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Abstract—This paper introduces a novel non-linear processing
technique for reducing the dimensions of a data set without
performing hard thresholding while maintaining the detector
performance as applied to the original large data set. In
particular, the introduced processing technique can be utilized
in spatial beamforming, high-range resolution processing, and
other scenarios wherein high resolution data must be com-
pressed/compacted to accommodate a lower resolution display
and/or processing system.

Index Terms—Beamforming, extreme statistics

I. INTRODUCTION

In a number of radar systems, there still exists the re-
quirement for the radar human operator to remain capable of
primary detection, track initialization and maintenance, despite
sophisticated automated detection and tracking routines having
been implemented. In most cases though, it is impossible for
a human operator to process data in the time-frame of the
entire radar data flow due to the high resolution in range,
Doppler frequency, and azimuth. If for example, visual control
is required over a certain region in range, azimuth, and radial
velocity, the number of processing resolution cells presented
to a human operator must be significantly less than the total
number of cells generated by the radar processor given the full
radar waveform bandwidth, coherent integration time (CIT),
and receive aperture.

The naive approach of simply reducing the radar bandwidth,
CIT, or utilized antenna aperture, leads to a significant signal-
to-noise ratio (SNR) degradation even in the presence of
internal noise only. In the presence of strong clutter returns
and/or localized interference, the detection losses might be
much more severe. Therefore, more advanced signal process-
ing schemes have to be considered that provide an interface be-
tween the high fidelity radar processor and the low resolution
human operator (display). In most cases where the requirement
on human primary detection capability is enforced, no auto-
mated data flow reduction schemes, such as primary detection,
are usually acceptable. Under these conditions, the signals at
the output of a radar processor multiple resolution cells should
be somehow aggregated (combined) into a smaller number of
resolution cells, with minimal losses in target detectability.

One such non-coherent processing technique is the selection
over the required number of primary resolution cells, of the
maximal signal at the output of a standard envelope detector or
non-coherent integrator. The rationale behind such a scheme

is straightforward. The target signal power within a primary
resolution cell has to exceed the power of each of the other
(N − 1) resolution cells occupied by noise for reliable detec-
tion. However, the maximum power over (N − 1) resolution
cells is much less than the power of their sum. Moreover, when
selection occurs over a considerable number of i.i.d. values,
the maximum value is much more stable and does not fluctuate
as much as the exponentially distributed random values at
the output of a standard square law envelope detector. Both
these factors suggest that the receiver operating characteristics
(ROC) might be superior than for the naive implementation
of reduced resolution (lower bandwidth, lower CIT, smaller
aperture).

A problem may occur in some degenerate scenarios such
as the case when multiple, say P , targets share the same
resolution cells in all dimensions (range and Doppler) except
the one being compressed (azimuth). Instead of P targets being
properly resolved in azimuth, this processing scheme will
produce the single (strongest) peak. However such a scenario
is not typical for radars with high resolution in range and/or
Doppler frequency. Moreover, the naive alternative technique
mentioned above suffers from the same problem potentially.
Strictly speaking, the linear superposition of several peaks with
arbitrary phases may lead to very strong fluctuations of this
“synthetic” target response, with a high probability of no target
being detected.

In this paper, we analyze the detection losses associated
with such “maximum selection” combiner technique. Statisti-
cal analysis conducted in section II, is performed under the
assumption that the noise values in the cells compared for
maximum selection are independent. In this case, analytical
expressions could be derived and used for validation of Monte-
Carlo simulations. These simulations are the only reliable tool
to assess detection performance in the case of correlated noise
in compared data. This latter scenario is very important in
practical applications. Indeed, in the case of a pure white noise
environment, the noise samples at the output of a beamformer
are independent across beams only if the beam steering vector
themselves are independent. Such is the case for a linear
array and an un-tapered DFT beamformer with the standard
3dB beam overlap. However as any practical engineer can
attest, 3dB overlapped beams can cause significant scalloping
loss, and therefore 0.5-1dB overlap is more typical. Such
“oversampling” leads to residual inter-beam noise correlation.
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When adaptive beamforming is used in spatially non-white
external noise, residual correlation may exist even for 3dB
beams. Unfortunately, the reliable statistical description for the
distribution of the maximum over N correlated (exponentially
distributed) samples [3], does not exist, and one has to rely
upon simulations. Results of this analysis are presented in
section III. In section IV we conclude the paper.

