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Abstract—Wireless implantable devices capable of monitoring
the electrical activity of the brain are becoming an important tool
for understanding, and potentially treating, mental diseases such
as epilepsy and depression. Compressive sensing (CS) is emerging
as a promising approach to directly acquire compressed signals,
allowing to reduce the power consumption associated with data
transmission. To this end, we propose an efficient CS scheme
which exploits the structure of the intracranial EEG signals,
both in sampling and recovery. Our structure-aware approach is
conceptually simple to implement in hardware and yields state-
of-the-art compression rates up to 32x with high reconstruction
quality, as illustrated on two human iEEG datasets.

I. INTRODUCTION

According to the US National Institute of Neurological
Disorders and Stroke, more than 50 million people worldwide
[1] are affected by epilepsy with 25% of them being pharmaco-
resistant. Since 1997, the usage of prostheses has been ap-
proved to provide medical treatments for epileptic patients
and in 2005 for people with severe depression [2]. However,
wireless implantable devices capable of monitoring the brain
activity face the challenge of limited area and power resources.

In order to reduce the power consumption of data trans-
mission, many recent approaches (e.g., [3]–[5] and references
therein) exploit compressive sensing (CS) [6], [7] to directly
sample a compressed version of the signal. In a nutshell,
CS consists in taking fewer linear samples than dictated by
the Shannon-Nyquist theorem, while still allowing for robust
offline signal reconstruction. This is possible by exploiting the
fact that the information content of a signal is often much
lower than its raw data content.

In this work, we propose an efficient CS sampling scheme
adapted to the structure of intracranial electroencephalogram
(iEEG) signals which is conceptually simple to implement
within a small circuit area. The method is based on the new CS
theory developed in [8], which explains the fact that sampling
schemes aware of the signal’s structure perform much better
in practice than the standard random Gaussian or Bernoulli
schemes. Our approach consists in taking random components
of the Hadamard transform of the input signal, where the
randomness is controlled by a probability function that favors
lower frequencies.

Furthermore, we also exploit signal structure in the recon-
struction phase, by imposing that the wavelet coefficients of the
reconstructed signal adhere to the hierarchical configuration
often found in natural signals [9]. The ensuing optimization
problem is still very efficient to solve, thanks to the fast
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computation of the Hadamard transform, the tractability of the
structure-promoting function [10] and the convergence rate of
the primal-dual optimization algorithm of [11].

In a few words, we reap the benefits of both structured
sampling and structured recovery to yield state-of-the-art
compression of up to 32x, while maintaining a high signal
reconstruction quality as quantitatively demonstrated on two
clinical iEEG datasets.

This paper is organized as follows. In Section II, we intro-
duce the main concepts of compressive sensing and describe
the structured sampling scheme, while structured recovery and
optimization details are provided in Section III. Numerical
experiments are reported in Section IV, while Section V con-
cludes the paper with a discussion on the trade-offs between
hardware requirements and signal reconstruction quality.

II. COMPRESSIVE SENSING AND STRUCTURED SAMPLING

The main tenet of compressive sensing states that a signal
x ∈ Rn which has K non-zero coefficients can be robustly
recovered from only m = O(K log n

K ) samples y ∈ Rm,

y = Ax + w , (1)

where A is a linear operator that either satisfies the Restricted
Isometry Property (RIP) or is incoherent [12], and w accounts
for measurement noise. Obviously, y offers a compressed
version of x. If we are able to directly sample y, we save
both on storage and communication power. Recovering x,
though, requires to solve a non-linear optimization problem.
Nonetheless, recent advances in optimization have provided
efficient algorithms that can scale to very large signals [11].

Theoretically, i.i.d. sub-Gaussian matrices are incoherent
and also satisfy the RIP. Furthermore, they are universal, i.e.,
given an ortho-normal basis Φ which allows for a sparser
representation of a signal x, the RIP or the incoherence of AΦ
is the same as of the original A [12]. However, sub-Gaussian
matrices are prohibitively expensive to use in practice, since
they require O(mn) space and time.

