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Abstract—The separation of Electroencephalography (EEG)
sources is a typical application of tensor decompositions in
biomedical engineering. The objective of most approaches studied
in the literature consists in providing separate spatial maps and
time signatures for the identified sources. However, for some
applications, a precise localization of each source is required. To
achieve this, a two-step approach has been proposed. The idea
of this approach is to separate the sources using the canonical
polyadic decomposition in the first step and to employ the results
of the tensor decomposition to estimate distributed sources in
the second step, using the so-called disk algorithm. In this paper,
we propose to combine the tensor decomposition and the source
localization in a single step. To this end, we directly impose
structural constraints, which are based on a priori information on
the possible source locations, on the factor matrix of spatial char-
acteristics. The resulting optimization problem is solved using the
alternating direction method of multipliers, which is incorporated
in the alternating least squares tensor decomposition algorithm.
Realistic simulations with epileptic EEG data confirm that the
proposed single-step source localization approach outperforms
the previously developed two-step approach.

I. INTRODUCTION

An important application domain of tensor decompositions
in biomedical engineering is the separation of brain sources
in the analysis of Electroencephalography (EEG) recordings.
Over the past two decades several tensor-based approaches
have been proposed to this end. These methods differ in
the dimensions which are exploited in addition to space and
time, e.g., frequency, wave vector, subject or realization, and
in the employed decomposition model such as the Canoni-
cal Polyadic (CP) decomposition [1], [2], [3], [4], [5], the
PARAFAC2 model [6], the Shift-invariant CP (SCP) approach
[7], or the block term decomposition [8]. While most authors
contend themselves with the identification of the spatial maps
and time signals of the different sources, the interpretation of
the EEG data can be further improved by determining the po-
sitions and spatial extents of the sources within the brain. This
is, for example, of particular importance in the pre-surgical
evaluation of drug-resistant epileptic patients, where a precise
delineation of the epileptogenic zone is sought. To identify the
source positions, a specially developed brain source localiza-
tion algorithm, referred to as the Disk Algorithm (DA) has
been applied in a second step, after the tensor decomposition,
to the estimated spatial maps of the sources [9], [10]. However,
the results of this two-step approach depend crucially on the
correct separation of all source regions in the first step [10],

without which the sources cannot be accurately localized. This
problem arises especially in the context of close sources and
sources with highly correlated time signals as involved, for
example, in the propagation of epileptic phenomena.

In this paper, we propose to combine the tensor decom-
position step and the source localization step in a single
approach. Our idea is to incorporate a priori knowledge on
the possible source positions and configurations in the tensor
decomposition. The proposed method could generally be ap-
plied to any tensor decomposition approach which assumes
a separate, constant vector of spatial characteristics for each
source. For simplicity, in this paper, we will focus on the
CP decomposition and a third order tensor with dimensions
space, time, and realization. Our objective consists in imposing
structural constraints based on the possible source locations
within the brain on the factor matrix of spatial characteristics.
Furthermore, we regularize the source localization problem
following the fused LASSO strategy, which has previously
been employed in the Source Imaging based on Structured
Sparsity (SISSY) algorithm! [11], leading to a good per-
formance for the localization of extended sources [11]. The
tensor decomposition is then computed using the Alternating
Least Squares (ALS) algorithm [12] where the classical update
equation for the matrix of spatial characteristics is replaced
by an Alternating Direction Method of Multipliers (ADMM)
[13], [14] update to solve the constrained optimization problem
for the matrix of spatial characteristics. As will be shown
in this paper, the proposed method leads to a more accurate
localization of correlated sources than the DA-based two-step
algorithm. Note that a similar tensor decomposition approach
exploiting (nonnegativity) constraints on the factor matrices
has previously been treated in [15], [16], but the application
context and the structural constraint considered in this paper
are different.

