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Abstract—A number of algorithms capable of iteratively cal-

culating a polynomial matrix eigenvalue decomposition (PEVD)

have been introduced. The PEVD is an extension of the ordinary

EVD to polynomial matrices and will diagonalise a parahermitian

matrix using paraunitary operations. This paper introduces a

novel restricted update approach for the sequential matrix diag-

onalisation (SMD) PEVD algorithm, which can be implemented

with minimal impact on algorithm accuracy and convergence.

We demonstrate that by using the proposed restricted update

SMD (RU-SMD) algorithm instead of SMD, PEVD complexity

and execution time can be significantly reduced. This reduction

impacts on a number of broadband multichannel problems.

I. INTRODUCTION

Polynomial matrix representations can be used to express

broadband multichannel problems [1]. Such formulations can

be used in a number of areas, including broadband MIMO pre-

coding and equalisation [2], polyphase analysis and synthesis

matrices for filter banks [3], broadband beamforming [4], [5],

and broadband angle of arrival estimation [6], [7]. Typically,

these problems involve parahermitian polynomial matrices,

which are identical to their parahermitian conjugate, i.e.,

R(z) = R̃(z) = R
H(1/z∗) [3]. This matrix R(z) can arise

as the z-transform of a space-time covariance matrix R[τ ].
As an extension of the eigenvalue decomposition to para-

hermitian matrices, a polynomial matrix eigenvalue decom-

position (PEVD) has been defined in [8]. The PEVD uses

finite impulse response (FIR) paraunitary matrices [9] to

approximately diagonalise and spectrally majorise [10] R(z).
Existing PEVD algorithms include sequential matrix di-

agonalisation (SMD) [11], second-order sequential best ro-

tation (SBR2) [8], and various evolutions of the algorithm

families [12]–[15]. Each of these algorithms use an iterative

approach to approximately diagonalise a parahermitian matrix.

For matrices of high dimensionality, these algorithms can be

computationally costly to compute; therefore, any cost savings

will be advantageous for applications.

In an effort to reduce the cost of PEVD algorithms,

previous work in [8], [16]–[19] has focussed on the trimming

of polynomial matrices to curb growth in order. Techniques

in [20], [21] have successfully reduced the complexity of

existing PEVD algorithms through the removal of algorith-

mic redundancy. Recent work in [22], [23] describes a low-

complexity divide-and-conquer approach for the PEVD.

Research in [15], [21] has shown that restricting the search

space of iterative PEVD algorithms to a subset of lags around

lag zero of a parahermitian matrix can bring performance

gains with little impact on algorithm convergence. However,

the entire parahermitian matrix must still be updated at each

iteration in these approaches. This paper expands upon this

idea by introducing a novel restricted update SMD (RU-SMD)

algorithm which not only restricts the search space of the SMD

algorithm, but also restricts the portion of the parahermitian

matrix that is updated at each iteration. The update step of

SMD is its most computationally costly operation [11]; thus,

a reduction in the complexity of this step is useful.

Below, Sec. II will provide a brief overview over the

SMD algorithm, which can be modified to accommodate the

restricted update procedure outlined in Sec. III. Simulation re-

sults comparing the performance of the standard and proposed

approaches are presented in Sec. IV, with conclusions drawn

in Sec. V.

II. SEQUENTIAL MATRIX DIAGONALISATION

This section reviews the SMD algorithm [11] in Sec. II-A,

with an assessment of the algorithmic cost in Sec. II-B.

A. Algorithm Overview

The SMD algorithm approximates the PEVD using a series

of elementary paraunitary operations to iteratively diagonalise

a parahermitian matrix R(z) ∈ CM×M and its associated

coefficient matrix, R[τ ].
Upon initialisation, the algorithm diagonalises the lag-zero

coefficient matrix R[0] by means of its modal matrix Q(0);

i.e., S(0)(z) = Q(0)
R(z)Q(0)H. The unitary Q(0) — obtained

from the EVD of the lag-zero slice R[0] — is applied to all

coefficient matrices R[τ ] ∀ τ , and initialises H
(0)(z) = Q(0).

