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Abstract—As the number of samples and dimensionality of  In this paper, we focus on a specific class of randomized
optimization problems related to statistics an machine leming  plock proximal gradient algorithm, useful when each blagk
explode, block coordinate descent algorithms have gainedopu- has a special structure. We suppose that éad a difference

larity since they reduce the original problem to several smber f functi di th. H it has t
ones. Coordinates to be optimized are usually selected ranchly Of convex functons and IS non-smooth. FHowever, It has 10

according to a given probability distribution. We introduce an have a closed-form proximal operator [8]. Such a situation
importance sampling strategy that helps randomized coordiate mainly arises wherh(x) is a non-convex sparsity-inducing
descent algorithms to focus on blocks that are still far from regularizer. Common non-convex and non-differentiabigire
convergence. The framework applies to problems composed Oflarizers are the SCAD regularizéri [6], tig regularizer [9],

the sum of two possibly non-convex terms, one being separabl .
and non-smooth. We have compared our algorithm to a full the capped; and thelog penalty [4]. These regularizers have

gradient proximal approach as well as to a randomized block b€en frequently used for feature selection or for obtaining
coordinate algorithm that considers uniform sampling and gclic  sparse models in machine learning [4], [7].][210].

block coordinate descent. Experimental evidences show traear A large majority of works dealing with randomized block
benefit of using an importance sampling strategy. coordinate descent algorithms (RBCD) considers uniforsa di
tribution of sampling[[1R2],[[15],[[1[7]. Few attentions haveen
. ] devoted to the use of arbitrary distributian [11], [13]. hrese

In the era of Big Data, current computational methods ffy |atter efforts, principal statement is that the probigbi
statistics and machine learning are challenged by size taf dgs drawing any block should be not less tharpgi, > 0
both in terms of dimensionality and number of examplegg|ye to ensure that all blocks have non-zero probabiltties
Parameters of estimators learned from these large amoygiselected and hence to guarantee convergence in expectati
of data are usually obtained as minimizer of a regularized ine algorithm. However, because no prior knowledge are

|I. INTRODUCTION

empirical risk problems of the form usually available for directing the choice of the probapili
min {F(x) = f(x) + ()} 1) dIStI’Ibut.IOI’l of blo_ck sampling, expe_nmental analy3|s__ bét
x€ERI randomized algorithms usually consider uniform distriitooit

where f is usually a smooth and non-convex function with ThiS paper proposes a probability distribution for random-
Lipschitz gradient andh a non-smooth function. In such aized b_lock coordmat_e sampling that goes beyond_the uniform
large-scale and high-dimensionality context, most peswal Sampling and that is updated after each iteration of the
approaches use first-order method based on gradient des@&frithm. Indeed, we have designed a distribution thaeis d
[1] although second-order quasi-Newton algorithms hawmbePendent on approximate optimality condition of the problem
considered[[Z4]. Owing to such a distribution, described in Sectidn Il we can
More efficient algorithms can be considered for solvinBiaS the sampling towards coordinates that are still famfro

problem [1) if f andh present some special structures. WhepPtimality allowing to save substantial computationabet
h is separable, Problefl 1 can be expressed as as illustrated by our empirical experiments (see Sedfifn Il

Il. FRAMEWORK AND ALGORITHM

h(x) =Y hi(x:) _
i=1 A. Randomized BCD

We suppose that € R? is of the formx = [x/,...x]T We discuss now a generic approach for solving problem (1)
where m is the number of groups ix and x; € R% whenh(-) is separable by taking advantage of this separabil-
and >°.d; = d. In this case, methods that can use thi¢y. The general framework is shown in Algorithmh 1 where

group structure such as coordinate descent algorithmis [M8]f(x) is the partial gradient at of f with respect tox;.
or randomized coordinate descent![12] are among the mosit each iteration in the algorithm a blockis selected to
efficient ones for solving problenn](1). be optimized (line 3). Then, a partial proximal gradienpste


http://arxiv.org/abs/1606.07286v1

Algorithm 1 Randomized Block Coordinate Descent (RBCD) |n this work, we introduce a novel probability distribution

1: Set initialx®, § > 0,7 > 1,0 >0 for sampling blocks in RBCD. This distribution is dependent

