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Abstract—In this work, combined calibration and DoA
estimation is approached as an extension of the formulation for
the Single Measurement Vector (SMV) model of self-calibration
to the Multiple Measurement Model (MMV) case. By taking
advantage of multiple snapshots, a modified nuclear norm
minimization problem is proposed to recover a low-rank larger
dimension matrix. We also give the definition of a linear op-
erator for the MMV model, and give its corresponding matrix
representation to generate a variant of a convex optimization
problem. In order to mitigate the computational complexity of
the approach, singular value decomposition (SVD) is applied
to reduce the problem size. The performance of the proposed
methods are demonstrated by numerical simulations.

I. INTRODUCTION

DoA estimation algorithms usually assume perfect
knowledge of the array responses for all directions of inter-
est. Such knowledge necessitates perfectly calibrated sensors
in both phase and gain. Maintenance of such calibration
under varying physical conditions, and over time is difficult,
and in many cases expensive. Accordingly, methods that
can provide calibration algorithmically and automatically
are of great interest. This paper is concerned with the
development of a self-calibration method in the context of
sparsity promoting DoA estimation.

To design an efficient self-calibration algorithm is a
challenging problem. Among the self-calibration methods,
the maximum a posteriori (MAP) estimation [1] is a
powerful one to jointly estimate the signals of interest
and the calibration parameters. But this approach suffers
from excessive computational complexity such that it is
not suitable to real-time applications. Some self-calibration
algorithms were developed based on the eigendecomposition
of a covariance matrix to estimate the phase and gain of
the calibration error. Examples of this lower computational
complexity approach, which is called eigenstructure-based
(ES) methods, can be found in [2]–[5]. In [6], the blind
calibration formulation and methods were developed, and
the necessary and sufficient condition for estimating the cali-
bration offsets is characterized. In [7], l1 norm minimization
is used to formulate the blind calibration problem, which is
highly non-convex. In [8], the approximate message passing
algorithm combined with the blind calibration problem is
considered, and solved by a convex relaxation algorithm.
In [9], several convex optimization methods were proposed
for solving the blind calibration of sparse inverse problems.
In [10], a self-calibration problem is introduced and solved
in the framework of biconvex compressed sensing via a

SparseLift method, which is inspired by PhaseLift [11]–[13]
that is about the ”Lifting” technique. The notion of ”Lifting”
is used for blind deconvolution [14], [15], which attempts
to recover two unknown signals from their convolution.

In this work, we extend the Ling’s work [10] from single
measurement vector (SMV) system to multiple measurement
vector (MMV) system. By taking advantage of multiple
snapshots of measurement in the self-calibration problem,
a new problem is formulated and a low-rank matrix is
generated, but with larger dimension. We also give the
definition of linear operator for the MMV model, and its
corresponding matrix representation so that we can generate
a variant of convex optimization problem. In order to mit-
igate the computational complexity of the method, singular
value decomposition (SVD) is applied to reduce the problem
size. The contribution of this work is that we can signifi-
cantly improve the performance of the SparseLift method
[10] with slightly increased computational complexity. Our
proposed method is verified in the direction-of-arrival (DoA)
estimation. The performance of the proposed methods are
demonstrated by numerical simulations and compared with
Ling’s work [10], and the eigenstructure-based method [2].

II. ARRAY SELF-CALIBRATION MODEL

PRELIMINARIES

A. Self-Calibration Model

A generic self-calibration problem [10] in compressed
sensing is given by

y = G(h)x+ n, (1)

where y is the measurements, G(h) is the measurement
matrix parameterized by an unknown calibration vector h, x
is the desired signal, and n is additive noise. If x is assumed
sparse, an l1-norm minimization problem is proposed

(x̂, ĥ) = argmin
x,h

1

2
||G(h)x− y||22 + α||x||1, α > 0.

