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Abstract—In this paper, we propose a locally optimum detec-
tion (LOD) scheme for detecting a weak radioactive source buried
in background clutter. We develop a decentralized algorithm,
based on alternating direction method of multipliers (ADMM),
for implementing the proposed scheme in autonomous sensor
networks. Results show that algorithm performance approaches
the centralized clairvoyant detection algorithm in the low SNR
regime, and exhibits excellent convergence rate and scaling
behavior (w.r.t. number of nodes). We also devise a low-overhead,
robust ADMM algorithm for Byzantine-resilient detection, and
demonstrate its robustness to data falsification attacks.

Keywords—locally optimum detection, data falsification, Byzan-
tines, autonomous networks, ADMM

I. INTRODUCTION

Autonomous vehicles provide sensing platforms which are
small, low cost, and maneuverable. Because of size, weight
and power restrictions, the sensors onboard are of limited
performance. Signal processing and data fusion techniques are
thus needed to approach the performance of a more capable
sensor with a large number of adaptively re-configurable low
cost sensors. This work provides a computationally tractable
scheme for autonomous detection, applied to the problem of
detecting a radioactive source.

Detection of radioactive sources using sensor networks
has received significant attention in the literature. In [1], the
authors examine the gain in signal-to-noise ratio obtained
by a simple combination of data from networked sensors
compared to a single sensor for radioactive source detection.
The costs and benefits of using a network of radiation detectors
for radioactive source detection are analyzed and evaluated
in [2]. In [3], the authors derived a test for the fusion of
correlated decisions and obtained optimal sensor thresholds for
two sensor case. In [4], the authors considered the problem
of detecting a time-inhomogeneous Poisson process buried
in the recorded background radiation using sensor networks.
However, all these works assume existence of a centralized
fusion center (FC) to fuse the data from multiple sensors and
to make a global decision.

In many scenarios, a centralized FC may not be available.
Furthermore, due to the distributed nature of future com-
munication networks and various practical constraints (e.g.,
absence of the FC, transmit power or hardware constraints,
and dynamic characteristic of wireless communications), it
may be desirable to achieve collaborative decision making by
employing peer-to-peer local information exchange to reach a
global decision. Recently, collaborative autonomous detection
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based on consensus algorithms has been explored in [5]–[10].
However, all these approaches assume a clairvoyant detection
where all the parameters of the detection system and signal
model are completely known. Note that, for our application
of interest (i.e., nuclear radiation detection) the location of
the radiation sources is rarely known. Centralized approaches
manage this challenge by employing composite hypothesis
testing frameworks such as the generalized likelihood ratio test
(GLRT). In GLRT, the detection procedure replaces unknown
parameters in the detection algorithm with their maximum
likelihood estimates, which need multiple sensing intervals for
a reasonably accurate parameter estimate. This overhead and
delay is not desirable in nuclear radiation detection problems,
especially under weak signal models. Secondly, due to the
non-linearity introduced by the estimation step in GLRT, a
decentralized implementation of GLRT is non-trivial. Finally,
the implementation of non-linear detectors on low cost UAVs
is difficult in practice. Thus, a decentralized solution with a
simple implementation for the radiation detection problem with
unknown source location is of utmost interest.

Autonomous detection schemes are quite vulnerable to
different types of attacks. One typical attack on such networks
is a Byzantine (or data falsification) attack [12]–[18]. Few
attempts have been made to address the Byzantine attacks
in conventional consensus-based detection schemes in recent
research [19]–[25]. There exist several methods for decentral-
ized consensus optimization, including distributed subgradient
descent algorithms [26], dual averaging methods [27], and
the alternating direction method of multipliers (ADMM) [28].
Among these, the ADMM has drawn significant attention,
as it is well suited for distributed convex optimization and
demonstrates fast convergence in many applications. However,
the performance analysis of ADMM in the presence of data
falsifying Byzantine attacks has thus far not been addressed in
the literature.