2. for k=1,2,... do on the optimality conditions of each block. In other words,

3: i+ randomly select current block frofl,2,...,m} we want to update more often blocks that are still far from
according to a probability distributiop convergence. Formally, lgp € R*™ be the discrete density

40 d+ 0;d; « V;f(x) distribution such thap; is the probability that the block is

5. xF prox%h(x’“—1 —7-d)j <0 selected at a given iteration and, p; = 1. We propose in

6 while F(ka > F(xk—l)_%”xk —x*1|| do this work to use the following distribution

7: Jj < j+1and sety = (n) e+ (1— 2

8: xF <—_proxk+h(x’“*1 — 7=d) e T i (2)

9: end while Zlloo 4

10: end for wheree € (0, 1] is a user-defined parametery> 0 is a vector

composed of coordinatef:;}, and ||z|| = max; |z;]| IS
Table | the infinite norm. As made clearer in the sequel, a component

FLOATING OPERATION AT EACH ITERATION FOR THEGISTAND RBCD . H H 4 : H H
FOR A LINEAR MODEL OF THE FORM{(x) — L{Ax). d; IS THE z; encodes the optimality condition violation in each block.

DIMENSIONALITY OF THE GROUP? UPDATED AT THE CURRENT ITERATION Indeed, Iethi = hi,l - hi,2: with hi,l and hi,2 being two
convex functions, then ik* is a local minimizer of F'(x),

Task _| _GIST | RBCD from Clarke subdifferential calculu5[16], one can showt tha
Gradient computation| 2nd +n | 2nd; +n diti h imali p h h .
Proximal operator 4 4 a necessary condition of optimality is that there exists
Cost computation nd+n | nd;+n Oh;1(x*) andu € 0h; 2(x*) such thatd € V, f(x*) + Av —

Au for all 4. Accordingly, we define the optimality condition
violation z; as
performed (line 5) for the selected group. It consists ivisgl B

efficiently the proximal operator zi = veahi,l(g,il?eahi,z(x) IVif(x) +Av — M)l (3)

prox, ,, (v) = argmianx—vHQ—i- lh(x). The role of e in Equation [(2) is to balance the effect of
¢ x 2 0 the optimality condition on the distribution. When = 1,

Note that sinceh is separable, the proximal operator can b@e retrieve a uniform distribution. Other values ofwill
applied only on the current groupand will update only;. A ensure that if a variable in a block has not converged, its
backtracking (line 6-9) may be necessary to ensure a dexcrelock is likely to be updated more often than a block that has
in the objectiveF’ but a non monotone version can also beonverged. Note that, owing to the DC decompositiomof
used as discussed ih_|11]. Finally, if the number of grougBe violation [8) can be easily computed, even for non-cenve
is set to 1, then the algorithm boils down to GIST [Bg. a penalty function such as SCAD or the log-sum as discussed
proximal method for non-convex optimization. in [2].

This randomized algorithm is interestimgr.t. the classical ~Computing the optimality condition violation vectar is
proximal gradient descent since it does not require the cofiet possible in practice for RBCD since it requires the full
putation of the full gradient at each iteration. For insgncgradient of the problem, which as discussed in the previous
when estimating a linear model, the lgsan be expressed assection, is not computed at each iteration. As a solution, we
f(x) = L(Ax). The gradient isV f(x) = ATL/(Ax) where propose to use a vectarinitialized with the exact condition
the derivativel,’ is computed pointwise. Computing the partiaviolation computed from the initial vectat’. Thereon, only
gradientV,; f(x) = A/ L'(Ax) where A; is the submatrix the ith entry of z is updated at each iteration leading to an
of A corresponding to group requires much less floating approximate optimality condition evaluation. Indeed, igoa
operations as reported in Talile | sinde < d. In addition, rithm[d line 4, when a partial gradieff; f(x) is computed,
this computational complexity can be greatly decreased by can use it to update the approximateand then update
storing the predictiomx and by using the low complexity the probabilitiesp accordingly. This latter vector is clearly a
updateA; (x¥ — xf‘l) at each iteration. coarse approximation of the optimality condition violatibut

. . . as shown in the experiments it is a relevant choice for the
B. Block selection and importance sampling proposed importance sampling scheme.

