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⋆Department of Information Technology, Uppsala University, Sweden. E-mail: {andreas.svensson, thomas.schon}@it.uu.se
⋆⋆Department of Neuroscience and Biomedical Engineering, Aalto University, Finland. E-mail: arno.solin@aalto.fi
⋆⋆⋆Department of Electrical Engineering and Automation, Aalto University, Finland. E-mail: simo.sarkka@aalto.fi

Abstract—This paper is concerned with black-box identifica-
tion of nonlinear state space models. By using a basis function
expansion within the state space model, we obtain a flexible
structure. The model is identified using an expectation maximiza-
tion approach, where the states and the parameters are updated
iteratively in such a way that a maximum likelihood estimate is
obtained. We use recent particle methods with sound theoretical
properties to infer the states, whereas the model parameters can
be updated using closed-form expressions by exploiting the fact
that our model is linear in the parameters. Not to over-fit the flex-
ible model to the data, we also propose a regularization scheme
without increasing the computational burden. Importantly, this
opens up for systematic use of regularization in nonlinear state
space models. We conclude by evaluating our proposed approach
on one simulation example and two real-data problems.

I. INTRODUCTION

Modeling of nonlinear dynamical systems is a well-studied
problem within many areas, including system identification
[1, 2] and time series analysis [3]. This paper is concerned
with black-box identification of nonlinear state space models
(SSMs), where the nonlinearities are represented using a
basis function expansion. By applying the recent method [4]
based on sequential Monte Carlo (SMC) and Expectation
Maximization (EM), we can efficiently utilize the linear-
in-its-parameters and nonlinear-in-the-state properties of our
proposed model (see, e.g., [5] for discussion on such models).

The use of basis function expansions is a well-established
approach within system identification, often used to identify
transfer functions [6]. An early approach to use basis function
expansions also for nonlinear system identification is found in
[7], whereas [8, 9] are using it to identify static nonlinearities
in Hammerstein and Wiener systems, respectively. The idea
to combine a basis function expansion and EM to identify
nonlinear SSMs dates back—to the best of our knowledge—
to [10]. A recent work along the same line is [11], replacing
EM with nonlinear optimization.

To avoid over-fitting to data, one remedy is to limit the
number of terms in the series expansion, as discussed by [8].
Another alternative is regularization [12, 13], or equivalently,
a prior on the basis function weights. The work by [14] is
addressing the special case of a Gaussian process prior.

In particular, we consider identification of a nonlinear SSM

𝑥𝑡+1 = 𝑓𝑥(𝑥𝑡) + 𝑓𝑢(𝑢𝑡) + 𝑤𝑡, (1a)
𝑦𝑡 = 𝑔𝑥(𝑥𝑡) + 𝑔𝑢(𝑢𝑡) + 𝑒𝑡, (1b)

with 𝑤𝑡 and 𝑒𝑡 being Gaussian noise with zero mean and
E
[︀
𝑤𝑡𝑤

T
𝑡

]︀
= 𝑄, E

[︀
𝑒𝑡𝑒

T
𝑡

]︀
= 𝑅, and 𝑥𝑡 ∈ R𝑛𝑥 . By making use

of input-output data (𝑢1:𝑇 , 𝑦1:𝑇 ) and prior knowledge of 𝑛𝑥,
our goal is to identify a model ℳ , {𝑓𝑥, 𝑓𝑢, 𝑔𝑥, 𝑔𝑢, 𝑄,𝑅}
maximizing the marginal likelihood 𝑝(𝑢1:𝑇 , 𝑦1:𝑇 |ℳ). The
approach can be generalized to functions 𝑓(𝑥𝑡, 𝑢𝑡) and alike.

In practical situations, it may be too ambiguous to identify
all functions in (1). It is also possible to adapt the proposed
scheme to learn only parts of (1), as will be illustrated by
Example IV-B.