In the ith step, i = 1, 2, . . . I , the SMD algorithm computes

S
(i)(z) = U

(i)(z)S(i−1)(z)Ũ
(i)
(z)

H
(i)(z) = U

(i)(z)H(i−1)(z) , (1)

in which
U

(i)(z) = Q(i)Λ(i)(z) . (2)

The product in (2) consists of a paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (3)

and a unitary matrix Q(i), with the result that U (i)(z) in (2)

is paraunitary. For subsequent discussion, it is convenient to

define intermediate variables S
(i)′(z) and H

(i)′(z) where

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z)

H
(i)′(z) = Λ(i)(z)H(i−1)(z) , (4)



and

S
(i)(z) = Q(i)

S
(i)′(z)Q(i)H

H
(i)(z) = Q(i)

H
(i)′(z) . (5)

Matrices Λ(i)(z) and Q(i) are selected based on

the position of the dominant off-diagonal column in

S
(i−1)(z) •—◦ S(i−1)[τ ], as identified by the parameter set

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , (6)

where

‖ŝ
(i−1)
k [τ ]‖2 =

√
∑M

m=1,m 6=k|s
(i−1)
m,k [τ ]|2 (7)

and s
(i−1)
m,k [τ ] represents the element in the mth row and kth

column of the coefficient matrix at lag τ , S(i−1)[τ ].
The shifting process in (4) moves the dominant off-

diagonal row and column into the zero lag coefficient matrix

S(i)′[0]. The off-diagonal energy in the shifted row and column

is then transferred onto the diagonal by the unitary matrix Q(i)

in (5), which diagonalises S(i)′[0] by means of an ordered

EVD.

Iterations continue for I steps until S(I)(z) is sufficiently

diagonalised with dominant off-diagonal column norm

max
k,τ

‖ŝ
(I)
k [τ ]‖2 ≤ ǫ , (8)

where the value of ǫ is chosen to be arbitrarily small. On

completion, SMD generates an approximate PEVD given by

D(z) = S
(I)(z) = F (z)R(z)F̃ (z) , (9)

where F (z) is a concatenation of the paraunitary matrices:

F (z) = H
(I)(z) = U

(I)(z) · · ·U (0)(z) =

I∏

i=0

U
(I−i)(z) .

Truncation of outer coefficients of H
(i)(z) with small

Frobenius norm ‖·‖F is used to limit growth in order, whereby

the maximum and minimum lags of H(i)(z) at iteration i are

reduced from τ1 and τ2 to τ̃1 and τ̃2, respectively, such that
∑τ1

τ=τ̃1+1 ‖H
(i)[τ ]‖2F <

µ
∑

τ
‖H(i)[τ ]‖2

F

2 >
∑τ̃2−1

τ=τ2
‖H(i)[τ ]‖2F .

(10)

Truncation of S(i)(z) is similar, with its maximum and mini-

mum lags reduced from τ3 and −τ3 to τ̃3 and −τ̃3, such that
∑τ3

τ=τ̃3+1 ‖S
(i)[τ ]‖2F <

µ
∑

τ
‖S(i)[τ ]‖2

F

2 . (11)

B. Algorithm Complexity

At the ith iteration, the length of S
(i)′(z) is equal to

L{S(i)′}, where L{·} computes the length of a polynomial ma-

trix. For (5), every matrix-valued coefficient in S
(i)′(z) must

be left- and right-multiplied with a unitary matrix. Accounting

for a multiplication of 2 M × M matrices by M3 MACs,

a total of 2L{S(i)′}M3 MACs arise to generate S
(i)(z).

Every matrix-valued coefficient in H
(i)′(z) must also be left-

multiplied with a unitary matrix; thus, a total of L{H(i)′}M3

MACs arise to generate H
(i)(z).

The cumulative complexity of the SMD algorithm over I
iterations can therefore be approximated as

CSMD(I) = M3
I∑

i=0

(2L{S(i)′}+ L{H(i)′}) . (12)

III. RESTRICTED UPDATE SEQUENTIAL MATRIX

DIAGONALISATION

Research in [15], [21] has shown that restricting the search

space of iterative PEVD algorithms to a subset of lags around

lag zero of a parahermitian matrix can bring performance

gains with little impact on algorithm convergence. This section

expands upon this idea by introducing a novel restricted update

SMD (RU-SMD) algorithm which not only restricts the search

space of the SMD algorithm, but also restricts the portion of

the parahermitian matrix that is updated at each iteration.

An overview of the method is given in Sec. III-A,

with more detailed descriptions of the major components in

Sec. III-B and Sec. III-C. Finally, Sec. III-D describes the

algorithmic complexity of the approach.