The convergence of the RBCD algorithm is clearly depen- )
dent of the block selection strategy of line 3 in Algoritfiin 1C- ©On tricks of the trade
One can select the group using classic cyclic rule aslin [5], The proposed optimization algorithm has an important pa-
[3] or using the realization of a random distribution[12I8]. rameter that has to be chosen carefully: the initial gradien
The uniform distribution is often used in order to ensure thatep sizel/6* at each iteration. If chosen too small, the
all blocks are updated equally, but convergence in expectgihdients steps will barely improve the objective value, if
value has been proved for any discrete distribution that hashosen too large the backtracking step in lines 6-9 will nequ
non-null componentspg,;, > 0) [11]. numerous computation of the loss function. In this work we



use an extension of the Barzilai-Borwein (BB) rule that has The different algorithms have been compared based on their
been proposed in a non-convex scheme by [8]. This approaximputational demands and more exactly based on the number
consists in using a Newton step with the approximate Hessiahflops they need for reaching a stopping criterion. Hertus, t

ol. When performing the full gradient descent in GIST, theriterion is critical for a fair comparison. The GIST algbrn

BB rule gives has been run until it reaches a necessary optimality camditi
pE+1 _ AxTAg 4) ||lz||s lower than10~3 or until 1000 iterations is attained.
AxTAx For the randomized algorithms, including our approach, the

where Ax = x* — x*~1 and Ag = Vf(x*) — Vf(x#~1). stopping criterion is set according to a maximal number of
Again, in our algorithm the full gradient is not availabldterations. This number is set so that the number of cootelina

but we can still benefit from the second-order approximati¢adient evaluations is equal for all algorithms i.e we hased
brought to us by the BB rule. We propose to this end ide number of GIST iterationsn wherem is the number of
model the Hessian as a diagonal matrix where the weight ®JPcks. In the sequel, the number of flops reported is refated
the diagonal is block-dependent. In other word, we store Hpse n_eeded for computing both function values and gradien
estimated € R*™ whose component are updated similarly evaluations.

to equation[{¥) but using instead partial gradient and tiaria ~_Figure[1 (left) presents some examples of optimality con-

Ax; = xF — x"1 andAg; = V, f(x¥) — V,f(xk~1). This dition [|z[| evolution with respects to the number of flops.
K3 . . .

new rule is actually more general than the classical BB-ruld€se curves are obtained as averages Bueiterations of

since it brings local information and encodes a more preci€ results obtained for a given experimental set-up (here

Hessian approximation with group-wise coefficients simita 7 = 200, d = 2000 andT" = 20). We can first note that
the variable metric in([5] . with respect to optimality condition, RBCD algorithm with

uniform sampling (Unif RBCD) behaves similarly to the GIST
1. N UMERICAL EXPERIMENTS algorithm and a cyclic BCD (Cyclic BCD). In terms of flops,

In this section, we illustrate the behaviour of our randadiz few gain can be expected from such an approach. Instead,
BCD algorithm with importance sampling on some toy andsing importance sampling (IS RBCD) considerably helps in
real-world classification problems. For all problems, weehaimproving convergence. Such a behaviour can also be noted
considered a logistic loss function and the log-sum norveon when monitoring evolution of the objective value (see cantr

sparsity inducing penalty defined as panel in Figurd1l). Randomized algorithms tend to converge
d faster towards their optimal value with a clear advantage to

h(x) = pzlog <1 + M) the importance sampling approach. Finally, while they are

P p not reported due to lack of space, the final classification

with p > 0. We have compared our algorithm to a nonPerformances are similar for all three methods. B
convex proximal gradient algorithm known as GIST [8] and Figurell (right) depicts evolutions of optimality condit®
a randomized BCD version of GIST with uniform Samp”néjependmg on block-coordinate group size. We can note that

[11]. Note that since this regularization term is fully segie regardless of this size, our importance sampling approach
per variable, we used a separationef blocks of size< achieves better performance than the GIST algorithm. In
! m

variables. addition, it is clear that for our examples, the smaller tize s
is, the faster convergence we obtain.