To overcome the aforementioned challenges, in this paper
we propose a simple to implement locally optimum detection
algorithm to detect radioactive source signal buried in noise.
We also devise a robust variant of ADMM algorithm to im-
plement this detection scheme in autonomous networks in the
presence of Byzantine attacks. To the best of our knowledge,
there have been no existing results on the Byzantine-resilient
locally optimum detection in collaborative autonomous sensor
networks.

II. SYSTEM MODEL

A. Signal Model

Consider two hypotheses H0 (radioactive source is absent)
and H1 (radioactive source is present). Also, consider a
network of N autonomous nodes which must determine which
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of the two hypotheses is true. The observations received by the
node i for i = 1, · · · , N under both hypotheses are as follows.

H0 : zi = bi + wi
H1 : zi = ci + bi + wi (1)

where bi, ci and wi are the background radiation count, source
radiation count and measurement noise respectively, at node
i located at {Xi, Yi}1. The background radiation count is
assumed to be Poisson distributed with known rate parameter
λb. The source radiation count at node i is assumed to be
Poisson distributed with rate parameter λci. We assume an
isotropic behavior of radiation in the presence of the source;
the rate λci is a function of the source intensity Is and distance
of the ith sensor from the source, given by

λci =
Is

(Xi −Xs)2 + (Yi − Ys)2
, (2)

where {Xs, Ys} represent the source coordinates. The mea-
surement noise wi is Gaussian distributed with a known vari-
ance σ2

w. The background radiation count bi and measurement
noise wi are assumed to be independent. We also assume that
the observations at any node are conditionally independent
and identically distributed given the hypothesis. It is well
known that the above signal model can be approximated by
the Gaussian distribution [3]. Thus, under H0, we have

f0(zi) = N (λb, λb + σ2
w).

Similarly, under the H1 hypothesis,
f1(zi) = N (λci + λb, λci + λb + σ2

w),
where λci is a function of node i’s position relative to source.

B. Collaborative Autonomous Detection: Clairvoyant Case

For ease of exposition, we first consider the clairvoyant
case, i.e., the values of source intensity Is and source co-
ordinates {xs, ys} are assumed to be known. In our setting,
however, the source location is unknown, which is addressed
in detail in subsequent sections. The collaborative autonomous
detection scheme usually contains three phases: 1) sensing,
2) collaboration, and 3) decision making. In the sensing
phase, each node acquires the summary statistic about the
phenomenon of interest. Next, in the collaboration phase, each
node communicates with its neighbors to update/improve their
state values (summary statistic) and continues with this process
until the whole network converges to a steady state which is
the global test statistic. Finally, in the decision making phase,
nodes make their own decisions about the presence of the
phenomenon using this global test statistic.

The clairvoyant detector is easy to implement in a decen-
trlized setup using a consensus based approaches [29] and is
the log likelihood ratio test (LRT) given by:

N∑
i=1

log

(
f1(zi)

f0(zi)

)
H1

≷
H0

log λ,

where λ is chosen such that the probability of false alarm is
constrained below a pre-specified level δ.

C. Detection with Unknown Source Location: GLRT

In many practical scenarios, including the focus of this
work, the location of the radioactive source is not known and
the LRT cannot be implemented. In such scenarios, one of the

1Note that, the proposed scheme can easily be extended to a three-
dimensional setting

most popular tests is the Generalized Likelihood Ratio Testing
(GLRT). The GLRT has an estimation procedure built into it,
where the underlying parameter estimates are used as a plug-in
estimate for the test statistic. More specifically, the GLRT test
statistic is as follows:

max
λci

N∑
i=1

log

(
f1(zi;λci)

f0(zi)

)
H1

≷
H0

log λ. (3)

Next, we show that in the low signal to noise ratio (SNR)
regime, there exist a locally optimum detection scheme which
alleviates the difficulties (e.g., delay, overhead and non-
linearity) in implementing GLRT in an autonomous setting.