II. DATA MODEL

EEG is a non-invasive technique that records the electrical
activity of the brain with an array of N sensors placed on
the scalp. Assuming that 7' time samples of data have been
collected, the EEG recordings can be stored into the data
matrix X € R¥*T In the following, we suppose that the
cerebral activity can be modeled by a grid of D dipoles with

IPlease note that this algorithm was originally introduced under the name
Sparse Variation-Based Sparse Cortical Current Distribution (SVB-SCCD) in
[11] and is here renamed to SISSY.



positions spread all over the cortical surface and orientations
perpendicular to this surface. These dipoles form the source
space. The signals emitted by all dipoles of the source space
are described by the matrix S € R”*”. Then the EEG data
constitute a superposition of these dipole signals:

X = GS. (1)

The lead field matrix G € R™*P characterizes the attenuation
that is inflicted on the signal of each dipole before it can be
measured by the sensors. For a given head model and source
space, the lead field matrix can be computed numerically
(see, e.g., [17]) and is therefore assumed to be known in the
following.

In practice, for a source signal that has sufficiently high
amplitude to be measurable at the surface, a certain area
of cortex needs to emit synchronized activity. A contiguous
cortical area with synchronized activity, also called patch, can
be modeled by a certain number of adjacent grid dipoles
with highly correlated signals. Furthermore, if several patches
emit highly correlated activity, they form a distributed source.
Assuming that the EEG data (for one spike realization) are
generated by P distributed sources and attributing the average
signal s, to the p-th source, we obtain the following data
model:

P
X = Z hys) + X, )
p=1
where
h, = Gy, 3

corresponds to the distributed source lead field vector (in the
following called spatial mixing vector). The latter is charac-
terized by the sparse coefficient vector 1p,, whose nonzero
elements describe the contributions of the associated grid
dipoles to the distributed source. The signals of all dipoles
that do not belong to a distributed source contribute to the
measurements through the matrix of background activity Xj,.

The objective of brain source localization consists in iden-
tifying the coefficient vectors 1), of all distributed sources. In
this paper, this will be accomplished using tensor decomposi-
tion approaches.

III. TENSOR-BASED BRAIN SOURCE LOCALIZATION

In order to construct a tensor, we either need to apply a suit-
able transformation, such as the wavelet transform or the short
term Fourier transform, to the data or collect an additional
dimension from the measurements. Subsequently, we consider
EEG data containing interictal epileptic spike signals, which
repeatedly occur in irregular time intervals, involving the same
source regions at each occurrence. Following [5], [18], it is
then possible to build a Space-Time-Spike (STS) tensor by
stacking the spike-like signals observed at R different time
instants along the third dimension of the tensor X. Assuming
that the signals s, of the P sources are the same for each
spike realization and that the spike amplitudes of the different
realizations are described by the vector ¢, € RR, we obtain
the following trilinear tensor model:

P
X~) hyos,oc,. 4)
p=1

The spatial maps of the P distributed sources, the associated
source signals, and the amplitudes can be summarized in the
factor matrices H = [hy,...,hp|, S =[s1,...,sp], and C =
[c1,...,cp].

A. Classical two-step approach

The classical approach for tensor-based distributed source
localization consists of two steps. In the first step, the data
tensor X is decomposed using the CP decomposition. This
permits to obtain estimates of the spatial mixing vectors hy,
p=1,..., P. In the second step, these estimates can be used
to localize each distributed source separately. In [10], this is
achieved by DA, which is based on a dictionary of M circular-
shaped potential distributed sources of varying sizes, the so-
called disks, characterized by the coefficient vectors v,,, m =
1,..., M. The spatial mixing vectors G, of these disks are
then compared to the estimated spatial mixing vector h,, of the
p-th source based on a metric. Finally, an estimate of the p-th
distributed source is obtained by merging all disks for which
the metric exceeds a given threshold value.

B. The proposed single-step approch

To perform tensor decomposition and source localization
in a single step, we propose to decompose the tensor X
exploiting the fact that the spatial mixing vectors h,, are linear
combinations of the lead field vectors as described by equation
(3). To this end, we impose the structural constraint H = G¥,
where ¥ = [1)1,...,4p|, on the spatial mixing matrix H.
Furthermore, to obtain a sparse, piece-wise constant source
distribution, which enables us to easily delineate the active
patches, we adopt the fused LASSO regularization strategy
of the SISSY algorithm [11]. Hence we include the regular-
ization term A(||T®||; + «||®||1), where T is the operator
implementing the variational map (see [19]), which describes
the difference in amplitude for all pairs of adjacent grid
dipoles, and A\ and « are regularization parameters. In order
to incorporate the structural constraint on the spatial mixing
matrix and the regularization term in the tensor decomposition,
we employ the ALS algorithm. More particularly, to estimate
the spatial mixing matrix, we aim at solving the following
optimization problem:
win| X3 — H(C © $) |2 + A(ITL||s + | @[|:)
s.t. H=GW¥ 4)

