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Abstract—In this paper, we consider the energy efficiency maximization

problem in MIMO interference channels where all users have a guar-
anteed minimum transmission rate. To solve this optimization problem

with a nonconcave objective function and a nonconvex constraint set,

we extend the recently developed successive pseudoconvex approximation
framework and propose a novel iterative algorithm that has the following

advantages: 1) fast convergence, as the structure of the original opti-

mization problem is preserved as much as possible in the approximate

problem solved in each iteration, 2) efficient implementation, as each
approximate problem is natural for parallel computation and its solution

has a closed-form expression, and 3) guaranteed convergence to a Karush-

Kuhn-Tucker (KKT) point.

Index Terms—Interference Channel, MIMO, Nonconvex Optimization,

Pseudoconvex optimization, QoS

I. INTRODUCTION

With the advent of 5G by 2020, the number of connected devices

is predicted to reach 50 millions with a targeted 10-fold increase of

data rate. The increase in the data rate is expected to be achieved at

the same or even a lower level of energy consumption. Therefore the

so-called energy efficiency (EE) of the network is a key performance

indicator that attracts extensive interest and it imposes stringent

requirements on efficient transmission schemes enhancing EE.

In this paper, we study the EE maximization problem in MIMO

interference channels (IC) where all users have a Quality-of-Service

(QoS) guarantee in terms of the minimum transmission rate. It is

well known that sum rate maximization in MIMO IC is a NP-hard

problem [1]. The EE maximization problem in MIMO IC is an even

more challenging problem because the EE is a fractional function

(with the consumed energy in the denominator) while the sum rate

function in the numerator is a nonconcave function [2], and QoS

constraints make the constraint set nonconvex.

In state-of-the-art studies, the EE maximization problem in

interference-limited systems has received considerable attention, see

[2, 3, 4, 5, 6, 7] and the references therein. The iterative algorithms

proposed in [2, 3, 7] have taken the QoS constraints into consider-

ation, but they generally suffer from a high complexity because the

problems solved in each iteration do not have structures for which

efficient parallel implementations are known, and they are mostly

solved by convex optimization solvers and this may incur latencies

in the decision making process. The algorithm proposed in [5] is a

variant of the well-known block coordinate descent algorithm and it

relies on the uncoupling structure in the constraint set. Although it

can be extended to a MIMO system, it cannot properly handle the

QoS constraints, which not only make the constraint nonconvex but

also couple the users’ feasible transmit strategies. In [6], we proposed

a parallel algorithm that is of a best-response type based on the

unified successive pseudoconvex approximation (SPCA) framework

to maximize the EE in the IC, where the notation of pseudoconvexity,
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a weaker form of convexity [8, 9], plays an essential role in the

convergence proof. However, the framework is only applicable when

the constraint set is convex, which is not the case in the problem

under consideration due to nonconvexity of the QoS constraints.

In this paper, we extend the SPCA framework proposed in [6]

to solve optimization problems with a nonconvex constraint set, and

develop an iterative algorithm to maximize the EE in MIMO IC with

QoS constraints. In each iteration, an approximate problem is solved,

where the approximate set is a convex (inner) approximation of the

original nonconvex constraint set, and the approximate function only

needs to be pseudoconvex, a weak form of convexity. This weak

assumption makes it possible to preserve as much structure available

in the original EE function as possible, e.g., the partial concavity

in the numerator function and the division operator. Besides this, the

proposed approximate problem is natural for parallel computation, as

the approximate problem can be decomposed into many independent

subproblems that can be solved in parallel and each subproblem has

a closed-form solution.

II. PROBLEM MODEL

We consider the downlink of a MIMO multi-cell system where the

BS in each cell is serving a single user on given frequency resource,

and Hkj is the channel coefficient matrix from the BS j to the

user k. Assume the multi-user interference is treated as noise, the

transmission rate of the k-th user is:

rk(Qk,Q−k) = log det
(

I+Rk(Q−k)
−1

HkkQkH
H
kk

)

, (1)

where Qk is user k’s transmit covariance matrix, Q−k = (Qj)j 6=k is

a compact notation denoting the collection of all transmit covariance

matrices except Qk , and Rk(Q−k) , σ2
kI +

∑

j 6=k HkjQjH
H
kj is

covariance matrix of the noise (with variance σ2
k) plus interference.

