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Abstract—As the number of samples and dimensionality of
optimization problems related to statistics an machine learning
explode, block coordinate descent algorithms have gained popu-
larity since they reduce the original problem to several smaller
ones. Coordinates to be optimized are usually selected randomly
according to a given probability distribution. We introduc e an
importance sampling strategy that helps randomized coordinate
descent algorithms to focus on blocks that are still far from
convergence. The framework applies to problems composed of
the sum of two possibly non-convex terms, one being separable
and non-smooth. We have compared our algorithm to a full
gradient proximal approach as well as to a randomized block
coordinate algorithm that considers uniform sampling and cyclic
block coordinate descent. Experimental evidences show theclear
benefit of using an importance sampling strategy.

I. I NTRODUCTION

In the era of Big Data, current computational methods for
statistics and machine learning are challenged by size of data
both in terms of dimensionality and number of examples.
Parameters of estimators learned from these large amount
of data are usually obtained as minimizer of a regularized
empirical risk problems of the form

min
x∈Rd
{F (x) = f(x) + λh(x)} (1)

where f is usually a smooth and non-convex function with
Lipschitz gradient andh a non-smooth function. In such a
large-scale and high-dimensionality context, most prevalent
approaches use first-order method based on gradient descent
[1] although second-order quasi-Newton algorithms have been
considered [14].

More efficient algorithms can be considered for solving
problem (1) iff andh present some special structures. When
h is separable, Problem 1 can be expressed as

h(x) =

m
∑

i=1

hi(xi)

We suppose thatx ∈ R
d is of the formx = [x⊤

1 , . . .x
⊤
m]⊤

where m is the number of groups inx and xi ∈ R
di

and
∑

i di = d. In this case, methods that can use the
group structure such as coordinate descent algorithms [19]
or randomized coordinate descent [12] are among the most
efficient ones for solving problem (1).

In this paper, we focus on a specific class of randomized
block proximal gradient algorithm, useful when each blockhi

has a special structure. We suppose that eachhi is a difference
of convex functions and is non-smooth. However, it has to
have a closed-form proximal operator [8]. Such a situation
mainly arises whenh(x) is a non-convex sparsity-inducing
regularizer. Common non-convex and non-differentiable regu-
larizers are the SCAD regularizer [6], theℓp regularizer [9],
the capped-ℓ1 and thelog penalty [4]. These regularizers have
been frequently used for feature selection or for obtaining
sparse models in machine learning [4], [7], [10].

A large majority of works dealing with randomized block
coordinate descent algorithms (RBCD) considers uniform dis-
tribution of sampling [12], [15], [17]. Few attentions havebeen
devoted to the use of arbitrary distribution [11], [13]. In these
two latter efforts, principal statement is that the probability
of drawing any block should be not less than apmin > 0
value to ensure that all blocks have non-zero probabilitiesto
be selected and hence to guarantee convergence in expectation
of the algorithm. However, because no prior knowledge are
usually available for directing the choice of the probability
distribution of block sampling, experimental analysis of the
randomized algorithms usually consider uniform distribution.

This paper proposes a probability distribution for random-
ized block coordinate sampling that goes beyond the uniform
sampling and that is updated after each iteration of the
algorithm. Indeed, we have designed a distribution that is de-
pendent on approximate optimality condition of the problem.
Owing to such a distribution, described in Section II we can
bias the sampling towards coordinates that are still far from
optimality allowing to save substantial computational efforts
as illustrated by our empirical experiments (see Section III).

II. FRAMEWORK AND ALGORITHM

A. Randomized BCD

We discuss now a generic approach for solving problem (1)
whenh(·) is separable by taking advantage of this separabil-
ity. The general framework is shown in Algorithm 1 where
∇if(x) is the partial gradient atx of f with respect toxi.

At each iteration in the algorithm a blocki is selected to
be optimized (line 3). Then, a partial proximal gradient step is
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Algorithm 1 Randomized Block Coordinate Descent (RBCD)

1: Set initialx0, θ > 0, η > 1, σ > 0
2: for k = 1, 2, . . . do
3: i ← randomly select current block from{1, 2, . . . ,m}

according to a probability distributionp
4: d← 0;di ← ∇if(x)
5: xk ← prox 1

θk
h(x

k−1 − 1
θk
d),j ← 0

6: while F (xk) > F (xk−1)−σ
2 ‖x

k − xk−1‖ do
7: j ← j + 1 and setγ = (η)j

8: xk ← prox 1

θkγ
h(x

k−1 − 1
θkγ

d)

9: end while
10: end for

Table I
FLOATING OPERATION AT EACH ITERATION FOR THEGIST AND RBCD

FOR A LINEAR MODEL OF THE FORMf(x) = L(Ax). di IS THE

DIMENSIONALITY OF THE GROUPi UPDATED AT THE CURRENT ITERATION.