More efficient types of sampling are being successfully
used in real applications, such as subsampled fast transforms,
like the Fast Fourier (FFT), the Discrete Cosine (DCT) or
the Fast Walsh-Hadamard (FWHT) Transforms, which can be
computed in O(n log n) time. Despite not being universal, it
has been recently shown that they are asymptotically inco-
herent [8] with some bases such as wavelets, see Figure 1
(left). Furthermore, via multi-level sampling they can easily
adapt to the asymptotic sparsity or structure present in many
natural signals [8], when represented in sparsifying bases such
as wavelets [9].



20 40 60

Wavelet component

10

20

30

40

50

60

H
a
d
a
m
a
rd

c
o
m
p
o
n
e
n
t

0

0.2

0.4

0.6

0.8

1

Index
200 400 600 800 1000

P
ro
b
a
b
il
it
y

0

0.2

0.4

0.6

0.8

1
4x

32x

Fig. 1. (left) Coherence between the Hadamard and the Wavelet bases.
The coherence decreases for higher frequencies (higher coefficients). (right)
Probability functions used for sampling the indices of the Fast Walsh-
Hadamard Transform for 4x and 32x compression factors.

For the purpose of circuit implementation, the FWHT has
the advantage of only requiring binary operations, and has
already been used for parallel sampling of multi-channel data
[13]. Following [8], we sample the indices of the FWHT
according to a probability function which favors the low
frequencies of the signal, which carry most of its energy. The
probability function is adapted to the compression factor, so
that the lowest frequencies are always sampled, while still
allowing to sample some of the higher frequencies, albeit with
fast decreasing probability (see Figure 1 (right)). We name this
approach Structured Hadamard Sampling (SHS).

III. STRUCTURED RECOVERY AND OPTIMIZATION

Additional structure in the signal x, such as interdepen-
dencies between its non-zero coefficients or constraints on its
support, allows to reduce the number of samples required for
exact or stable recovery (see for instance [14] and [15]). Many
of these structures can be encoded via linear inequalities that
admit tight and tractable convex relaxations [16]. Interestingly,
natural signals are often characterized by sparse and struc-
tured representations in time-frequency (or space-frequency)
domains, such as provided by wavelets [9].

In order to reconstruct the original signal x from its
compressive samples y, we therefore resort to solving the
following optimization problem on the wavelet coefficients α,

minimize
α∈A

f(α)

subject to AΦα− y ∈ K
(2)

where f is the Gauge function that promotes the structure we
expect in α, K encodes our information about the noise w in
(1) and A is a constraint set that specifies further assumptions
about the signal, e.g. boundedness. We reconstruct the signal
as x̃ = Φα̃, where α̃ is the solution to (2).

For sparse signals, it is common to use the `1 norm,
‖x‖1 :=

∑n
i=1 |xi|, leading to the Basis Pursuit (BP) opti-

mization problem.

It is well-known that biological signals are not only sparse
in the wavelet domain, but their wavelet coefficients can
be naturally arranged on a dyadic tree with the coefficients
decaying from root to leaves, as shown in Figure 2 (top-left).
This type of structure can be promoted by a tree regularizer
that gradually penalizes the coefficients closer to the leaves. In
order to do so, we define a group structure T = {G1, . . . ,Gn}
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Fig. 2. Tree structure in one signal from iEEG.org dataset I001 P034
D01 (channel 6, first annotated seizure, first 1024 samples window) and in
three reconstructions obtained via Bernoulli sampling (BERN) and structured
Hadamard sampling (SHS). The tree structure can be enforced via a specific
tree regularizer or mostly captured via structured sampling.
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Fig. 3. First 64 Wavelet coefficients of the micro-electrode signals from
two datasets from the iEEG.org portal. (left) 7 channels from dataset
I001 P034 D01. (right) 32 channels from dataset Study 040. The group
structure is evident among the correlated channels in both datasets, however,
there remain outlier channels which do not abide to the group structure.

where each group Gi ⊆ {1, . . . , n} contains the node i in
the tree and all its descendants. Let x|G be the restriction
of the vector x to the coefficients indexed by G. The tree
norm is then defined as ‖x‖T :=

∑
G∈T ‖x|G‖ [10]. Given a

sampling strategy that is not aware of the signal structure (e.g.,
MCS, discussed later), in Figure 2, we show how this structure
emerges in the reconstructed signals when using the tree norm,
but not when using the `1 norm. In the same figure, it can
also be noted that when using SHS, the hierarchical structure
emerges even if it is not imposed during reconstruction,
because it is already mostly captured during sampling.