The transmit covariance matrices Q = (Qk)
K
k=1 are constrained to

be in a feasible set Q defined as:

Q , {Q : Qk � 0, tr(Qk) ≤ Pk, rk(Q) ≥ Rk,∀k} , (2)

where the constant Rk is the minimum guaranteed transmission rate

achieved by the user k, and rk(Q) ≥ Rk thus serves as a QoS

constraint for user k.

The network EE optimization problem is thus to maximize the EE,

defined as the ratio between the sum transmission rate and the total

consumed power, over the constraint set Q:

maximize
Q∈Q

f(Q) ,

∑K

k=1 rk(Qk,Q−k)
∑K

k=1(P0,k + ρktr(Qk))
, (3)

where P0,k and ρk are the constant scalars specifying the power

consumption at the zero RF output power (i.e., Qk = 0) and the

slope of the load dependent power consumption, respectively. The

values of P0,k and ρk depend on the types of the cell, e.g., macro
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cell, remote radio head, or micro cell [10, Table 8]. We assume that

Q is nonempty and problem (3) has a solution.

III. THE PROPOSED SUCCESSIVE PSEUDOCONVEX

APPROXIMATION ALGORITHM

To design an iterative algorithm for problem (3) that enjoys a low

complexity but at the same time a fast convergence behavior, we need

on the one hand to overcome the nonconvexity in both the objective

function and the constraint set, and, on the other hand, to preserve the

original problem’s structure as much as possible. Towards this end,

we extend the successive pseudoconvex approximation framework

developed in [6] for minimizing a nonconvex function over a convex

constraint set to solve problem (3) where both the objective function

and the constraint set are nonconvex.

The proposed iterative algorithm consists of solving a sequence of

successively refined approximate problems. In iteration t, the approx-

imate problem defined around the point Qt consists of maximizing

an approximate function, denoted as f̃(Q;Qt), over an (inner)

approximate set, denoted as Q̃(Qt). Both f̃(Q;Qt) and Q̃(Qt)
should exhibit some form of convexity so that the approximate is

much easier to solve than the original problem (3).

Approximate function. The numerator functions {rk(Q)} in (3)

are not concave in Q, and thus the objective function f(Q) is not

even pseudoconcave. Meanwhile, the function rk(Q) is concave in

Qk , and exploiting this partial concavity may notably accelerate the

convergence [11]. Therefore, we construct an approximate function

for the variable Qk , denoted as r̃k(Qk;Q
t), by fixing the remaining

variables Q−k in rk(Qk,Q−k) and linearizing only the functions

{rj(Q)}j 6=k that are not concave in Qk:

r̃k(Qk;Q
t) , rk(Qk,Q

t
−k) +

∑

j 6=k
(Qk −Q

t
k) • ∇Q∗

k
rj(Q

t),

where A •B = ℜ(tr(AHB)). Since r̃k(Qk;Q
t) is concave in Qk ,

∑K

k=1 r̃k(Qk;Q
t) is concave in Q. This paves the way to define an

approximate function f̃(Q;Qt) of the following form:

f̃(Q;Qt) ,

∑K

k=1 r̃k(Qk;Q
t)

∑K

k=1(P0,k + ρktr(Qk))
, (4)

and it has the following important properties:

• The approximate function f̃(Q;Qt) is still nonconcave, but it

is the fractional function of a concave function and a linear

function, which is thus pseudoconcave [6].

• The gradient of f̃(Q;Qt) and that of f(Q) are identical at the

point Qt around which f̃(Q;Qt) is defined:

∇Q⋆ f̃(Qt;Qt) = ∇f(Qt). (5)

These properties correspond to the convergence conditions of the

SPCA framework in [6] and they play an essential role in establishing

the convergence of the proposed algorithm.