Task GIST RBCD
Gradient computation 2nd+ n 2ndi + n
Proximal operator d di
Cost computation nd+ n ndi + n

performed (line 5) for the selected group. It consists in solving
efficiently the proximal operator

prox1

θ
h(v) = argmin

x

1

2
‖x− v‖2 +

1

θ
h(x).

Note that sinceh is separable, the proximal operator can be
applied only on the current groupi and will update onlyxi. A
backtracking (line 6-9) may be necessary to ensure a decrease
in the objectiveF but a non monotone version can also be
used as discussed in [11]. Finally, if the number of groups
is set to 1, then the algorithm boils down to GIST [8],i.e. a
proximal method for non-convex optimization.

This randomized algorithm is interestingw.r.t. the classical
proximal gradient descent since it does not require the com-
putation of the full gradient at each iteration. For instance,
when estimating a linear model, the lossf can be expressed as
f(x) = L(Ax). The gradient is∇f(x) = A⊤L′(Ax) where
the derivativeL′ is computed pointwise. Computing the partial
gradient∇if(x) = A⊤

i L
′(Ax) whereAi is the submatrix

of A corresponding to groupi requires much less floating
operations as reported in Table I sincedi ≪ d. In addition,
this computational complexity can be greatly decreased by
storing the predictionAx and by using the low complexity
updateAi(x

k
i − xk−1

i ) at each iteration.

B. Block selection and importance sampling

The convergence of the RBCD algorithm is clearly depen-
dent of the block selection strategy of line 3 in Algorithm 1.
One can select the group using classic cyclic rule as in [5],
[3] or using the realization of a random distribution [12], [18].
The uniform distribution is often used in order to ensure that
all blocks are updated equally, but convergence in expected
value has been proved for any discrete distribution that have
non-null components, (pmin > 0) [11].

In this work, we introduce a novel probability distribution
for sampling blocks in RBCD. This distribution is dependent
on the optimality conditions of each block. In other words,
we want to update more often blocks that are still far from
convergence. Formally, letp ∈ R

+m be the discrete density
distribution such thatpi is the probability that the blocki is
selected at a given iteration and

∑

i pi = 1. We propose in
this work to use the following distribution

pi =
ǫ+ (1− ǫ) zi

‖z‖∞

mǫ+ (1− ǫ) 1
‖z‖∞

∑

i zi
(2)

whereǫ ∈ (0, 1] is a user-defined parameter,z ≥ 0 is a vector
composed of coordinates{zi}mi=1 and ‖z‖∞ = maxi |zi| is
the infinite norm. As made clearer in the sequel, a component
zi encodes the optimality condition violation in each block.
Indeed, lethi = hi,1 − hi,2, with hi,1 and hi,2 being two
convex functions, then ifx⋆ is a local minimizer ofF (x),
from Clarke subdifferential calculus [16], one can show that
a necessary condition of optimality is that there existsv ∈
∂hi,1(x

⋆) andu ∈ ∂hi,2(x
⋆) such that0 ∈ ∇if(x

⋆) + λv −
λu for all i. Accordingly, we define the optimality condition
violation zi as

zi = min
v∈∂hi,1(x),u∈∂hi,2(x)

‖∇if(x) + λv − λu‖∞ (3)

The role of ǫ in Equation (2) is to balance the effect of
the optimality condition on the distribution. Whenǫ = 1,
we retrieve a uniform distribution. Other values ofǫ will
ensure that if a variable in a block has not converged, its
block is likely to be updated more often than a block that has
converged. Note that, owing to the DC decomposition ofh,
the violation (3) can be easily computed, even for non-convex
penalty function such as SCAD or the log-sum as discussed
in [2].

Computing the optimality condition violation vectorz is
not possible in practice for RBCD since it requires the full
gradient of the problem, which as discussed in the previous
section, is not computed at each iteration. As a solution, we
propose to use a vector̃z initialized with the exact condition
violation computed from the initial vectorx0. Thereon, only
the ith entry of z̃ is updated at each iteration leading to an
approximate optimality condition evaluation. Indeed, in algo-
rithm 1 line 4, when a partial gradient∇if(x) is computed,
we can use it to update the approximatez̃i and then update
the probabilitiesp accordingly. This latter vector is clearly a
coarse approximation of the optimality condition violation but
as shown in the experiments it is a relevant choice for the
proposed importance sampling scheme.