When the micro-electrodes are very close to each other, due
to the high correlation among the signals, their time-frequency
domain coefficients tend to be group sparse. That is, when a
certain coefficient is zero for a signal, it is likely to be zero also
for the correlated signals and vice-versa. Let X ∈ RN×n be
the signal matrix, each row containing the signal for one of the
N channels. In order to promote group-sparsity, [5] proposed
to use the `2,1 mixed norm, ‖X‖2,1 :=

∑n
i=1

√∑N
j=1 X

2
i,j . In

Figure 3 (top), we report the first 64 wavelet coefficients for
the signals from two datasets, exhibiting the group structure
among correlated channels.

A. Optimization algorithm

In order to solve the constrained convex optimization prob-
lem (2), we use the primal-dual algorithm proposed in [11],



named DecOpt. This algorithm is very flexible in handling
different problem types, scalable and guaranteed to converge
at an optimal rate [11]. Its iterations require to compute the
proximity operator of f and to apply AΦ or its adjoint, which
for the FWHT and wavelet transform require only O(n log n)
time. The proximity operator of f is defined as

proxf (z) = argmin
x∈Rn

1

2
‖x− z‖22 + f(x) .

The proximity operators of the `1 norm and of the `2,1 mixed
norm can be computed in closed form via soft-thresholding or
group soft-thresholding, while the proximity operator for the
tree norm can be computed in a finite number of steps via
an active set algorithm [10]. In practice, there is almost no
computational difference between the three approaches, thus
we can take advantage of additional structure at almost no
increase in computational cost.

IV. NUMERICAL EXPERIMENTS

We demonstrate the advantages of structured sampling
and structured recovery on two datasets of clinical iEEG
signals obtained from the iEEG portal1. The first is dataset
I001 P034 D01 and contains more than 1 day of iEEG
recordings. We selected the first annotated seizure, which
comprises 161475 samples for each of the 7 micro-electrodes.
We split the signals in 157 non-overlapping windows of 1024
samples each. During this seizure, the first channel was inactive
and the seventh was picking up the AC signal, while channels
2 to 6 were recording normally and are lightly correlated, as
shown in Figure 4. The second dataset is from Study 040
and contains recordings from 32 micro-electrodes, which are
highly correlated, even though 6 channels are not properly
recording, see Figure 5. We used 20 non-overlapping windows
of size 1024 samples from the first annotated seizure.

We compare structured Hadamard sampling (SHS) applied
to each channel independently, with the same subsampling for
all the channels, to two other sampling approaches. The first,
named BERN, uses the same random Bernoulli {±1} matrix
to sample each channel independently [4]. The second, named
Multi-Channel Sampling (MCS) [5], designed to be highly
power-efficient, uses a Bernoulli {0, 1} matrix to sample across
the channels at each time step. The compression achievable
by this method depends on the number of samples taken at
each time step, with a minimum of one sample, yielding a
compression factor equal to the number of channels. SHS and
BERN sampling strategies are limited only by the length of
the considered time window.

We also compare the three structured recovery methods
described in the previous section. Namely, Basis Pursuit (BP)
using the `1 norm, L2L1 using the `2,1 mixed norm and the
TREE method which uses the tree norm, ‖x‖T . As sparsifying
basis, we use the Daubechies-4 Wavelet basis as provided by
the Rice Wavelet Toolbox2. We pursue the following protocol
for the experiments:

1) Sample all channels in each window according to the
sampling method chosen: MCS, SHS or BERN.

1www.ieeg.org
2http://dsp.rice.edu/software/rice-wavelet-toolbox
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Fig. 4. Example of micro-electrode signals from iEEG.org dataset I001
P034 D01 (first seizure, first 1024 samples window). Channel 1 is inactive,
since it simply jumps between −1µV and 1µV . Channel 2 to 6 record
normal activity, which is not much correlated. Channel 7 exhibits strong AC
components, possibly picked up from the power sources.

2) Reconstruct using DecOpt [11] via BP, L2L1 or
TREE.

3) Compute the signal-to-noise ratio (SNR) of the re-
constructed signals.

4) Average over 20 different randomizations of the sam-
pling scheme.