A. Overview

Similarly to SMD, the RU-SMD algorithm approximates

a PEVD by iteratively diagonalising a parahermitian matrix

R(z) ∈ CM×M over i = 0 . . . I iteration steps. Over the

course of these iterations, the search space contracts piecewise

strictly monotonically. This restriction limits the number of

search operations, but also reduces the computations required

to update the increasingly diagonalised parahermitian matrix.

The search space contracts until order zero is reached and the

search window only includes the zero lag matrix. After this, in

a so-called regeneration step, the search window is maximised

and thereafter again contracts monotonically over the following

iterations. The maximum β of index α = 0 . . . β, which counts

the number of regenerations, is not known a priori.

Following the αth regeneration step, in the ith itera-

tion of RU-SMD, S
(i)(z) = R(α)(z). Note, R(0)(z) =

Q(0)
R(z)Q(0)H, where Q(0) diagonalises coefficient matrix

R[0]. The restricted update stage of RU-SMD restricts the

search and update steps of the SMD algorithm to only con-

sider an iteratively decreasing selection of lags of S
(i)(z)

around lag zero at the ith iteration. When the search space of

S
(i)(z) reaches zero, the restricted update stage has produced

a paraunitary matrix F (α)(z) such that matrix R(α+1)(z) =

F (α)(z)R(α)(z)F̃ (α)(z) — which is generated during the

matrix regeneration stage — is more diagonal that R(α)(z).
Algorithm 1 gives the pseudocode for RU-SMD. Output

matrices F (z) and D(z) contain polynomial eigenvectors

and eigenvalues, respectively. More detail of the algorithm’s

operation is provided in Sec. III-B and Sec. III-C. Convergence

of the SMD algorithm has already been proven [11]; the proof

also holds for this RU-SMD algorithm.

B. Restricted Update

The restricted update step of RU-SMD functions similarly

to the update step of SMD in Sec. II-A; however, the key

difference is that RU-SMD increasingly restricts the num-

ber of lags of S
(i)(z) that are updated at each iteration i.

Algorithm 2 provides pseudocode for the Restricted update

function, whose operation is discussed below.

From a parahermitian matrix R(α)(z) ∈ CM×M input

to the Restricted update function for index α, during the

ith iteration of RU-SMD, a matrix S
(i−1)(z) = R(α)(z)

with maximum lag τ
(i)
max is formed. As in the standard SMD



Input: R(z), µ, ǫ, I

Output: D(z), F (z)
Find eigenvectors Q(0) that diagonalise R[0]

R(0)(z) = Q(0)
R(z)Q(0)H, F ′

(0)(z) = Q(0), α = 0, i = 0,

stop = 0

while stop = 0 do
[F (α)(z), i, stop] = Restricted update(R(α)(z), µ, ǫ, I ,

i)

Regenerate matrix:

F
′
(α+1)(z) = F (α)(z)F

′
(α)(z)

R(α+1)(z) = F (α)(z)R(α)(z)F̃ (α)(z)
Truncate F

′
(α+1)(z), R(α+1)(z) according to (10), (11)

α = α+ 1
end

F (z) = F
′
(α)(z), D(z) = R(α)(z)

Algorithm 1: RU-SMD Algorithm

Input: R(α)(z), µ, ǫ, I , i

Output: F (α)(z), i, stop

S
(i)(z) = R(α)(z), H

(i)(z) = IM×M , stop = 0

do

i = i+ 1

Find {k(i), τ (i)} from (6); generate Λ(i)(z) from (3)

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

τ
(i)
max is maximum lag of S(i−1)(z)

S
(i)′′(z) =

τ
(i)
max−|τ(i)|∑

τ=−τ
(i)
max+|τ(i)|

S(i)′[τ ]z−τ

S
(i)(z) = Q(i)

S
(i)′′(z)Q(i)H

H
(i)(z) = Q(i)

H
(i)′(z) = Q(i)Λ(i)(z)H(i−1)(z)

Truncate H
(i)(z) according to (10)

if i > I or (8) satisfied then
stop = 1;

end

while stop = 0 and (τ
(i)
max − |τ (i)|) > 0

F (α)(z) = H
(i)(z)

Algorithm 2: Restricted update Function

algorithm, the k(i)th column and row with maximum energy

are found and shifted by τ (i) to the zero lag using a delay

matrix Λ(i)(z) to produce S
(i)′(z).