C. On tricks of the trade

The proposed optimization algorithm has an important pa-
rameter that has to be chosen carefully: the initial gradient
step size1/θk at each iteration. If chosen too small, the
gradients steps will barely improve the objective value, if
chosen too large the backtracking step in lines 6-9 will require
numerous computation of the loss function. In this work we



use an extension of the Barzilai-Borwein (BB) rule that has
been proposed in a non-convex scheme by [8]. This approach
consists in using a Newton step with the approximate Hessian
σI. When performing the full gradient descent in GIST, the
BB rule gives

θk+1 =
∆x⊤∆g

∆x⊤∆x
(4)

where∆x = xk − xk−1 and ∆g = ∇f(xk) − ∇f(xk−1).
Again, in our algorithm the full gradient is not available
but we can still benefit from the second-order approximation
brought to us by the BB rule. We propose to this end to
model the Hessian as a diagonal matrix where the weight of
the diagonal is block-dependent. In other word, we store an
estimateθ ∈ R

+m whose componentsθi are updated similarly
to equation (4) but using instead partial gradient and variations
∆xi = xk

i − xk−1
i and∆gi = ∇if(x

k) − ∇if(x
k−1). This

new rule is actually more general than the classical BB-rule
since it brings local information and encodes a more precise
Hessian approximation with group-wise coefficients similar to
the variable metric in [5] .

III. N UMERICAL EXPERIMENTS

In this section, we illustrate the behaviour of our randomized
BCD algorithm with importance sampling on some toy and
real-world classification problems. For all problems, we have
considered a logistic loss function and the log-sum non-convex
sparsity inducing penalty defined as

h(x) = ρ
d

∑

i

log

(

1 +
|xi|

ρ

)

with ρ > 0. We have compared our algorithm to a non-
convex proximal gradient algorithm known as GIST [8] and
a randomized BCD version of GIST with uniform sampling
[11]. Note that since this regularization term is fully separable
per variable, we used a separation ofm blocks of size d

m

variables.

A. Toy problem

As in [14] we consider a binary classification problem inR
d.

Among thesed variables, onlyT of them define a subspace
of R

d in which classes can be discriminated. For theseT
relevant variables, the two classes follow a Gaussian pdf
with means respectivelyµ and−µ and covariance matrices
randomly drawn from a Wishart distributionW (I, T ) where
I is the identity matrix. The components ofµ have been
independently and identically drawn from{−1,+1}. The
other d − T non-relevant variables follow an i.i.d Gaussian
probability distribution with zero mean and unit variance for
both classes. We have respectively sampledn andnt = 1000
number of examples for training and testing. Before learning,
the training set has been normalized to zero mean and unit
variance and test set has been rescaled accordingly. Note
that the hyperparameterλ or any other parameters related to
the regularization term have been set so as to maximize the
performance of the GIST algorithm on the test set. We have
initialized all algorithms with the zero vector (x0 = 0).

The different algorithms have been compared based on their
computational demands and more exactly based on the number
of flops they need for reaching a stopping criterion. Hence, this
criterion is critical for a fair comparison. The GIST algorithm
has been run until it reaches a necessary optimality condition
‖z‖∞ lower than10−3 or until 1000 iterations is attained.
For the randomized algorithms, including our approach , the
stopping criterion is set according to a maximal number of
iterations. This number is set so that the number of coordinate
gradient evaluations is equal for all algorithms i.e we haveused
the number of GIST iterations×m wherem is the number of
blocks. In the sequel, the number of flops reported is relatedto
those needed for computing both function values and gradient
evaluations.

Figure 1 (left) presents some examples of optimality con-
dition ‖z‖∞ evolution with respects to the number of flops.
These curves are obtained as averages over20 iterations of
the results obtained for a given experimental set-up (here
n = 200, d = 2000 and T = 20). We can first note that
with respect to optimality condition, RBCD algorithm with
uniform sampling (Unif RBCD) behaves similarly to the GIST
algorithm and a cyclic BCD (Cyclic BCD). In terms of flops,
few gain can be expected from such an approach. Instead,
using importance sampling (IS RBCD) considerably helps in
improving convergence. Such a behaviour can also be noted
when monitoring evolution of the objective value (see central
panel in Figure 1). Randomized algorithms tend to converge
faster towards their optimal value with a clear advantage to
the importance sampling approach. Finally, while they are
not reported due to lack of space, the final classification
performances are similar for all three methods.

Figure 1 (right) depicts evolutions of optimality conditions
depending on block-coordinate group size. We can note that
regardless of this size, our importance sampling approach
achieves better performance than the GIST algorithm. In
addition, it is clear that for our examples, the smaller the size
is, the faster convergence we obtain.