II. ORTHOGONAL BASIS FUNCTION EXPANSIONS IN SSMS

We restrict ourselves to consider a compact set X of R𝑛𝑥 ,
and assume there exists a set of orthogonal basis functions
{𝜑(𝑘)}∞𝑘=1 spanning the function space on X such that

𝑓𝑥(𝑥) =

∞∑︁
𝑘=1

𝜔(𝑘)
𝑥 𝜑(𝑘)(𝑥) ≈

𝑚∑︁
𝑘=1

𝜔(𝑘)
𝑥 𝜑(𝑘)(𝑥), ∀𝑥 ∈ X, (2)

and similar for 𝑓𝑢(·), 𝑔𝑥(·) and 𝑔𝑢(·).
Example 1: The Fourier basis 𝜑(𝑘)(𝑥) = 𝑒

𝑖𝜋𝑘𝑥
𝐿 spans the

space of 𝐿2 (i.e., square-integrable) functions on X = [−𝐿,𝐿].
The truncated basis function expansion (2) suggests the

following approximation of (1a)

𝑥𝑡+1 =⎡⎢⎣ 𝜔
(1)
𝑥,1 ··· 𝜔

(𝑚)
𝑥,1

...
...

𝜔
(1)
𝑥,𝑛𝑥 ··· 𝜔

(𝑚)
𝑥,𝑛𝑥

⎤⎥⎦
⏟  ⏞  

𝐴

⎡⎢⎣ 𝜑
(1)

(𝑥𝑡)

...
𝜑
(𝑚)

(𝑥𝑡)

⎤⎥⎦
⏟  ⏞  

�̄�(𝑥𝑡)

+

⎡⎢⎣ 𝜔
(1)
𝑢,1 ··· 𝜔

(𝑚)
𝑢,1

...
...

𝜔
(1)
𝑢,𝑛𝑥 ··· 𝜔

(𝑚)
𝑢,𝑛𝑥

⎤⎥⎦
⏟  ⏞  

𝐵

⎡⎢⎣ 𝜑
(1)

(𝑢𝑡)

...
𝜑
(𝑚)

(𝑢𝑡)

⎤⎥⎦
⏟  ⏞  

�̄�(𝑢𝑡)

+𝑤𝑡

(3)

and analogously for (1b). (Note that different basis functions
{𝜑(𝑘)}∞𝑘=1 can be used for 𝑓𝑥(·) and 𝑓𝑢(·), although this is
not reflected in the notation.) More compactly we have the
following approximation of (1)

𝑥𝑡+1 =
[︀
𝐴 𝐵

]︀ [︃𝜙(𝑥𝑡)

𝜙(𝑢𝑡)

]︃
+ 𝑤𝑡, (4a)

𝑦𝑡 =
[︀
𝐶 𝐷

]︀ [︃𝜙(𝑥𝑡)

𝜙(𝑢𝑡)

]︃
+ 𝑒𝑡, (4b)

which is linear in the parameters, but nonlinear in the states 𝑥𝑡

and the inputs 𝑢𝑡. This structure will be exploited when we
derive the maximum likelihood (ML) estimator.
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Algorithm 1 Conditional particle filter with ancestor sampling

Input: Conditional trajectory 𝑥1:𝑇 [𝑘].
Output: Trajectory 𝑥1:𝑇 [𝑘 + 1] and particle system {𝑥(𝑖)

1:𝑇 , 𝑤
(𝑖)
𝑇 }𝑁𝑖=1.

1: Draw 𝑥
(𝑖)
1 ∼ 𝑝(𝑥1) for 𝑖 = 1, . . . , 𝑁 − 1.

2: Set 𝑥(𝑁)
1 = 𝑥1[𝑘].

3: for 𝑡 = 1, . . . , 𝑇 do
4: Set 𝑤(𝑖)

𝑡 = 𝒩
(︁
𝑔𝑥(𝑥

(𝑖)
𝑡 ) + 𝑔𝑢(𝑢𝑡) | 𝑦𝑡, 𝑅

)︁
.

5: Draw 𝑎
(𝑖)
𝑡 with P

(︁
𝑎
(𝑖)
𝑡 = 𝑗

)︁
∝ 𝑤

(𝑗)
𝑡 for 𝑖 = 1, . . . , 𝑁 − 1.