(2)

This optimization problem is non-convex with associated
difficulties for its solution. The most common approach is
to use the alternating method, i.e., solve x for fixed h, and
solve h for fixed x. However, (2) is too general to solve in
an efficient numerical framework. Thus, an important special
case of (1) is considered

y = DGx+ n, D = diag(Bh) (3)

http://arxiv.org/abs/1712.05890v1


where y ∈ CM×1 is the observation vector, G ∈ CM×N

(M ≪ N) is a known fat matrix, x ∈ CN×1 is a K-sparse
signal of interest, and n ∈ CM×1 is additive white Gaussian
noise vector. D ∈ CM×M is a diagonal matrix that depends
on unknown parameter h ∈ Cm×1, and B ∈ CM×m (M >
m) is known. This case is based on the assumption that
the unknown calibration parameters h lie in the subspace
(column space or range) of B .

B. Self-calibration and DoA Estimation in MMV System

The self-calibration for the single measurement vector
(SMV) model presented in [10] is now extended to the
joint DoA estimation and self-calibration in the multiple
measurement vector (MMV) case. Suppose that we have
L snapshots of measurement vectors for a linear uniform
array with candidate (grid) directions of arrival φi. Then,
the MMV model is the following

Y = DGX+N, D = diag(Bh) (4)

where Y = [y1, · · · ,yL] ∈ CM×L is measurement
matrix, D ∈ C

M×M is a diagonal matrix that depends
on unknown parameter h ∈ Cm×1, G ∈ CM×N

(M ≪ N) is a known fat matrix with columns {g(φi) =
[e−j(−(M−1)/2)2π d

λ
sinφi , . . . , e−j((M−1)/2)2π d

λ
sinφi ]T }Ni=1

with wavelength λ, and X = [x1, · · · ,xL] ∈ CN×L is a
sparse matrix of interest whose columns are all K-sparse
with the same sparsity pattern. N ∈ CM×L is additive white
Gaussian noise matrix where elements have zero-mean and
σ2-variance, and B ∈ CM×m(m < M) is composed of the
first m columns of the Discrete Fourier Transform (DFT)
matrix, which models slow changes in the calibrations of
the sensors. Formulation (4) is a generalization of a SMV
system. The MMV structure and the group sparsity property
of X will be exploited to enhance the performance of DoA
estimation, i.e., the accuracy of estimated DoA φi.

III. THE PROPOSED METHOD

In this section, a new Lifting technique, Joint SparseLift,
is proposed to exploit the MMV structure, and a nuclear
norm minimization problem is proposed to estimate X. In
order to express the idea explicitly, the case of L = 2 snap-
shots for MMV system is first assumed, i.e., Y = [y1,y2],
X = [x1,x2]. It is easy to extend the work to any case of
L > 2.

A. Joint SparseLift

First, consider Yi,:
∆
= [yi,1, yi,2], the i-th row of the

measurement matrix Y without noise. Then,

Yi,1 = (Bh)ig
T
i x1 = bH

i hxT
1 gi = bH

i X̃1gi (5)

Yi,2 = (Bh)ig
T
i x2 = bH

i hxT
2 gi = bH

i X̃2gi (6)

where bi is the i-th column of BH , gT
i is the i-th row of G,

and X̃1 = hxT
1 , X̃2 = hxT

2 ∈ C
m×N are rank-one matrices.

Thus, we reformulate Yi,: as

Yi,: = [yi,1, yi,2] = bH
i [hxT

1 ,hx
T
2 ]

[

gi 0
0 gi

]

= bH
i X̃G̃i

(7)

where

G̃i =

[

gi 0
0 gi

]

∈ C
LN×L (8)

and

X̃ := [X̃1, X̃2] = h[xT
1 ,x

T
2 ] = h

[

x1

x2

]T

∈ C
m×LN (9)

is also a rank-one matrix by concatenating two rank-one
matrices.
Define the linear operator A : Cm×LN → CM×L such that

Y = A(X̃)
∆
= {bH

i X̃G̃i}
M
i=1, (10)

where bH
i X̃G̃i ∈ C1×L.

The adjoint operator A∗(U) : CM×L → Cm×LN of A, and

A∗A(X̃) are also given by

A∗(U)
∆
=

M
∑

i=1

biuiG̃
H
i (11)

A∗A(X̃) =

M
∑

i=1

bib
H
i X̃G̃iG̃

H
i , (12)

where U = [uT
1 , · · · ,u

T
M ]T ∈ CM×L,ui ∈ C1×L, ∀i.