III. COLLABORATIVE AUTONOMOUS LOCALLY OPTIMUM
DETECTION (CA-LOD)

For ease of exposition, we first derive the new locally
optimum detection scheme for a centralized scenario. Then,
we present an approach to implement the proposed detection
scheme in a decentralized setting.

A. Locally Optimum Centralized Detection

Theorem 1: The locally optimal test statistic is given by
N∑
i=1

(zi − λb) +

N∑
i=1

(zi − λb)2

2(λb + σ2
w)

H1

≷
H0

γ, (4)

where γ is chosen such that the probability of false alarm is
constrained below a pre-specified level δ.

Proof: The LRT for known λci is given by
N∑
i=1

log

(
f1(zi;λci)

f0(zi)

)
H1

≷
H0

log λ (5)

⇔
N∑
i=1

log f1(zi;λci)−
N∑
i=1

log f0(zi)
H1

≷
H0

log λ (6)

However, since we are considering a weak signal scenario, λci
tends to zero, and hence linearizing the LRT around λci = 0
results in,

N∑
i=1

(λci − 0)
d

dλci
log f1(zi;λci)|λci=0

H1

≷
H0

log λ

⇔ λci

N∑
i=1

d

dλci

(
−1

2
log(2π(λci + λb + σ2

w))

− (zi − λci − λb)2

2(λci + λb + σ2
w)

)
|λci=0

H1

≷
H0

log λ

⇔
N∑
i=1

(zi − λb) +

N∑
i=1

(zi − λb)2

2(λb + σ2
w)

H1

≷
H0

(λb + σ2
w) log λ+

N

2
.

The resulting test statistic is independent of the unknown
parameter λci, and is the uniformly most powerful (UMP) test
for weak signals.

B. Collaborative Autonomous Detection Using ADMM

The LOD test statistic derived in the previous section is of
the form below:

1

N

N∑
i=1

f(zi)
H1

≷
H0

γ

N

where f(zi) = (zi − λb) +
(zi − λb)2

2(λb + σ2
w)

. The LOD statistic is

separable and the function f(zi) is strongly convex. Next, we
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Fig. 1. (a) Convergence of state values of a network with 10 nodes using ADMM based CA-LOD scheme. (b) Performance comparison of CA-LOD
with clairvoyant LRT. (c) Convergence of vanilla ADMM based CA-LOD in the presence of Byzantines. Blue curve represents Byzantine’s state values. (d)
Susceptibility of CA-LOD to Byzantine attack in terms of ROC.

show that the LOD statistic can be implemented in a distributed
manner using ADMM. To apply ADMM, we first formulate a
convex optimization problem

x∗ = arg min
x̂

N∑
i=1

(x̂− f(zi))
2

2
(7)

where the data average is the solution to a least-squares
minimization problem. Next, we reformulate (7) in the ADMM
amenable form as below

minimize{xi},{yij}

N∑
i=1

(xi − f(zi))
2

2
(8)

subject to xi = yij , xj = yij ,∀(i, j) ∈ A (9)
where A is the adjacency matrix, xi is the local copy of
the common optimization variable x̂ at node i and yij is
an auxiliary variable imposing the consensus constraint on
neighboring nodes i and j. In the matrix form, let us denote
F (x) = 1

2‖x− f(z)‖22, then, the optimization problem is
minimizex,y F (x) +G(y)

subject to Ax + By = 0 (10)
where G(y) = 0. Here B = [−I|A|;−I|A|] and A = [A1;A2]
with Ak ∈ R2E×N . If (i, j) ∈ A and yij is the qth entry of y,
then the (q, i)th entry of A1 and the (q, j)th entry of A2 are
1; otherwise the corresponding entries are 0. The augmented
Lagrangian of (10) is given by
Lρ(x,y, λ) = F (x) + 〈λ,Ax + By〉+

ρ

2
‖Ax + By‖22,

where λ = [β1;β2] with β1, β2 ∈ R2E is the Lagrange
multiplier and ρ is a positive algorithm parameter. The updates
for ADMM are

x-update : ∇F (xk+1) + ATλk + ρAT (Axk+1 + Byk) = 0,

y-update : BTλk + ρBT (Axk+1 + Byk+1) = 0,

λ-update : λk+1 − λk − ρ(Axk+1 + Byk+1) = 0, (11)
where ∇F (xk+1) = xk+1 − f(z) is the gradient of F (.)

at xk+1. The global convergence of ADMM was established
in [28]. Since our objective function F (x) is strongly convex
in x, we obtain x∗ equal to the global test statistic as given
in (4) as the unique solution.