6: Draw 𝑥
(𝑖)
𝑡+1 ∼ 𝒩

(︂
𝑓𝑥(𝑥

𝑎
(𝑖)
𝑡

𝑡 ) + 𝑓𝑢(𝑢𝑡), 𝑄

)︂
for 𝑖 = 1, . . . , 𝑁 − 1.

7: Set 𝑥(𝑁)
𝑡+1 = 𝑥𝑡+1[𝑘].

8: Draw 𝑎
(𝑁)
𝑡 with

P
(︁
𝑎
(𝑁)
𝑡 = 𝑗

)︁
∝ 𝑤

(𝑗)
𝑡 𝒩

(︁
𝑓𝑥(𝑥

(𝑗)
𝑡 ) + 𝑓𝑢(𝑢𝑡) | 𝑥(𝑁)

𝑡+1, 𝑄
)︁

.

9: Set 𝑥𝑖
1:𝑡 = 𝑥

𝑎𝑖
𝑡

1:𝑡 for 𝑖 = 1, . . . , 𝑁 .
10: end for
11: Draw 𝐽 with P (𝐽 = 𝑖) ∝ 𝑤

(𝑖)
𝑇 and set 𝑥1:𝑇 [𝑘 + 1] = 𝑥

(𝐽)
1:𝑇 .

III. ML IDENTIFICATION OF SSMS

The approximate model (4) allows us to cast the original
problem of identifying the model ℳ as the problem of iden-
tifying a (large) number of parameters 𝜃 , {𝐴,𝐵,𝐶,𝐷,𝑄,𝑅}
in (4). This reformulation of the original nonparametric model
as a parametric model opens up for use of recent tools for
identification of nonlinear parametric models.

A. Nonlinear system identification using PSAEM

To identify the parameters 𝜃 in (4), several methods can be
used. We will make use of the recent development [4], relying
on a combination of stochastic approximation EM [15] and
a conditional particle filter with ancestor sampling (CPF-AS,
[16]). The CPF-AS can be interpreted as a particle smoother
formulated as a Markov chain Monte Carlo (MCMC) method,
and is provided in Algorithm 1. Stochastic approximation EM
is compatible with MCMC-methods [17], which allows the
CPF-AS to be combined into particle stochastic approximation
EM (PSAEM).

PSAEM will generate a sequence 𝜃[1], 𝜃[2], . . . converging
to a stationary point of 𝑝𝜃(𝑢1:𝑇 , 𝑦1:𝑇 ). Algorithmically, it starts
from an arbitrary initial parameter 𝜃[0] and a state space
trajectory 𝑥1:𝑇 [0], and then iterates the following two steps
until convergence:
(E) run CPF-AS (Algorithm 1) with 𝜃[𝑘 − 1] as model to

obtain {𝑥(𝑖)
1:𝑇 , 𝑤

(𝑖)
𝑇 }𝑁𝑖=1,

(M) update the parameters 𝜃[𝑘−1] ↦→ 𝜃[𝑘] as the maximizing
argument to an auxiliary function Q𝑘(𝜃) (detailed below).

The M-step in the PSAEM algorithm amounts to maximiz-
ing the auxiliary function

Q𝑘(𝜃) =(1− 𝛾𝑘)Q[𝑘−1](𝜃) + 𝛾𝑘

⎛⎝𝑤
(𝑗)
𝑇

𝑁∑︁
𝑗=1

log 𝑝(𝑥
(𝑗)
1:𝑇 , 𝑦1:𝑇 |𝜃)

⎞⎠ (5)

with {𝛾𝑘}𝑘≥1 being a sequence fulfilling 𝛾1 = 1, 𝛾𝑘+1 < 𝛾𝑘,∑︀
𝑘 𝛾𝑘 = ∞ and

∑︀
𝑘 𝛾

2
𝑘 < ∞. Due to the structure of

our problem there is a closed-form solution (see Theorem 1)
available for the problem 𝜃[𝑘] = argmax𝜃 Q𝑘(𝜃). Here, E𝜃 [·]
denotes expectation under the model 𝜃.