Then, we can estimate X̃ by solving a nuclear norm mini-
mization problem

argmin
X̃

||X̃||∗ (13)

subject to ||A(X̃)−Y||2 ≤ η,

where the nuclear norm ||X̃||∗ is the sum of singular values

of matrix X̃. But, we still need the matrix representation
Φ : ML×mLN of A such that

Φvec(X̃) = vec(A(X̃)) = vec(YT ). (14)

By using the Kronecker product property, that for any matrix
A,B,C, (BT⊗A)vec(C) = vec(ACB), we can derive the
block form of ΦH as

ΦH = [ϕ1, · · · , ϕi, · · · , ϕM ] ∈ C
mLN×ML,

ϕi = G̃∗

i ⊗ bi ∈ C
mLN×L,

where ⊗ represents Kronecker product. The block form of
Φ is then

Φ =

[ϕ̆1,1, · · · , ϕ̆m,1, ϕ̆1,2, · · · , ϕ̆m,2, · · · , · · · , ϕ̆1,N , · · · , ϕ̆m,N ,

ϕ̄1,1, · · · , ϕ̄m,1, ϕ̄1,2, · · · , ϕ̄m,2, · · · , · · · , ϕ̄1,N , · · · , ϕ̄m,N ],

ϕ̆i,j =





















ϕ̃i,j(1)
0L−1

ϕ̃i,j(2)
0L−1

...
ϕ̃i,j(M)
0L−1





















, ϕ̄i,j =





















0L−1

ϕ̃i,j(1)
0L−1

ϕ̃i,j(2)
...

0L−1

ϕ̃i,j(M)





















∈ C
ML×1 (15)



where ϕ̃i,j = diag(b̃i)g̃j ∈ CM×1, ∀i =
1, · · · ,m, and j = 1, · · · , N , b̃i is the i-th column
of B, and g̃j is the j-th column of G. ϕ̃i,j(l) represents
the l-th entry of ϕ̃i,j and 0L−1 denotes a zero vector of
dimension L− 1.
So, we can solve the following convex problem

argmin
X̃

||X̃||∗ (16)

subject to ||Φvec(X̃)− vec(YT )||2 ≤ η.

Note that rank-one matrix X̃ ∈ Cm×LN is of a larger
size than the case in SMV. The columns of X̃ share the
same sparsity pattern. The group sparsity of X̃ can thus be
promoted by

argmin
X̃

||X̃||∗ + λ||X̃||2,1

subject to ||Φvec(X̃)− vec(YT )||2 ≤ η,

where ||X̃||2,1 =
∑m

i=1 ‖X̃i,:‖2, and X̃i,: denotes the ith

row of X̃. Since minimizing the nuclear norm has high
computational complexity, and ||X̃ ||2,1 ≥ ||X̃ ||∗ always
holds, it is sufficient to solve

argmin
X̃

||X̃||2,1 (17)

subject to ||Φvec(X̃)− vec(YT )||2 ≤ η.

After the estimate of X̃ is obtained, SVD is used to obtain
its eigenvector with the largest eigenvalue, which will give
the estimates of h and x.

Recall that the matrix size X̃ is m×LN . If the number of
snapshots L is very large, the computational complexity will
be substantial. In order to mitigate this issue, a complexity
reduction method is applied in the next subsection.

B. Complexity Reduction and Analysis

The optimization problem in (17) can be reformulated
into second-order cone programming (SOCP) [16], and
solved by interior point methods. The computational com-
plexity is O(m3.5(LN)3.5), composed by interior point im-
plementation cost O(m3(LN)3) per iteration, and iteration
complexity O(m0.5(LN)0.5).
Consider the MMV model (4) with N > L ≫ 2. Since the
matrix size of Y ∈ CM×L, X ∈ CN×L, and X̃ ∈ Cm×NL

become larger compared with the case of L = 2, singular
value decomposition (SVD) can be used to reduce the
problem size. Taking the SVD of Y