II. DETECTION PERFORMANCE OF THE “MAXIMUM
SELECTION” COMBINER: INDEPENDENT SAMPLES

Let us assume that N independent noise samples xj with
distribution fj(x), x ≥ 0 are compared and the sample with
maximal value Xmax = max (x1, x2, . . . , xN ) is selected.
Then the probability that

Pr(xmax < λ) = Pr{xj < λ, j = 1, . . . , N} (1)

i.e. the probability that the maximum value xmax does not
exceed λ is equal to the probability that none of the samples
xj , j = 1, . . . , N exceeds that threshold. Since the samples
are independent

Pr(xmax < λ) =
N∏
j=1

Fj(λ) (2)

Fj(λ) =

∫ λ

0

fj(x)dx. (3)

One can imagine that the samples xj might not be identically
distributed for this analysis. In the case that we do deal
with independent and identically distributed samples, then the
cumulative distribution function (CDF) of the maximum may
be analytically expressed as

Pr(xmax < λ) ≡ FN (λ) = FN1 (λ), (4)

where

F1(λ) =

∫ λ

0

f(x)dx (5)

is the individual sample CDF. Note, the probability of false
alarm (PFA) can in this case be expressed analytically as well
as

PNFA ≡ Pr(xmax > λ) = 1− FN (λ) = 1− FN1 (λ). (6)

In typical radar applications the PFA is set much less than
1, PFA ≈ 10−3− 10−7, and therefore FN1 (λ) ≈ 1− (10−3−
10−7). For this typical low PFA’s it is true that

F1(λ) = 1− P 1
FA(λ) (7)

where P 1
FA(λ) is the PFA for a single sample. Since for

P 1
FA ≈ 10−3 − 10−7

(1− P 1
FA(λ))N ≈ 1−N ∗ P 1

FA, (8)

we get,

PNFA ≈ N ∗ P 1
FA. (9)

The result in equation (9) means that the probability of false
alarm at the output of the “maximum selection” combiner is
approximately N -times greater than the probability of false
alarm within a single sample. For example, in the case of
N = 10 and PNFA = 10−3, the PFA within a single
sample should be P 1

FA = 10−4. When the PFA of the
aggregated “maximum selection” output (10 orthogonal beams
for example) should be the same as per an individual sample
(finger beam), than the detection losses compared with the
single sample are associated with the higher threshold for
PFA = 10−4 instead of PFA = 10−3. The actual SNR loss
factor associated with the threshold set for PFA = 10−4

instead of PFA = 10−3 is analyzed in the next section. It
is clear though that the detection loss should be much less
than the normal 10dB loss associated with intentional radar
processing degradation such as a 10-fold aperture reduction.
Alternatively, if one considers that the PFA within an entire
area of regard covered by all N = 10 samples (beams) has
to be retained at the same level of PNFA = 10−3 as per the
aggregated beam, than the threshold within each individual
beam has to be set for P 1

FA = 10−4. This consideration
means that if the total PFA within the entire area of regard
is controlled, the proposed “maximum selection” combiner is
equivalent to the optimal multi-beam processing in terms of
the probability of detection.

It is important that the distribution of the maximum of N
i.i.d. positive random values has a shape that is dependent on
N . For this reason, the power (mean value) of the maximum
random variable does not entirely characterize the probability
of detection and does not characterize the merits of the two
detection schemes if compared with the noise power at the
output of the beam with shortened aperture.