Algorithm 2 ML identification of nonlinear SSM using PSAEM

1: Initialize 𝜃[0] arbitrarily.
2: Set 𝑥1:𝑇 [0] arbitrarily (conditional trajectory in CPF-AS).
3: for 𝑘 ≥ 1 do
4: Run Algorithm 1 with conditional trajectory 𝑥1:𝑇 [𝑘−1] and 𝑓𝑥(𝑥) =

𝐴[𝑘 − 1]𝜙(𝑥), 𝑓𝑢(𝑥) = 𝐵[𝑘 − 1]𝜙(𝑥), etc.
5: Compute 𝐴[𝑘], 𝐵[𝑘], etc. according to (7).
6: end for

Theorem 1 (Maximizing Q): Consider a model on the form

𝜁𝑡 = Γ𝑧𝑡 + 𝑣𝑡, (6)

with E
[︀
𝑣T𝑡 𝑣𝑡

]︀
= Π (cf. (4): 𝜁𝑡 = 𝑥𝑡+1, Γ = [𝐴 𝐵],

Π = 𝑄, 𝑧T𝑡 = [𝜙(𝑥𝑡)
T𝜙(𝑢𝑡)

T]). Further, 𝜁𝑡, 𝑧𝑡 are given and
𝜃 , {Γ,Π} is to maximize. Then 𝜃[𝑘] = argmax𝜃 Q𝑘(𝜃) is

Γ[𝑘] = Ψ[𝑘]Σ[𝑘]−1, (7a)

Π[𝑘] = Φ[𝑘]−Ψ[𝑘]Σ[𝑘]−1Ψ[𝑘], (7b)

where

Φ[𝑘] = (1− 𝛾𝑘)Φ[𝑘 − 1] + 1
𝑇
Σ𝑇

𝑡=1E𝜃[𝑘−1]

[︁
𝜁T𝑡 𝜁𝑡 | 𝑦1:𝑇

]︁
, (7c)

Ψ[𝑘] = (1− 𝛾𝑘)Ψ[𝑘 − 1] + 1
𝑇
Σ𝑇

𝑡=1E𝜃[𝑘−1]

[︁
𝜁T𝑡 𝑧𝑡 | 𝑦1:𝑇

]︁
, (7d)

Σ[𝑘] = (1− 𝛾𝑘)Σ[𝑘 − 1] + 1
𝑇
Σ𝑇

𝑡=1E𝜃[𝑘−1]

[︁
𝑧T𝑡 𝑧𝑡 | 𝑦1:𝑇

]︁
. (7e)

In case 𝜁𝑡 or 𝑧𝑡 are given by a particle system {𝑧(𝑖)1:𝑇 , 𝑤
(𝑖)
𝑇 }𝑁𝑖=1,

the expectations are computed as

E𝜃[𝑘−1]

[︀
𝑧T𝑡 𝑧𝑡 | 𝑦1:𝑇

]︀
=

∫︁
𝑧T𝑡 𝑧𝑡𝑝𝜃[𝑘−1](𝑧1:𝑇 | 𝑦1:𝑇 ) 𝑑𝑧𝑡

≈
𝑁∑︁
𝑖=1

𝑤
(𝑖)
𝑇 𝑧

(𝑖)
𝑡

T
𝑧
(𝑖)
𝑡 . (8)

Proof of Theorem 1: The proof is omitted due to space
limitation, but follows from [4, 15, 18]. �

The identification procedure is summarized in Algorithm 2.

B. Regularization

The model (4) is very flexible. When it comes to identifica-
tion this flexibility can cause problems, such as overly complex
models over-fitted to the data or the lack of unique solutions.

Regularization is one remedy to avoid such problems [12].
Intuitively, regularization amounts to solving the problem
argmax𝜃 𝑝𝜃(𝑢1:𝑇 , 𝑦1:𝑇 ) under the additional constraint of
‘keeping 𝜃 as small as possible’. We will extend our approach
to incorporate 𝐿2 regularization, or equivalently, assigning
Gaussian priors to the weights 𝜔.