Y = UΣVH , (18)

where U ∈ CM×M is a unitary matrix, Σ ∈ CM×L is
a rectangular diagonal matrix of singular values that are
nonnegative, and V ∈ C

L×L is a unitary matrix. Denote
EK = [IK , 0]T where IK is a K ×K identity matrix, and
0 is a K × (L −K) zero matrix. Then, a reduced M ×K
matrix Ysv can be obtained by

Ysv = YVEK = DGXsv +Nsv, (19)

where Ysv ∈ CM×K , Xsv = XVDK ∈ CN×K , and
X̃ ∈ Cm×KN . Then, the reduced-sized convex optimization
problem is the following

argmin
X̃

||X̃||2,1 (20)

subject to ||Φvec(X̃)− vec(YT
sv)||2 ≤ η.

The problem size m×KN is much lower than m× LN
such that the overall computational complexity is signifi-
cantly reduced to O(m3.5(KN)3.5) plus O(4M2L+13L3)
SVD complexity [17], since N > L ≫ M > K .

This method needs prior knowledge on the number of
the received signals.

IV. NUMERICAL RESULTS

In this section, numerical simulation is conducted to
compare the performance of the proposed methods with the
eigenstructure (ES) method, and Ling’s work. A ULA of
M = 8 or M = 64 sensors with d/λ = 0.5 is considered.
The DoA search space is discretized from −90◦ to 90◦ with
1◦ separation, i.e., φi = (i − 90) ∗ 1◦, ∀i = 1, · · · , N and
N = 180. There are K = 2 far-field plane waves from the
actual DoAs with θ = [−13◦, 28◦]. Narrowband, zero-mean,
and uncorrelated sources for the plane waves are assumed,
and the noise is AWGN with zero-mean and unit variance.
The number of snapshots is set to L = 100. The value of r is
set to 0.5◦. Calibration error d is given by d = Bh, where
B ∈ CM×m, whose columns are the first m = 4 columns of
M×M DFT matrix. One hundred realizations are performed
at each SNR. The root mean square error (RMSE) of DoAs

estimation is defined as (E[ 1
K ‖θ̂ − θ‖22])

1

2 . When solving
the optimization problem, the regularization parameters are
carefully selected to achieve the best performance.
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Fig. 1. Angle space vs signal amplitude at SNR=15 dB, M = 64.

In Figure 1, the accuracy of estimated DoAs for one
realization is shown when M = 64 sensors is used at 15
dB SNR. Since a large number of sensors are used, the
peaks of signal amplitude are located at the true DoAs for
the proposed method and Ling’s work. In this scenario, the
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difference in accuracy is not obvious, except that some small
peaks appear abound the true DoAs for the Ling’s method.
However, when M = 8 sensors at SNR =25 dB, the accuracy
performance of the proposed method is better than the Ling’s
approach as seen in Figure 2. The estimated DoAs of the
proposed method are at the true locations, while the Ling’s
method are not. In fact in the latter method one of the true
DoAs is missed. The improved performance by the proposed
method comes from the additional information in MMV
system which is used to estimate DoAs.

In Figure 3, the RMSE of DoA estimation is investigated
when M = 8 sensors is used. At RMSE=10, the proposed
method outperforms Ling’s method about 17 dB. Figure 4
shows that the RMSE performance improves with increas-
ing number of snapshots. The largest improvement occurs
when the number of snapshots is between 1 and 300. In
Figure 5, by using the complexity-reduction technique, the
computational complexity increases slightly in terms of cpu
time even for the L = 1000 snapshots at each realization.
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Fig. 4. RMSE of DoA estimation versus number of snapshots, SNR=15
dB.
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V. SUMMARY

In this paper, the combined calibration and DoA es-
timation problem for a particular calibration error model
and using sparsity promoting algorithms is discussed. We
extended the formulation in [10] to the MMV system, and
proposed a new nuclear norm minimization approach to
take advantage of the information brought by multiple mea-
surement vectors. The performance improvement from the
use of multiple snapshots is demonstrated by simulations.
We also used singular value decomposition to reduce the
computational complexity of the proposed approach, and
verified its performance numerically.
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