where X1 € RY*TH denotes the mode-1 unfolding matrix of
the tensor X'. This can be done using the ADMM algorithm,
which introduces the latent variables Y and Z and replaces
problem (5) by
Jmin [ X = H(C © 8)T[[ + MY + ol Z[]1)
s.t. H=GY, Y=TV, Z=W. (6)
Based on the augmented Lagrangian associated with (6), the
following update equations can be derived for the spatial
mixing matrix H and the coefficient matrix ¥, the latent
variables Y and Z and the Lagrangian multipliers U, V, and
W:
H=XYCoS)+pG¥ +V)0o! @)
W = (pTTT + pIp + pGTG) 1@ (8)



Y =proxz; » (T¥ +U/p) )
TP

Z =prox; » (¥ +W/p) (10)
AU = p(T® — Y) (11)
AV = p(G¥ — H) (12)
AW = p(¥ — Z). (13)

Here ® = (CoS)T(C®S) + plp, ® = p(TTY +Z +
GTH - V)) —T'U - W, and p > 0 denotes a penalty
parameter. Also, the prox stands for the proximity operator
dealing with nonsmooth functions f (here f(M) = ||[M]|1)
and initially introduced in [20]. Regarding the Lagrangian
multipliers U,V and W, their expressions above are given
in terms of their updates using the dual ascent method where
AM denotes the difference in the value of M between two
successive iterations. The distributed source signal matrix S
and the amplitude matrix C are updated using the classical
ALS equations:

S=X®@(CcoH)H)* (14)
C=X9(somh". (15)

Here, X2 € RT*NE 3nd X®) € REXTN are the mode-2 and
mode-3 unfolding matrices of X, respectively, and * denotes
the Moore-Penrose pseudo-inverse.

After (random) initialization, the updates for H, S, and
C using equations (7) to (15) are repeated alternatingly until
convergence or a maximal number of iterations are reached.
At the end of the ALS algorithm, in addition to the matrices
H, S, and C, estimates of all distributed sources are directly
available and correspond to the columns of the matrix W.

IV. SIMULATIONS

To demonstrate the good performance of the proposed
single-step tensor-based source localization approach in com-
parison to the classical two-step approach, we conduct a
simulation study. To this end, we simulate interictal epileptic
EEG data for N = 91 sensors, T" = 200 time samples at a
sampling rate of 256 Hz, and R = 50 epileptiform spikes. We
employ a source space composed of D = 19626 grid dipoles
that are located on the cortical surface. The lead field matrix
G € RY*19626 j5 computed numerically using the ASA
software (ASA, ANT, Enschede, Netherlands) and a realistic
head model composed of three compartments representing the
brain, the skull, and the scalp. We consider two different
scenarios with three patches. The first scenario consists of a
patch on the superior occipital gyrus (SupOcc) and two close
patches on the superior frontal gyrus (SupFr) and the inferior
frontal gyrus (InfFr). The second scenario consists of the
patch InfFr and two close patches on the mid-temporal gyrus
(MidTe) and the occipital temporal gyrus (OccTe). Because
of the lack of space, only the second scenario is depicted in
Figure 1. Each patch is composed of 100 adjacent grid dipoles,
corresponding to a cortical area of about 5 cm?. The first two
patches of each scenario are attributed epileptic spike signals
of slightly different morphology that were segmented from
stereotactic EEG (SEEG) recordings of a patient suffering from
epilepsy. We then generate 100 different realizations of both
signals for the 100 dipoles of each patch by introducing small
variations in amplitude and delay. Assuming that the third

patch is activated due to a propagation of the epileptic activity
of the second patch, we use the same signals for the dipoles of
the second and third patch, but introduce a delay of 4 to 8 ms
due to the small distance between the two patches. To simulate
different spike realizations, we multiply the amplitudes of
the spike signals by a factor that is randomly drawn from a
Gaussian distribution with mean 1 and variance 0.1. All source
dipoles that do not belong to a patch are attributed Gaussian
background activity with an amplitude that is adjusted to the
amplitude of the SEEG signals between epileptic spikes, thus
leading to a realistic Signal to Noise Ratio (SNR) of about 1.