A unitary matrix Q(i) is generated from an EVD of the

zero lag S(i)′[0], but is only applied to update region matrix

S
(i)′′(z), which contains the central (2(τ

(i)
max − |τ (i)|) + 1)

lags of S(i)′(z). Thus, matrix S
(i)(z) = Q(i)

S
(i)′′(z)Q(i)H is

formed, which has maximum lag τ
(i+1)
max = τ

(i)
max − |τ (i)|.

The coefficients of S(i)[τ ] at lags |τ | > τ
(i+1)
max , which are

zero by definition — and not obtained from the transformation

of S(i−1)(z) — must be kept outside of the update region in

the next iteration, S(i+1)′′(z), if the accuracy of the decompo-

sition is to be maintained. To guarantee that these coefficients

are excluded, the update region must shrink by the maximum

possible distance that the coefficients can travel towards the

zero lag, |τ (i+1)|. That is, S(i+1)′′(z) should only contain the

central 2(τ
(i+1)
max − |τ (i+1)|) + 1 lags of S(i+1)′(z).

Iterations of this process continue in the same manner

until then end of some iteration I(α), when the maximum lag
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Fig. 1. (a) Original matrix S
(i−1)(z) ∈ C5×5 with maximum lag τ

(i)
max = 3

is input to Restricted update; (b) shifting of row and column energy to zero

lag (k(i) = 2, τ (i) = 1); (c) central matrix with maximum lag (τ
(i)
max −

|τ (i)|) = 2, S
(i)′′(z), is extracted. (d) S

(i)(z) = Q(i)
S

(i)′′(z)Q(i)H;

(e) k(i+1) = 3, τ (i+1) = 1; (f) S
(i+1)′′(z) extracted. (g) S

(i+1)(z); (h)

k(i+2) = 4, τ (i+2) = 1; (i) S
(i+2)′′(z) is extracted.

of matrix S
(I(α))(z) = Q(I(α))S

(I(α))′′(z)Q(I(α))H is τ
(I(α))
max −

|τ (I(α))| = 0, or when S
(I(α))(z) is sufficiently diagonalised

with dominant off-diagonal column norm according to (8).

Alternatively, the restricted update process ends if the total

number of iterations of RU-SMD exceeds some user-defined

value, I .

Fig. 1 demonstrates the restricted update step for M = 5,

τ
(i)
max = 3. As can be seen, after three iterations, the maximum

lag of the matrix in Fig. 1(i) is equal to zero; thus, I(α) = 3.

Note that S(i)(z) will typically have fewer lags than the

equivalent matrix in the ith iteration of the traditional SMD

algorithm; thus, the search to identify the k(i)th column and

row in the proposed approach may produce an inferior result

to the search in SMD. However, we demonstrate that this does

not significantly affect algorithm convergence in Sec. IV-C.

C. Matrix Regeneration

For index α, in the I(α)th iteration of RU-SMD, following

a restricted update step, a matrix R(α+1)(z), which is more

diagonal that R(α)(z), is generated according to

R(α+1)(z) = F (α)(z)R(α)(z)F̃ (α)(z) , (13)

where F (α)(z) is the concatenation of the elementary pa-

raunitary matrices generated in the αth instance of Re-

stricted update. A matrix F
′
(α+1)(z) is also updated, which

is a concatenation of the paraunitary matrices generated for

indices 0 . . . α and initial matrix Q(0):

F
′
(α+1)(z) = F (α)(z) · · ·F (0)(z)Q

(0) =

(
α∏

x=0
F (α−x)(z)

)

Q(0) .

If i > I , or (8) is satisfied, the RU-SMD algorithm ends

with D(z) = R(α+1)(z) and F (z) = F
′
(α)(z).

D. Algorithm Complexity

At iteration i of Restricted update within RU-SMD,

the number of MACs required to generate S
(i)(z) =



Q(i)
S

(i)′′(z)Q(i)H can be approximated by 2L{S(i)′′}M3,

where L{S(i)′′} is the length of S(i)′′(z). To update H
(i)(z),

L{H(i)′}M3 MACs are required. Note that L{H(i)} is reset

to one following matrix regeneration. The cumulative com-

plexity of Restricted update is therefore approximately

CRU(I) = M3
∑I

i=1(2L{S
(i)′′}+ L{H(i)′}) . (14)

During matrix regeneration, F ′
(α+1)(z) = F (α(z)F

′
(α)(z)

and R(α+1)(z) = F (α)(z)R(α)(z)F̃ (α)(z) are computed. The

former requires approximately (L{F (α)}+L{F ′
(α)} − 1)M3

MACs, and the latter requires approximately (2L{F (α)} +
L{R(α)} − 2)M3 MACs; thus, the cumulative complexity of

matrix regeneration for β total regenerations in RU-SMD is

approximately

CMR(β) = M3
∑β−1

α=0(3L{F (α)}+ L{F ′
(α)}+ L{R(α)} − 2) .