Approximate set: The function rk(Q) defined in (1) is noncon-

cave and it is the difference of two concave functions:

rk(Q) = r+k (Q)− r−k (Q),

where r+k (Q) , log det(σ2
kI +

∑K

j=1HkjQjH
H
kj) and r−k (Q) ,

log det(σ2
kI+

∑

j 6=k
HkjQjH

H
kj). It follows from the definition of

concave functions that r−k (Q) is upper bounded by its first order

approximation:

r−k (Q) ≤ r−k (Qt)+
∑

j 6=k
(Qj−Q

t
j)•∇Q∗

j
r−k (Qt)

, r̄−k (Q;Qt),

A differentiable function h(x) is pseudoconcave if h(x) > h(y) implies
(x− y)T∇h(y) > 0 for any two feasible points x and y.

where equality holds at Q = Qt. Thus r+k (Q) − r̄−k (Q;Qt) is a

global lower bound of rk(Q):

rk(Q) = r+k (Q)− r−k (Q)

≥ r+k (Q)− r̄−k (Q;Qt) , rk(Q;Qt), (6)

where equality holds at Q = Qt.

We define the (inner) approximate constraint set Q̃(Qt) by replac-

ing the nonconcave functions rk(Q) with its lower bound rk(Q;Qt):

Q̃(Qt) ,

{

Q : Qk � 0, tr(Qk) ≤ Pk,

r+k (Q)− r̄−k (Q−k;Q
t) ≥ Rk,∀k

}

. (7)

Since r+k (Q)− r̄k(Q;Qt) is concave, the set Q̃(Qt) is convex.

Approximate problem. In iteration t, the approximate problem

defined at the point Qt is:

maximize
Q∈Q̃(Qt)

f̃(Q;Qt), (8)

where the approximate function f̃(Q;Qt) and the approximate set

is defined in (4) and (7), respectively. We denote as BQt a solution

of problem (8) and S(Qt) the solution set:

S(Qt) ,

{

BQ
t : BQt = argmax

Q∈Q̃(Qt)

f̃(Q;Qt)

}

. (9)

It turns out that BQt −Qt is an ascent direction of the original

objective function f(Q) at Q = Qt, unless Qt is already a KKT

point of problem (3):

Proposition 1 (KKT point and ascent direction). A point X is a KKT

point of (3) if and only if X ∈ S(X). If X is not a stationary point

of (3), then BX−X is an ascent direction of r(Q) in the sense that

(BX−X) • ∇f(X) > 0.

Proof: Suppose X ∈ S(X). By definition X solves the follow-

ing optimization problem:

maximize
Q

f̃(Q;X)

subject to Qk � 0, tr(Qk) ≤ Pk, rk(Q;X) ≥ Rk, ∀k, (10)

where rk(Q;X) is defined in (6). Since X is a regular point

[12], there exists (Πk, µk, λk)
K
k=1 such that X and (Πk, µk, λk)

K
k=1

together satisfy the KKT conditions [13, Prop. 4.3.1]:

∇f̃(X;X) +Πk −
∑K

k=1µkI+
∑K

k=1λk∇rk(X;X) = 0, (11)

Πk � 0,Qk � 0,Πk •Qk = 0, k = 1, . . . ,K, (12)

µk ≥ 0, tr(Xk) ≤ Pk, µk · tr(Xk) = 0, k = 1, . . . , K, (13)

λk ≥ 0, rk(X;X) ≥ Rk, λk · rk(X;X) = 0, k = 1, . . . ,K. (14)

Since ∇f̃(X;X) = ∇f(X) and ∇rk(X;X) = ∇rk(X) according

to (5) and (6), respectively, (11) can be rewritten as

∇f(X) +Πk −
∑K

k=1µkI+
∑K

k=1λk∇rk(X) = 0. (15)

Therefore X satisfies the KKT conditions of problem (3).

If, reversely, there exist (Πk, µk, λk)
K
k=1 and X satisfying the

KKT conditions of (3), it is straightforward to see that it also satisfies

the KKT conditions of (10). Since the objective function in (10) is

pseudoconcave and the constraint set Q̄(X) is convex, it follows from

[8, Th. 10.1.1] that X is an optimal solution of (10), i.e., X ∈ S(X).
If X /∈ S(X), then f̃(BX;X) < f̃(X;X). Since f̃(Q;X) is

pseudoconcave, 0 < (BX−X) •∇f̃(X;X) = (BX−X) •∇f(X)
and BX−X is thus an ascent direction of f(Q) at Q = X.