Tables I and II report the results on the first dataset
averaged over 157 windows and channels 2 to 6. A posteriori,
we excluded channels 1 and 7 from the analysis of the
performance because these channels are either inactive or not
recording the neurological signal. An advantage of channel-
wise sampling (SHS or BERN) against the MCS sampling is
that the former does not suffer from mixing “noisy” channels
with “clean” ones. In an embedded system, a sub-circuit may
be required for MCS in order to detect if a channel is recording
properly. Furthermore, the compression factor of MCS is
limited by the number of channels, while SHS and BERN can
achieve much higher compression rates. However, only SHS
yields an acceptable reconstruction performance above 16dB
at 32× compression, with 10dB considered as the minimum
required performance in order to retain diagnostically relevant
information [17].

Table III contains the reconstruction SNR for the second
dataset. In this case, the SNRs for all methods are very high,
with an advantage for SHS with structured recovery, either
L2L1 or TREE. The high SNRs can be explained by the
fact that the signals in this dataset are quite regular, whose
wavelet coefficients are then very sparse, therefore requiring
much fewer linear measurements for robust recovery.

The running time of the optimization algorithm is, in
general, less than 10 seconds per time window for recovering
the signals from all the channels simultaneously on an Intel
Xeon E5-2630 @ 2.40GHz.

V. DISCUSSION

The numerical results show that structured sampling, in
combination with structured recovery, allows to more faithfully
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Fig. 5. Example of micro-electrode signals from iEEG.org dataset Study
040 (first seizure, first 1024 samples window). Channel 26 seems completely
inactive, it sends a constant signal of approximately −131mV . Channels 3
and 28, among others, are highly correlated. Channel 1 is an example of a
channel which does not exhibit the smaller oscillations of channels 3 and 28.

TABLE I. IEEG.ORG PORTAL DATASET I001 P034 D01. MEAN
SNR OVER CHANNELS 2-6

Sampling Recovery Compression factor
7/4 7/3 7/2 7

MCS
BP 29.3 25.7 21.4 15.2

L2L1 31.3 28.1 24.3 17.3
TREE 34.1 30.6 26.8 21.2

TABLE II. IEEG.ORG PORTAL DATASET I001 P034 D01. MEAN
SNR OVER CHANNELS 2-6

Sampling Recovery Compression factor
2 4 8 16 32

SHS BP 34.1 27.6 23.7 21.0 16.7
L2L1 35.3 28.4 24.0 21.2 16.8

(this work) TREE 35.6 28.8 24.6 22.2 17.6

BERN
BP 33.1 24.4 16.7 10.8 5.7

L2L1 35.8 27.3 18.5 11.8 6.6
TREE 36.9 29.5 23.0 17.8 13.5

TABLE III. IEEG.ORG PORTAL DATASET STUDY 040. MEAN SNR
OVER ALL CHANNELS.

Sampling Recovery Compression factor
2 4 8 16 32

MCS
BP 79.6 72.4 66.5 61.2 55.6

L2L1 77.4 71.6 64.6 60.4 58.9
TREE 86.6 77.4 70.8 59.6 12.3

SHS BP 91.1 84.0 80.0 77.5 73.8
L2L1 93.6 86.3 82.1 79.5 74.8

(this work) TREE 92.8 85.3 81.3 78.7 74.7

BERN
BP 104 85.9 70.0 63.4 60.9

L2L1 73.4 69.4 63.7 59.4 57.1
TREE 83.3 76.4 61.7 54.3 32.4

reconstruct the original signals, as compared with the tradi-
tional Bernoulli [4] or the multi-channel sampling [5] schemes.

However, when evaluating a sampling scheme for a wire-
less implantable device, it is necessary to consider all the
performance factors. For example, the MCS strategy has been
designed to optimize area and power usage, at the cost of
sacrificing the reconstruction quality when the channels are not
correlated enough. The random Bernoulli sampling [4] offers
excellent reconstruction quality at low compression factors, but
requires a larger chip area than MCS.

More studies are required to find the best trade-off between
area usage, power consumption and reconstruction fidelity.

The proposed structured Hadamard sampling seems to offer a
very promising alternative to the current state-of-the-art. In the
future, we will focus on circuit implementation and analysis of
such a low-power and compact solution for neural recording.
Furthermore, we are currently studying how to learn the best
sampling pattern from previously collected signals.
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