Now consider the standard case when the noise data at every
range/Doppler resolution cell within each beam is a complex
Gaussian random variable CN(0, σ2), so that at the output of
a square law detector, the distribution is exponential (χ2).

w(x) =
1

2σ2
e−

x
2σ2 (10)

Then, the distribution of the maximum over N i.i.d. random
variables distributed as equation (10) is

wN (x) = N ∗ FN−1
1 w(x), (11)

where

F1(x) =
1

2σ2

∫ x

0

e−
t

2σ2 dt = [1− e−
x

2σ2 ]. (12)

Therefore,

wN (x) =
N

2σ2

N−1∑
j=0

(−1)jCjN−1e
− (1+j)x

2σ2 (13)

and

EN [xk] = (2σ2)kΓ(k + 1)N
N−1∑
j=0

(−1)jCjN−1

(1 + j)K + 1
. (14)
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For K = 1 and N = {1, 2, 3} we get: E1[x1] = 2σ2;
E2[x1] = 3σ2; E3[x1] = 11

3 σ
2. This demonstrates that the

first moment is not linearly dependent on N , unlike the naive
resolution spoiling scheme.

III. DETECTION PERFORMANCE OF “MAXIMUM
SELECTION” COMBINING FOR CORRELATED DATA

Unfortunately, for the scenario with correlated (dependent)
non-Gaussian data, such as the modulus values of the corre-
lated complex Gaussian random variables, sufficiently accurate
analytical results do not exist. An assumption on independence
of this data provides the upper bound for the CDF.

Pr(MN > A) ≤ N(1− F (A)) (15)

where MN is the maximum over N real-valued dependent
identically distributed variables with continuous distribution
function F . Moreover, according to the theorem 2.1 [1], for
each N there exists an exponential variable E with

− logN − log (1−MN ) < E. (16)

Note that in the case of independent random variables accord-
ing to the theorem 2.2 in [1] the function

G(MN ) = − log (−N logF (MN )) (17)

has a Gumbel distribution and

G ≤ − log (N(1− F (MN ))) < G+ exp(−G/N). (18)

It follows that the limiting distribution of − logN −
log (1− F (MN )) is the Gumbel distribution. Moreover, ac-
cording to [1], E and G are very close in their tail distributions,
so there is not much difference between the upper bounds in
the independent and dependent cases. In practical applications,
the dependence of the noise samples is due to the inter-beam
(angular) separation being smaller than the one that warrants
strict independence. Note, that in linear uniform arrays and
spatially white noise, strict independence takes place for un-
tapered DFT-based beamforming with -3db beam cross-points.
None of these conditions are achieved in practice and some
level of inter-beam noise correlation is always present. It is
clear that if motivated by Nyquist theorem considerations,
one can consider a number of independent beams M , with
M < N , that cover the same area of regard as the N over-
lapped practical beams. Below we first introduce the results
of Monte-Carlo simulations for independent noise (orthogonal
beams) and then compare these results with the results of
overlapped beams.

We begin by comparing the theoretical PDF’s and CDF’s
derived from the i.i.d. Gaussian noise case using M = 10
channels, with the Monte-Carlo results using 107 trials. Ab-
solutely identical (figure 1) theoretical and empirical results
suggest that we may rely upon the Monte-Carlo simulations
for more complicated settings. CDF’s and PDF’s for cases
covering M = 1 − 100 are illustrated in (figure 2) which
demonstrate strong deformation of both the CDF and PDF
with M that leaves the “tail” of the the distribution much
less affected in contrast to distribution first moment. This

property is more clearly demonstrated by (figure 3(d)), where
for different M , we show how the threshold must vary to
achieve a certain PFA. One can see that for a PFA = 10−3

and M = 10, the threshold level has to be set at 9.7dB (noise
power is 0dB), while for a single channel (M = 1), the same
PFA is achieved with only a slightly lower threshold of 8.4dB,
or 1.3dB lower. At the same time, if the total PFA over all
independent beams M = 10 has to be set at the same level
of PFA = 10−3, the individual PFA within each beam has to
be set at the level of PFA = 10−4, which for M = 1 requires
exactly the same threshold of 9.7dB. Therefore, depending on
the metric of our comparison, the SNR loss associated with
“maximum selection” varies from 1.3dB to 0dB for the same
probability of detection and PFA.