A. Toy problem

As in [14] we consider a binary classification probleniii B+ Real-world classification problems
Among thesed variables, onlyT" of them define a subspace We have also compared these algorithms on real-world
of R? in which classes can be discriminated. For th@se high-dimensional learning problems. The related datdsaste
relevant variables, the two classes follow a Gaussian paen already used as benchmark datasets ir [8], [14]. Fee the
with means respectively. and —u and covariance matricesproblems, we have use80% of the examples as training
randomly drawn from a Wishart distributio’ (I, 7) where set and the remaining as test set. Again, hyperparameters
I is the identity matrix. The components @f have been of the model have been chosen so as to roughly maximize
independently and identically drawn frof—1,+1}. The performances of the GIST algorithm. Stopping criteria df al
other d — T non-relevant variables follow an i.i.d Gaussiamlgorithms have been set as previously. However, maximal
probability distribution with zero mean and unit variance f number of iterations has been sebt®0 for GIST. In addition,
both classes. We have respectively sampleahdn; = 1000 we have limited the maximal number of iterations2@000.
number of examples for training and testing. Before learninThe number of blocks has been setito= 100 for all datasets.
the training set has been normalized to zero mean and uniPerformances of the different algorithms are reported in
variance and test set has been rescaled accordingly. Noablell. Three measure of performances have been compared.
that the hyperparameter or any other parameters related tcClassification rates of all algorithms are almost similar al
the regularization term have been set so as to maximize theugh differences in performances are statistically iigant
performance of the GIST algorithm on the test set. We haurefavor of GIST according to a Wilcoxon sign rank test with
initialized all algorithms with the zero vectok{ = 0). a p-value 0f0.05. We explain this by the fact that regulariza-
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Figure 1. Example of (left) optimality condition violatioand (middle) objective value evolution with respects to tluenber of flops, averaged oveo
iterations and with blocks of siz20. For the left panel, we have plotted the exact violation (potad withz) as well as the approximated one (computed
with z). (right) Optimality conditions violation averaged o2 iterations for different block sizes used in IS RBCD. (Be&wed in color)

Table I
COMPARISON OFGIST AND RANDOMIZED BCD ALGORITHMS ON REAL-WORLD BENCHMARK PROBLEMS THE FIRST COLUMNS OF THE TABLE PROVIDE
THE NAME OF THE DATASETS THE NUMBER OF TRAINING EXAMPLESn AND THEIR DIMENSIONALITY d. THREE MEASURES OF PERFORMANCES ARE
PROVIDED: THE CLASSIFICATION RATE, THE NUMBER OF FLOPS NEEDED FOR CONVERGENGHEHE OPTIMALITY CONDITION. THE OBJECTIVE VALUE IS
GIVEN FOR A SAKE OF INFORMATION BUT IT IS NOT A RELEVANT CRITERON IN A NON-CONVEX PROBLEM.

data n d Algorithm | Class. Rate (%) Flops 10° Opt. Condition Obj. Val
classic 7094 41681 GIST 96.340.5 9277.76:64.6 0.03:0.0 32.64£2.2
classic 7094 41681 IS RBCD 95.11+0.7 347.164.1 0.0H1-0.0 25.230.8
classic 7094 41681 Unif RBCD 95.87+0.6 364.12£66.2 0.03:0.0 35.26:0.8
la2 3075 31472 GIST 91.11.1 3148.7%:287.8 0.06:0.1 39.42£57.7
la2 3075 31472 IS RBCD 90.98+1.2 101.16-3.6 0.15:0.2 43.35:59.0
la2 3075 31472| Unif RBCD 91.04+0.9 108.11+4.8 0.23t0.3 45.51#59.0
ohscal 11162 11468 GIST 88.30+0.6 7452.2895.6 2.6%2.3 520.43451.2
ohscal 11162 11468 IS RBCD 87.88+0.8 164.42-21.5 0.87%-0.6 480.53-428.5
ohscal 11162 11468 Unif RBCD 87.75+0.8 156.45%17.7 1.14-1.1 480.55-428.5
sports 8580 1487( GIST 97.93+0.4 5034.75-1219.5 0.1#0.1 208.11#215.2
sports 8580 14870 IS RBCD 97.76+0.5 154.74-20.3 0.0A40.1 212.05%215.3
sports 8580 14870 Unif RBCD 97.86+0.4 173.99-10.6 0.39:0.3 222.38-215.3

tion parameters have been selectedt. to its generalization that unveil the impact of the algorithm parameters.
performances. The number of flops needed for convergence
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