Since BQt − Qt is an ascent direction of f(Q) at Q = Qt

according to Proposition 1, there exists a scalar γt ∈ (0, 1] such
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that f(Qt + γt(BQt − Qt)) > f(Qt). In practice, the stepsize

γt is usually obtained by the so-called successive line search. That

is, given two scalars 0 < α < 1 and 0 < β < 1, γt is set to be

γt = βmt , where mt is the smallest nonnegative integer m satisfying

the following inequality:

f(Qt + βm(BQt −Q
t)) ≥ f(Qt) + αβm∇f(Qt) • (BQt −Q

t).
(16)

Note that the successive line search is carried out over the original

objective function f(Q) defined in (3).

After the stepsize γt is found, the variable Q is updated as follows:

Q
t+1 = Q

t + γt(BQt −Q
t). (17)

Proposition 1 and (16)-(17) imply that f(Qt+1) ≥ f(Qt) for all

t. The algorithm is summarized in Algorithm 1 and its convergence

properties are given in the following theorem.

Algorithm 1 The successive pseudoconvex approximation method

for energy efficiency maximization

S0: t = 0 and Q0 ∈ Q.

Repeat the following steps until convergence:

S1: Solve problem (8).

S2: Compute γt by the successive line search (16).

S3: Update Qt+1 according to (17) and set t← t+ 1.

Theorem 2 (Convergence to a KKT point). Given a feasible initial

point Q0 ∈ Q, the sequence {Qt} generated by Algorithm 1 has a

limit point, and every limit point is a KKT point of problem (3).

Proof: Although the constraint set Q of problem (3) is non-

convex, the sequence {Qt} generated by Algorithm 1 is always

feasible. To see this, we check if Qt+1 satisfies the QoS constraint

rk(Q
t+1) ≥ Rk:

rk(Q
t+1) = rk(Q

t + γ(BQt −Q
t))

≥ rk(Q
t + γ(BQt −Q

t);Qt)

≥ (1− γ)rk(Q
t;Qt) + γrk(BQ

t;Qt)

≥ (1− γ)rk(Q
t) + γRk,

where the first inequality follows from the fact that rk(Q;Qt) is a

global lower bound of rk(Q), cf. (6), the second inequality from the

concavity of rk(Q;Qt), and the third inequality from the feasibility

of BQt, i.e., BQt ∈ Q̃(Qt). Therefore rk(Q
t+1) ≥ Rk as long as

rk(Q
t) ≥ Rk . Since Q0 is feasible, Qt+1 is feasible by induction.

Since the constraint set Q is closed and bounded, the sequence

{Qt}t is bounded and thus has a limit point. The proof for the latter

argument follows the same line of analysis as [6, Theorem 2].

In the following, we discuss some properties and implementation

aspects of the proposed Algorithm 1.

The approximate function in (4) is constructed in the same spirit

as [6, 11] by keeping as much concavity as possible, namely,

rk(Qk,Q−k) in Qk and Pc+
∑K

j=1 tr(Qk) in Q, and linearizing the

nonconcave functions only, namely,
∑

j 6=k
rj(Q). Besides this, the

division operator is also kept. Therefore, the proposed algorithm is

of a best-response nature and expected to exhibit a fast convergence

behavior, as we shall later illustrate in numerical examples.

The function f̃(Q;Qt) is pseudoconcave and the constraint set

Q(Qt) is convex. Therefore the approximate problem (8) is pseu-

doconvex and can be solved in polynomial time by the interior

point method proposed in [9]. The proposed algorithm could be

implemented by a central unit which has the knowledge of the channel

state information of the direct-link and cross-link channels, namely,

(Hkj)j,k. In practical networks, this central unit could be embedded

in the centralized radio access network (CRAN). Please refer to [6]

for more discussion on the implementation aspect.

A feasible initial point Q0 can be found by the penalty method,

where the nonconvex inequality constraints are relaxed into the

objective function through a penalty function, for example, the

logarithmic and the inverse function. Interested readers are referred

to [13] for a comprehensive review.

IV. THE PROPOSED PARALLEL SUCCESSIVE PSEUDOCONVEX

APPROXIMATION ALGORITHM

The approximate problem (8) in Step 1 of Algorithm 1 is not

suitable for parallel implementation because the QoS constraint

function r+k (Q)− r̄−k (Q−k;Q
t) coupling all variables Q1, . . . ,QK

does not have a separable structure, and the standard decomposition

techniques such as primal/dual decomposition is thus not applicable.