In (figure 3(a-c)) we illustrate the dependence on M of
the first moment m1, second moment m2, and variance v2 =
(m2 − m2

1). One can see that while m1 and m2 grow with
the number of channels M , the variance v2 stays practically
constant v2 ≈ 2, which means that m1/v

2 grows with M ,
resulting in only 1.3dB threshold growth for PFA = 10−3,
despite significant growth of the mean power value (4.66dB).
Overall, for i.i.d. noise samples, Monte-Carlo results are in
full agreement with the theoretical predictions.

In order to study the effect of correlated noise / dependent
beam outputs on the “maximum selection” combiner perfor-
mance we consider the construction of an oversampled beam
space construction. We consider an N element uniform linear
array with element spacing d = λ/2. We may then consider
the oversampled beams

uk =
[
1, ej2πu(k), . . . , ej2π(N−1)u(k)

]T
/
√
N (19)

u(k) = du(k − 1)/N, 0 < du < 1 (20)

and call the ratio between the number of oversampled and
independent beams that cover the same angular sector the
oversampling rate fs. We need to evaluate the impact of the
oversampling rate on detection performance of the “maximum
selection” combiner.

First we demonstrate that for orthogonal beams with white
input noise, the output noise over the beams is uncorrelated
indeed. In (figure 4(a,b)) we show results calculated for
M = 10 i.i.d. complex Gaussian values and for M = 10
orthogonal beams with the noise values at the beam output
analyzed. No difference between the two is observed. In figure
4(c) we introduce the sample PDF of the maximum values
calculated over M = 164 strongly oversampled beams that
cover the same azimuthal sector as the M = 10 orthogonal
beam case. The oversampling rate is equal to 16.4, while the
inter-beam correlation is equal to 0.99. This is obvious an ex-
treme example with a practically unrealistic oversampling rate.
Despite such an extreme oversampling rate, the sample PDF is
only slightly shifted to the right with respect to the theoretical
PDF for M − 10 orthogonal beams. Obviously the theoretical
distribution for M = 162 independent (orthogonal) samples is
shifted significantly further away to the right. This means that
for a significant oversampling rate, the “Nyquist” number of

2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

135



(a) (b)

Fig. 1. Analytic vs. Empirical (a) PDF and (b) CDF, independent case.

(a) (b)

Fig. 2. Analytic (a) PDF and (b) CDF, independent case for M = 1− 100.

beams (M = 10 in this case) provides a much tighter lower
bound, than the upper bound derived under the assumption
that all M (oversampled) beams are in fact independent. In
figure 4(d) we show the variation in the required threshold
value as a function of beam oversampling rate to each achieve
a PFA = 10−3. This shows that required threshold increase
due to the use of oversampled beams reaches an asymptotic
limit resulting in approximately 0.5dB worst case threshold
increase in comparison to completely independent beams. For
comparison we also show what the threshold would be if
each of the correlated beams were incorrectly assumed to be
independent.

IV. CONCLUSION

The “maximum selection” combiner that selects the range-
Doppler resolution cell with the maximal amplitude (power)
over a number (M ) of finger-beams that cover the required
area of angular coverage, may be treated as the optimum
combiner. When normalized for the same total probability of
false alarm, it provides the same probability of detection as
the individually treated M finger-beams that cover the same
area of regard. Even when the area of regard is M = 10 times
broader than a single finger beam coverage, the SNR losses
with respect to the single finger beam optimum processing do
not exceed 1.8dB with an arbitrary large number of individual
finger beams that populate this area of regard. In the case of
M = 10 independent beams that cover the same area, the SNR
losses do not exceed 1.3dB, which means that noise correlation
within closely separated beams does not incur more then 0.5dB
in additional SNR losses.
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(a) (b)

(c) (d)

Fig. 3. Variation of distribution moments with M : (a) E[z], (b) E[z2], (c)
var[z], (d) Variation of PFA with threshold and M , independent case.

(a) (b)

(c) (d)

Fig. 4. Behavior of “maximum selection” distribution with correlated samples
M , (a) independent samples, (b) independent beams, (c) correlated beams, (d)
correlated beam threshold behavior.
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