B. Real-world classification problems

We have also compared these algorithms on real-world
high-dimensional learning problems. The related datasetshave
been already used as benchmark datasets in [8], [14]. For these
problems, we have used80% of the examples as training
set and the remaining as test set. Again, hyperparameters
of the model have been chosen so as to roughly maximize
performances of the GIST algorithm. Stopping criteria of all
algorithms have been set as previously. However, maximal
number of iterations has been set to5000 for GIST. In addition,
we have limited the maximal number of iterations to20000.
The number of blocks has been set tom = 100 for all datasets.

Performances of the different algorithms are reported in
Table II. Three measure of performances have been compared.
Classification rates of all algorithms are almost similar al-
though differences in performances are statistically significant
in favor of GIST according to a Wilcoxon sign rank test with
a p-value of0.05. We explain this by the fact that regulariza-
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Figure 1. Example of (left) optimality condition violationand (middle) objective value evolution with respects to thenumber of flops, averaged over20
iterations and with blocks of size20. For the left panel, we have plotted the exact violation (computed withz) as well as the approximated one (computed
with z̃). (right) Optimality conditions violation averaged over20 iterations for different block sizes used in IS RBCD. (Best viewed in color)

Table II
COMPARISON OFGIST AND RANDOMIZED BCD ALGORITHMS ON REAL-WORLD BENCHMARK PROBLEMS. THE FIRST COLUMNS OF THE TABLE PROVIDE

THE NAME OF THE DATASETS, THE NUMBER OF TRAINING EXAMPLESn AND THEIR DIMENSIONALITY d. THREE MEASURES OF PERFORMANCES ARE

PROVIDED : THE CLASSIFICATION RATE, THE NUMBER OF FLOPS NEEDED FOR CONVERGENCE, THE OPTIMALITY CONDITION . THE OBJECTIVE VALUE IS

GIVEN FOR A SAKE OF INFORMATION BUT IT IS NOT A RELEVANT CRITERION IN A NON-CONVEX PROBLEM.

data n d Algorithm Class. Rate (%) Flops×109 Opt. Condition Obj. Val
classic 7094 41681 GIST 96.37±0.5 9277.76±64.6 0.03±0.0 32.64±2.2
classic 7094 41681 IS RBCD 95.11±0.7 347.16±4.1 0.01±0.0 25.23±0.8
classic 7094 41681 Unif RBCD 95.87±0.6 364.12±66.2 0.03±0.0 35.26±0.8
la2 3075 31472 GIST 91.11±1.1 3148.75±287.8 0.06±0.1 39.42±57.7
la2 3075 31472 IS RBCD 90.98±1.2 101.16±3.6 0.15±0.2 43.35±59.0
la2 3075 31472 Unif RBCD 91.04±0.9 108.11±4.8 0.23±0.3 45.51±59.0
ohscal 11162 11465 GIST 88.30±0.6 7452.22±895.6 2.65±2.3 520.41±451.2
ohscal 11162 11465 IS RBCD 87.88±0.8 164.42±21.5 0.87±0.6 480.53±428.5
ohscal 11162 11465 Unif RBCD 87.75±0.8 156.45±17.7 1.14±1.1 480.55±428.5
sports 8580 14870 GIST 97.93±0.4 5034.75±1219.5 0.11±0.1 208.11±215.2
sports 8580 14870 IS RBCD 97.76±0.5 154.74±20.3 0.07±0.1 212.05±215.3
sports 8580 14870 Unif RBCD 97.86±0.4 173.99±10.6 0.39±0.3 222.38±215.3

tion parameters have been selectedw.r.t. to its generalization
performances. The number of flops needed for convergence
are highly in favor of the randomized algorithms. The factor
gain in flops ranges in between26 to 45. Interestingly, exact
optimality conditions after algorithms have halted are always
in favor of our importance sampling randomized BCD algo-
rithms except for thela2 dataset. Note that, in the table, we
have also provided the objective values of the algorithms upon
convergence. As one may have expected in a non-convex opti-
mization problem, different “nearly” optimal objective values
leads to similar classification rate performances stressing the
existence of several local minimizers with good generalization
property.

IV. CONCLUSION

This paper introduced a framework for randomized block
coordinate descent algorithm that leverages on importance
sampling. We presented a sampling distribution that biasesthe
algorithm to focus on block coordinates that are still far from
convergence. While this idea is rather simple, our experimental
results have shown that it considerably helps in achieving a
faster empirical convergence of the randomized BCD algo-
rithm. Future works will be devoted to the theoretical analysis
of the importance sampling impact on the convergence rate. In
addition, we plan to carry out thorough experimental analyses

that unveil the impact of the algorithm parameters.
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