In this section, building on the successive pseudoconvex approxima-

tion framework developed in the previous section, we propose an

iterative algorithm where the approximate problems are suitable for

parallel implementation and thus easy to solve.

To start with, we introduce an auxiliary variable (Yk)
K
k=1 and

rewrite problem (3) as follows:

maximize
Q,Y

∑K

k=1 rk(Qk,Q−k)
∑K

k=1(P0,k + ρktr(Qk))

subject to Qk � 0, tr(Qk) ≤ Pk,

log det(σ2
kI+Yk)− r−k (Q−k) ≥ Rk,

Yk =
∑K

j=1HkjQjH
H
kj , ∀k. (18)

In iteration t at point Qt, the approximate problem is:

maximize
Q,Y

∑K

k=1 r̃k(Qk;Q
t)− c

∑K

k=1

∥

∥Yk −Yt
k

∥

∥

2

F
∑K

k=1(P0,k + ρktr(Qk))

subject to Qk � 0, tr(Qk) ≤ Pk,

log det(σ2
kI+Yk)− r̄−k (Q−k;Q

t) ≥ Rk,

Yk =
∑K

j=1HkjQjH
H
kj , k = 1, . . . ,K, (19)

where c ≥ 0 is a given constant and the quadratic regularization term

is introduced for numerical stability. The solution of problem (19) is

denoted as (BQt,BYt).

On solving the approximate problem (19). We apply the Dinkel-

bach’s algorithm to solve problem (19) iteratively. At iteration τ of

Dinkelbach’s algorithm, the following problem is solved for a given

and fixed αt,τ (αt,0 can be set to 0):

maximize
Q,Y

∑K

k=1

(

r̃k(Qk;Q
t)− c

∥

∥Yk −Y
t
k

∥

∥

2

F

)

− αt,τ∑K

k=1(P0,k + ρktr(Qk)) (20a)

subject to Qk � 0, tr(Qk) ≤ Pk, (20b)

log det(σ2
kI+Yk)− r̄−k (Q−k;Q

t) ≥ Rk, (20c)

Yk =
∑K

j=1HkjQjH
H
kj , k = 1, . . . ,K. (20d)

We denote the solution of problem (20) as (Qd(αt,τ ),Yd(αt,τ )
(where “d” in the superscript stands for “Dinkelbach”). Then αt,τ

is updated as follows:

αt,τ+1 =

∑K

k=1 r̃k(Q
d
k(α

t,τ );Qt)− c
∥

∥Yd
k(α

t,τ )−Yt
k

∥

∥

2

F
∑K

k=1(P0,k + ρktr(Qd(αt,τ )))
. (21)

It follows from the convergence properties of the Dinkel-

bach’s algorithm (cf. [2]) that limτ→∞ Qd(αt,τ ) = BQt and

limτ→∞ Yd(αt,τ ) = BYt at a superlinear convergence rate.
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Figure 1. EE vs. number of iterations t

On solving problem (20). Problem (20) is convex and the coupling

constraints have a separable structure, which can readily be exploited

in the standard dual decomposition method. The Lagrangian of (20)

is (after removing the constant term αt,τ
∑K

k=1 P0,k):

L(Q,Y,λ,Σ) =
∑K

k=1

(

r̃k(Qk;Q
t) + c

∥

∥Yk −Y
t
k

∥

∥

2

F
− αt,τρktr(Qk)

)

−
∑K

k=1

(

Σk •
(

Yk −
∑K

j=1HkjQjH
H
kj

))

+
∑K

k=1λk(log det(σ
2
kI+Yk)− r̄−k (Q−k;Q

t)−Rk),
(22)

where λk and Σk are the Lagrange multipliers associated to the

constraints (20c)-(20d). The dual function d(λ,Σ) is

d(λ,Σ) = max
{Qk�0,tr(Qk)≤Pk,Yk�0}K

k=1

L(Q,Y,λ,Σ), (23)

and the dual problem is

minimize
λ≥0,Σ

d(λ,Σ). (24)