Due to the high correlation of the signals of both the second
and the third patch and to the close distance between these
latter, we consider these patches to belong to the same dis-
tributed source. Therefore, we decide to separate only P = 2
CP components using the ALS algorithm for both the two-step
and the single-step approaches. It is noteworthy that the same
random point is used as initial guess for both approcaches.
For the DA source localization in the two-step approach, we
consider disks of varying sizes ranging from 1 to 100 grid
dipoles. The threshold value for the metric is adjusted for each
distributed source based on the goodness-of-fit criterion (cf.
[10]). In the single-step approach, the regularization parameter
a is set to 0.67, the parameter A is automatically selected from
a range of tested values based on a heuristic criterion, and the
penalty parameter p is set to 1.

To evaluate the source localization results obtained by the
two different methods, we employ the Dipole Localization
Error (DLE), which provides a measure of similarity between
the original and the estimated source configuration. The DLE
is defined as

1 1
DLE = — min||ry —r +
3G D min g — el

= > min [|rg — 1]
keT 2Q hex

el

where Z and 7 denote the original and the estimated sets of
indices of all dipoles belonging to an active patch, () and @ are
the numbers of original and estimated active dipoles, and rg
denotes the position of the k-th source dipole. To determine the
estimated sets of active dipoles for the single-step approach, we
threshold the amplitudes of the estimated source distributions.

Table 1 (left) lists the DLE values, averaged over 30
realizations with different signals and background activity,
of the proposed single-step approach in comparison to the
classical two-step method with source localization using DA.
In addition, Table I (right) lists the execution time elapsed for
each method considered in both scenarios using a PC of 2
GHz Quad-Core Intel Xeon with 32 GB of memory. Due to
its higher localization accuracy and relatively small execution
time, it is clear that the proposed single-step method gives the
best localization accuracy and execution time compared to the
two-step strategy.

Figure 1 shows the estimated source distributions associ-
ated with the two CP components for the tested single-step
and two-step source localization algorithms for the second
scenario (InfFr, MidTe, OccTe). For all algorithms, it can be
seen that the patch InfFr may be associated with the first
CP component whereas the patches MidTe and OccTe, that
emit highly correlated signals, are combined in the second CP
component. The patch InfFr is well delineated by both the



TABLE 1. DLE AND EXECUTION TIME OF SOURCE IMAGING
ALGORITHMS FOR SCENARIO 1 (OccSuUP, SUPFR, INFFR) AND SCENARIO
2 (INFFR, MIDTE, OCCTE)

DLE (in cm) || CPU time (in sec)
scenario 1 2 1 2
Single step (STS-SISSY) 1.32 | 1.37 75.5 78.5
Two-step (STS-DA) 18.23 | 7.29 || 238.0 240.0

single-step approach and the two-step STS-DA method. The
patches MidTe and OccTe, on the other hand, are only well
localized by the single-step algorithm which clearly shows
two distinct source regions associated with the second CP
component. STS-DA identifies a single patch in this case -
located between patches MidTe and OccTe. Note that similar
behavior was observed for these methods in the case of the
second scenario.

Ground truth

Two -Step
STS-DA (C1) STS—DA (C2)
,, ’ v/ V YN
@/ ' .(; &/ \ ,'/ V(»*

Max
Single-Step
STS — SISSY (C2)
Min

Fig. 1. Scenario 2. (Top) from left to right: patches InfFr and patches MidTe
and OccTe with highly correlated signals. (Bottom) source localization results
for both CP components obtained with the different tested algorithms. C1
stands for the first CP component while C2 denotes the second one.

V. CONCLUSION

We have proposed a new source imaging algorithm that
permits to separate and localize extended EEG sources in a
single step. To do so, we have employed a tensor decomposi-
tion approach which takes into account structural constraints
by making use of the ALS and the ADMM optimization
strategies. Simulations conducted using realistic EEG data, in
the context of drug-resistent epilepsy, have shown that the
proposed single-step approach provides the best localization
accuracy and execution time compared to the classical two-
step tensor-based source localization approach.
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