The minimization operation given by Equation 9 was then applied
to resulting simulations with a λ of .9 and the location index with
the largest nuclear norm was taken to be the location of the event.
Equation 14 with a λ of .01 was then used to invert for the moment
tensor. This process was repeated 15 times for each noise level and
the mean location error and RMS error in the estimate of the moment
tensor vector are shown in Figure 4 right.

Algorithm Speed: In order to test the speed of the three al-
gorithms, the search volume was configured with a coarse spatial
resolution of 25 meters and the same event as in the previous section
was generated in Gaussian noise with a resulting SNR of -18 dB. The
three first order algorithms, ISTA, FISTA, and Incremental Proximal,
were then applied to the group low-rank minimization problem,
Equation (9), with a λ of .9 and step size of .5 ∗ 103. Given that
the search volume consisted of 9261 locations each iteration of both
FISTA and ISTA would involve the computation of 9261 SVDs of
matrices of size Nt x 3Nr . In the case of incremental proximal
method the number of SVD’s taken per iteration could be set to 1
to 9261 per iterations. Furthermore, because the forward operator
for this problem is sparse and thus fast to compute, the entire full
gradient was calculated at each iteration. The two variants of the
incremental proximal algorithm, namely the “fixed” and “dynamic”
were implemented with m0 = 100 and β = 5.

Figure 5 shows the convergence results for the various algorithms
showing the cost function, Equation (9), as a function of total
number of SVDs computed. As expected FISTA outperforms ISTA
and the incremental fixed method results in early convergence. The
incremental method with an increasing number of SVDs converges
to the global minima in drastically fewer SVDs than either FISTA or
ISTA.

Multiple Events: In order to test the algorithms ability to
distinguish multiple events, three seismic events with varying moment
tensors were generated in moderate noise within the search volume
with a spatial resolution of 1.25 meters all with the same Y location
such that the three events occupied a plane perpendicular to the X
and Z axes. Both the group `2 sparse and group nuclear minimization
operations were applied to the simulation with a λ of .9. Figure 6
shows resulting nuclear and Frobenius norms along the X-Z plane
after the minimization operation have been applied. In the case of the
nuclear norm minimization, three distinct events are visible falling
precisely on the location of true events. However for the group
sparse penalization, the location of the two near incident events are
impossible to separate and the outlying event’s location is imprecise.
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Fig. 6. Performance in source localization for the group `2 sparse vs group
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