Since the Lagrangian L(Q,Y,λ,Σ) is well decoupled across dif-

ferent variables for fixed dual variable (λ,Σ), the maximization

problem in (23) can be decomposed into many smaller optimization

problems that can be solved in parallel: for all k = 1, . . . ,K,

Q
L
k (λk) ,

argmax
Qk�0,tr(Qk)≤Pk

r̃k(Qk;Q
t)− λkQk •

(
∑

j 6=k
∇Q∗

k
r−j (Qt

−j)
)

(25)

and

Y
L(Σk) , argmax

Yk�0

{

λk log det(σ
2
kI+Yk)−Σk •Yk

−c
∥

∥Yk −Yt
k

∥

∥

2

F

}

,

(26)

where “L” in the superscript stands for “Lagrangian”. Note that

QL
k (λk) in (25) and YL(Σk) in (26) are unique and have a closed

form expression, cf. [14, Lem. 2] and [12, Lem. 7].

The dual problem (24) can be solved by the gradient projection

algorithm and its gradient of d(λ,Σ) is

∇λk
d(λ,Σ) = log det(σ2

kI+Y
L
k (Σk))−r̄

−
k (QL

−k(λk))−Rk,

∇Σ∗d(λ,Σ) =
∑K

j=1HkjQ
L
j (λk)H

H
kj −Y

L
k (Σk).

In iteration υ to solve problem (24), the dual variable is updated as

follows:

λt,τ,υ+1
k =

[

λt,τ,υ

k + ζt,τ,υ∇λk
d(λt,τ,υ,Σt,τ,υ)

]+

, (27)

Σ
t,τ,υ+1
k = Σ

t,τ,υ

k + ζt,τ,υ∇Σ∗d(λt,τ,υ,Σt,τ,υ), (28)
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Figure 2. Individual transmission rate vs. number of iterations t

where λ
t,τ,0 and Σt,τ,0 can be set to 0. If the stepsizes {ζt,τ,υ}υ

are properly selected, e.g.,
∑

υ ζt,τ,υ = ∞ and
∑

υ(ζ
t,τ,υ)2 < ∞,

then limυ→∞ Ql(λt,τ,υ

k ) = Qd(αt,τ ) and limυ→∞ Yl(λt,τ,υ

k ) =
Yd(αt,τ ).

The algorithm described above consists of three layers: the outer

layer with index t, middle layer with index τ , and inner layer with

index υ. The relationship of different layers is given as follows:

Q
⋆ = lim

t→∞
lim

τ→∞
lim

υ→∞
Q

l(λt,τ,υ

k ),

where Q⋆ is a KKT point of (3) and the limit with respect to t is

in the sense of subsequence convergence specified by Theorem 2.

Note that Although the proposed algorithm consists of three layers,

its convergence speed is not negatively affected, because all updates

have closed-form expressions and both the middle and inner layers

converge very fast. Typically convergence is observed after a few

iterations.

V. SIMULATIONS

We consider a cluster of K = 4 cells with an inter-cell distance

of 500 m. The number of transmit antennas at the BS is MT,k = 4
and the number of receive antennas at the user is MR,k = 4. The

power consumption at the zero RF output is P0,k =16 W, the power

budget normalized by the number of transmit antennas is 36 dBm, i.e.,

Pk/MT,k =36 dBm, and the slope of power consumption ρ is 2.6;

these parameters are mainly adopted from [10]. For each realization,

all K users are randomly located in the multi-cell space where each

user falls into the respective hexagonal cell, and the simulation results

are averaged over 100 realizations.

In Figure 1, we show numerically the convergence behavior of

Algorithm 1. As the proposed algorithm is essentially an iterative

ascent direction method, the objective value, namely, the sum EE,

is monotonically increasing. It is easy to see that the achieved EE

is quickly increased in the first 3 iterations, and a solution with a

high accuracy is achieved after 5 iterations. From Figure 2 where the

individual transmission rate achieved in each iteration is plotted, we

can see that the QoS constraints are satisfied all the time.

VI. CONCLUSIONS

In this paper, we have proposed an iterative algorithm based on

the successive pseudoconvex approximation framework for the EE

maximization problem in MIMO IC where all users have a guaranteed

minimum transmission rate. The proposed algorithm is of a best-

response type and exhibits guaranteed and fast convergence to a

KKT point. The proposed algorithm is also suitable for parallel

implementation based on dual decomposition, where each step has a

closed-form expression.
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