The updates in (11) can be further simplified to [30],

xk+1
i =

1

1 + 2ρ|Ni|

ρ|Ni|xki + ρ
∑
j∈Ni

xkj − αki + f(zi)

 ,

αk+1
i = αki + ρ

|Ni|xk+1
i −

∑
j∈Ni

xk+1
j

 (12)

at node i where Ni denotes the set of neighbors of node i.
Note that, the updates in (12) only depend on the data from
the neighbors of the node i and can be implemented in a fully

autonomous manner. This implies that with these updates, each
node can learn the global LOD test statistic only by local
information exchanges.

Next, to gain insight into the solution, we present illus-
trative examples that corroborate our results. We consider a
10 node network employing the ADMM updates as given
in (12) to determine the presence (or absence) of a radioactive
source. Source and node locations and adjacency matrix were
generated randomly in a region of interest of dimension
3.0 × 3.0 units. The ADMM parameter ρ was set to 1.0. We
assume a mean background radiation with count λb = 0.5 and
measurement noise with σ2

w = 0.5. We further assume that the
prior probability of hypothesis is P0 = P1 = 0.5 and detection
performance is empirically found by performing 1000 Monte-
Carlo runs.

1) Convergence Analysis: To better understand the conver-
gence properties of the proposed approach, we next present
an instance of ADMM based CA-LOD in Fig. 1(a). We
assume that each node starts with its local LOD statistic and
collaborate with its neighbors to improve its performance. We
plot the updated state values (LOD statistic) at each node as
a function of information exchange iterations. Fig. 1(a) shows
the state values of each node as a function of the number of
iterations. We see that the state values converges to the global
statistic within 20 iterations using local interactions.

2) Detection Performance Analysis: Next, we analyze the
detection performance of the proposed scheme. In Fig. 1(b),
we plot steady state receiver operating characteristic (ROC)
curves for the proposed CA-LOD approach for different source
intensities Is. We compare the performance of the proposed
approach with clairvoyant LRT based approach which has
knowledge of the true source location. For both Is = 0.1 and
Is = 0.5, the proposed CA-LOD approach performs almost as
good as the clairvoyant LRT based approach.

IV. COLLABORATIVE AUTONOMOUS DETECTION IN THE
PRESENCE OF BYZANTINE ATTACKS

A. Byzantine Attack Model: Modus Operandi

Note that, the ADMM update at node i at iteration k is
a function of its neighbors’ parameters {xkj }j∈Ni . Instead of
broadcasting the true parameters {xkj }, some nodes (referred to
as Byzantines) can deviate from the prescribed strategies. More
specifically, we assume that the Byzantine node j falsifies its
data at ADMM iteration k as follows:

xkj = xkj + δxj
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Fig. 2. (a) Convergence of proposed algorithm based CA-LOD in the presence of Byzantine attack. Blue curve represents Byzantines state values. (b) Detection
performance of CA-LOD in the presence of Byzantine attacks. (c) Scaling behavior of the proposed algorithm for bounded neighborhood size. (d) Overhead
comparison in the absence of Byzantine attacks.

where δxj ∼ N (µx, σ
2
x). The strength of the attack is charac-

terized by (µx, σ
2
x).

1) Performance Analysis of CA-LOD with Byzantines: In
this section, we study the susceptibility of CA-LOD in the
presence of Byzantine attacks. We assume that there is only 1
Byzantine in the network which is chosen randomly.