By assigning a zero-mean Gaussian prior with preci-
sion matrix 𝑃 to the basis function weights, that is,
𝑝([𝜔(1) · · · 𝜔(𝑚)]) ∼ 𝒩 (0, 𝑃−1), the developments in [19]
can be used to derive the alternative version of (7a)-(7b) for
regularized identification

Γ[𝑘] = Ψ[𝑘]
(︀
Σ[𝑘] + 1

𝑇 𝑃
)︀−1

, (9a)

Π[𝑘] = Φ[𝑘]−Ψ[𝑘]
(︀
Σ[𝑘] + 1

𝑇 𝑃
)︀−1

Ψ[𝑘]. (9b)

It is clear that the use of a prior with infinite variance (𝑃 = 0)
retrieves the non-regularized identification algorithm.
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Fig. 1. The first example, with three different settings: 𝑚 = 6 basis
functions (top), 𝑚 = 100 basis functions (middle) and 𝑚 = 100 basis
functions with regularization (bottom). The model with 𝑚 = 6 is not flexible
enough to describe the ‘steep’ part of 𝑓 , but results in a sensible, albeit not
perfect, model. The second model is very flexible with its 101 parameters, and
becomes a typical case of over-fitting to the data points (cf. the distribution
of the data at the very bottom), causing numerical problems and a useless
model. The regularization in the third case is a clear remedy to this problem,
still maintaining the high flexibility of the model.

A natural question is indeed how to choose the prior preci-
sion 𝑃 . As stated by [12], the optimal choice (in terms of mean
square error) is 𝑃−1

opt = E
[︀
[𝜔(1) · · · 𝜔(𝑚)]T[𝜔(1) · · · 𝜔(𝑚)]

]︀
,

if we think of 𝜔(1), . . . , 𝜔(𝑚) as being random variables.
As an example, with the natural assumption of 𝑓𝑥(·) being
smooth, the diagonal elements of 𝑃 should be larger with
increasing order of the Fourier basis functions. The special
case of assuming 𝑓𝑥(·) to be a sample from a Gaussian process
is addressed by [14].

Other regularization schemes, such as 𝐿1, are possible but
will not result in closed-form expressions such as (9).

C. Computational aspects

Let 𝑁 denote the number of particles in the CPF-AS, 𝑚 the
numer of terms used in the basis function expansion, 𝑇 the
number of data points and 𝐾 the numer of iterations used in
Algorithm 2. The computational load is then 𝒪(𝑚𝑇𝐾𝑁) +
𝒪(𝑚3). In practice, 𝑁 and 𝑚 can be chosen fairly small (e.g.,
𝑁 = 5 and 𝑚 = 10 for a 1D model).

D. Convergence

The convergence properties of PSAEM are not yet fully
understood, but it can under certain assumptions be shown
to converge to a stationary point of 𝑝𝜃(𝑢1:𝑇 , 𝑦1:𝑇 ) by [17,
Theorem 1]. We have not experienced practical problems with
the convergence, although it is sensitive to initialization when
the dimension of 𝜃 is large (e.g., 1 000 parameters).

TABLE I
RESULTS FOR THE HAMMERSTEIN-WIENER BENCHMARK

Experiment with 𝑇 = 2000
Mean simulation error 0.0005 V

Standard deviation of simulation error 0.020 V
RMS simulation error 0.020 V

Run time 13 min

IV. NUMERICAL EXAMPLES

We demonstrate our proposed method on a series of numer-
ical examples. The source code is available via the web site
of the first author.