The total cumulative complexity of RU-SMD can therefore

be approximated as

CRU−SMD(I, β) = CRU(I) + CMR(β) . (15)

If the savings made during the restricted update step are

larger than the overheads added by the matrix regeneration

step — i.e., if (CSMD(I)−CRU(I)) > CMR(β)) — the total

cumulative complexity of RU-SMD will be lower than SMD.

IV. RESULTS

To benchmark the proposed approach, this section first

defines the performance metrics for evaluating the SMD and

RU-SMD methods before setting out a simulation scenario,

over which an ensemble of simulations will be performed.

A. Performance Metrics

Since SMD and RU-SMD iteratively minimise off-diagonal

energy, a suitable metric E
(i)
norm, defined in [11], is used; this

metric divides the off-diagonal energy in the parahermitian

matrix at the ith iteration by the total energy. Computation of

E
(i)
norm generates squared quadratic covariance terms; therefore

a logarithmic notation of 5 log10 E
(i)
norm is employed.

Equations (12) and (15) allow cumulative complexity mea-

surements to be made at each iteration of SMD and RU-SMD.

B. Simulation Scenario

The simulations below have been performed over an en-

semble of 103 instantiations of R(z) ∈ C
M×M , M ∈

{10; 20}, based on the randomised source model in [11]. In

this source model, the order of D(z) is 118 and the order of

F (z) is 60, such that the total order of R(z) is 238. The

dynamic range is constrained to ensure that the average is

around 30 dB.

Each algorithm was executed for I = 200 iterations with

a stopping threshold of ǫ = 10−6 and truncation parameter

of µ = 10−6. At every iteration of both implementations,

the diagonalisation and cumulative complexity metrics defined

in Sec. IV-A were recorded alongside the elapsed execution

time. The length of F (z) was recorded upon each algorithm’s

completion.

C. Diagonalisation

The ensemble-averaged diagonalisation was calculated for

the standard SMD and proposed RU-SMD implementations.
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Fig. 2. Diagonalisation metric vs. cumulative algorithm complexity for the

proposed and standard implementations for M ∈ {10; 20}.
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Fig. 3. Diagonalisation metric vs. algorithm execution time for the proposed

and standard implementations for M ∈ {10; 20}.

The diagonalisation performance versus cumulative complexity

and time for both methods are shown in Figs. 2 and 3,

respectively. The curves of Fig. 2 demonstrate that for M ∈
{10; 20}, the proposed implementation operates with a lower

cumulative complexity than the standard realisation, and is able

to achieve a similar degree of diagonalisation — indicating that

convergence is not affected by the use of a restricted update

procedure. In addition, Fig. 3 shows that the lower complexity

associated with the proposed approach translates to a faster

diagonalisation than observed for SMD.

D. Paraunitary Filter Length

The ensemble-averaged paraunitary filter lengths were cal-

culated for both algorithms. For M = 10, F (z) from SMD and

RU-SMD was of length 84.4 and 87.1, respectively. Similarly

for M = 20, lengths of 70.9 and 73.0 were observed for SMD

and RU-SMD. The paraunitary filters generated by RU-SMD

were therefore slightly longer than those from SMD.

V. CONCLUSION

In this paper, we have introduced a novel restricted update

sequential matrix diagonalisation (RU-SMD) algorithm. This

algorithm can produce the same accuracy of decomposition

as SMD, but with decreased computational complexity. Sim-

ulation results underline that the same diagonalisation perfor-

mance can be achieved by both methods, but within a shorter

execution time for RU-SMD. While RU-SMD gives a slight

increase in paraunitary filter length, it is not significant enough

to negate the performance gains made elsewhere.

When designing PEVD implementations for real applica-

tions, the potential for the proposed RU-SMD algorithm to

reduce time and complexity requirements offers benefits. In

addition, the restricted update approach proposed here can be

extended to any iterative PEVD algorithm in [8], [12]–[15] by

adapting the update and matrix regeneration steps accordingly.
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