In Fig. 1(c), we plot the convergence of the ADMM
algorithm with updates as given in (12). We assume the
Byzantine’s parameters to be µx = 1.5 and σ2

x = 0.1. It can
be seen that the Byzantine attack can severely degrade the
convergence performance. More specifically, it can be seen
from Fig. 1(c) that a single Byzantine can make the rest of
the network converge to a state value which is significantly
different from the global LOD statistic.

Next, in Fig. 1(d), we plot the steady state ROC for
different values of attack strength µx keeping σ2

x fixed to 0.1.
Observe that, as the attack strength increases, the detection
performance degrades severely and an adversary can make the
steady state statistic (or data) non-informative. In other words,
the optimal detection scheme at each node performs no better
than a coin flip detector.

B. Robust Collaborative Autonomous Detection using
Byzantine-Resilient ADMM

Our approach draws inspiration from robust statistic for
anomaly detection to make ADMM resilient to Byzantine
attacks. More specifically, we propose the following robust
ADMM algorithm to tolerate at most p Byzantines

xk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|xki + ρΓp({xkj }j∈Ni)− α

k
i + f(zi)

)
,

αk+1
i = αki + ρ

(
|Ni|xk+1

i − Γp({xk+1
j }j∈Ni)

)
(13)

where the sum over neighbors’ data in (12) has been replaced
by a robust function Γp({xkj }j∈Ni

) which operates as follows:

Operation of Γp(.): First, sort the elements in S = {xkj }j∈Ni

in a non-decreasing order (breaking ties arbitrarily), and
replace the smallest p values and the largest p values with
mean of remaining (|Ni| − 2p) values.2 Next, return the sum
of the elements in the new set.

2We assume that |Ni| > 2p, ∀i.

Next, we analyze the performance of the proposed
Byzantine-resilient autonomous detection scheme in the pres-
ence of Byzantine attacks. We assume p = 1.

1) Robustness Analysis: In Fig. 2(a), we plot the conver-
gence of the proposed R-ADMM algorithm with updates as
given in (13). We assume the Byzantine’s parameters to be
µx = 1.5 and σ2

x = 0.1. It can be seen that, as opposed to
Fig. 1(c), the state values of the honest nodes converge close
to the global LOD statistic despite the presence of Byzantine
attack.

Next, in Fig. 2(b), we compare the steady state ROC
for CA-LOD of vanilla ADMM based approach with the R-
ADMM based approach. We assume attack parameters to be
µx = 2.5 and σ2

x = 0.1. It can be seen that the R-ADMM
based Byzantine-resilient CA-LOD approach performs signif-
icantly better compare to the vanilla ADMM based approach,
which breaks down in the the presence of the Byzantine attack.

2) Scaling Analysis: In Fig. 2(c), we plot the convergence
behavior of R-ADMM based CA-LOD as network grows
larger. We consider a practical scenario where we fix the
number of nodes (or neighbors) each node can talk to to
be 10. We plot relative convergence rates defined as T ∗/N
where T ∗ is the number of iterations needed to reach within
95% of the global LOD statistic. Note that, the convergence
rate T ∗ increases as number of nodes N increases in the
network, however, the relative convergence rate decreases. This
implies that the proposed approach retains the excellent scaling
properties of ADMM and is amenable for large scale networks.

In Fig. 2(d), we compare the overhead caused by the
R-ADMM based CA-LOD scheme. We consider the case
where there is no Byzantine in the network and compare the
performance of ADMM based CA-LOD and R-ADMM based
CA-LOD in terms of relative convergence rate. It can be seen
that the overhead caused by the R-ADMM based CA-LOD
scheme is very small. In practice, this overhead is dominated
by the sorting step in R-ADMM algorithm and is a constant
for a bounded neighborhood.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a decentralized locally optimum
detection scheme for radioactive source detection. We also de-
vised a robust version of the ADMM algorithm for Byzantine-
resilient detection and demonstrated its robustness to data
falsification attacks. There are still many interesting questions
that remain to be explored in the future work such as analysis



and extension of the problem with more realistic signal and
communications models and collaborative Byzantine attacks.
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