A. Simulated example

As a first simple numerical example, consider an au-
tonomous system (i.e., no 𝑢𝑡) defined by

𝑥𝑡+1 =
−10𝑥𝑡

1 + 3𝑥2
𝑡

+ 𝑤𝑡, 𝑦𝑡 = 𝑥𝑡 + 𝑒𝑡, (10)

where 𝑤𝑡 ∼ 𝒩 (0, 0.1) and 𝑒𝑡 ∼ 𝒩 (0, 0.5). We identify 𝑓(·)
and 𝑄 from 𝑇 = 1000 simulated measurements 𝑦1:𝑇 , while
assuming 𝑔(·) and 𝑅 to be known. We consider three different
settings with 𝑚 = 6 basis functions, 𝑚 = 100 basis functions
and 𝑚 = 100 basis functions with regularization, respectively,
all using the Fourier basis. To encode the a priori assumption
of 𝑓(·) being a smooth function, we choose the regularization
as a Gaussian prior of 𝑤𝑘 with standard deviation inversely
proportional to 𝑘. The results are shown in Figure 1, where
the over-fitting problem for 𝑚 = 100, and how regularization
helps, is apparent.

B. Hammerstein-Wiener benchmark

To illustrate how to adapt our approach to problems with
a given structure, we apply it to the real-data Hammerstein-
Wiener system identification benchmark by [20]. We will use
a subset with 2 000 data points from the original data set for
estimation. Based on the domain knowledge provided by [20]
(two third order linear systems in a cascade with a static
nonlinearity between), we identify a model with the structure[︃

𝑥1
𝑡+1

𝑥2
𝑡+1

𝑥3
𝑡+1

]︃
= 𝐴1

[︃
𝑥1
𝑡

𝑥2
𝑡

𝑥3
𝑡

]︃
+𝐵𝑢𝑡, (11a)[︃

𝑥4
𝑡+1

𝑥5
𝑡+1

𝑥6
𝑡+1

]︃
= 𝐴2

[︃
𝑥4
𝑡

𝑥5
𝑡

𝑥6
𝑡

]︃
+

[︃
Σ𝑘𝜔

(𝑘)𝜑(𝑘)(𝑥3
𝑡 )

0

0

]︃
, (11b)

𝑦𝑡 = 𝐶 [ 𝑥4
𝑡 𝑥5

𝑡 𝑥6
𝑡 ] , (11c)

where the superindex on the state denotes a particular com-
ponent of the state vector. Furthermore, we have omitted
all noise terms for notational brevity. There is only one
nonlinear function, but the linear parts can be seen as the
special case where {𝜑(𝑘)(𝑥)}𝑚𝑘=1 = {𝑥}, which can directly
be incorporated into the presented framework.

We present the results in Table I (all metrics are with respect
to the evaluation data from the original data set). We refer to
[21] for a thorough evaluation of alternative methods.
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Fig. 2. Modeling a motorized camera with 6 inputs and 2 outputs.

C. Nonlinear MIMO model

We now consider black-box identification of a nonlinear
MIMO system, used as an example by the System Identifi-
cation Toolbox [22]. The data consists of 188 measurements
from a motorized camera. The input vector contains 6 vari-
ables: 3 translational velocity components and 3 rotational
velocity components. The output vector contains two variables:
the position in the image of a fixed (in 3D space) point.

We model this using a two-dimensional state space and a
known linear measurement function 𝑦𝑡 = 𝐼2𝑥𝑡 + 𝑒𝑡, and a
simple regularization, with a prior precision proportional to
the order of the basis functions. The results are displayed
in Figure 2, where it can be seen that the simulated output
follows the true output very closely. The resulting RMSE is
0.52 pixels, whereas the best results reported by [22] for a
nonlinear ARX (using a wavelet network) is an RMSE of 2.22
pixels, and 2.13 for a rather complex Hammerstein model.

V. CONCLUSIONS AND FURTHER WORK

We have presented a model and algorithm for black box
identification of nonlinear state-space models (1). Regulariza-
tion is a key for its use in practice, providing a systematic
approach to tune the model complexity.

Within linear system identification it has recently [12, 13]
been realized that the use of regularization with carefully
selected Gaussian process priors can enforce system properties
such as smoothness and stability. Our model construction
opens up for similar developments also for nonlinear systems
and a more systematic approach to designing the regularization
priors (e.g, akin to the Gaussian process case [14]) consti-
tutes future work. Besides this, some other topics for further
investigation would be the use of alternative basis functions
(e.g., wavelets and Legendre functions), the initialization of
Algorithm 2, and to replace the particle filter with a smoother
based on basis function expansions akin to [23].
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