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Abstract

This paper establishes a modeling framework for data located onto or close to (unknown) smooth 

manifolds, embedded in Euclidean spaces, and considers its application to dynamic magnetic 

resonance imaging (dMRI). The framework comprises several modules: First, a set of landmark 

points is identified to describe concisely a data cloud formed by highly under-sampled dMRI data, 

and second, low-dimensional renditions of the landmark points are computed. Searching for the 

linear operator that decompresses low-dimensional data to high-dimensional ones, and for those 

combinations of landmark points which approximate the manifold data by affine patches, leads to 

a bi-linear model of the dMRI data, cognizant of the intrinsic data geometry. Preliminary 

numerical tests on synthetically generated dMRI phantoms, and comparisons with state-of-the-art 

reconstruction techniques, underline the rich potential of the proposed method for the recovery of 

highly under-sampled dMRI data.

I. INTRODUCTION

Current medical research and diagnosis rely heavily on magnetic resonance imaging (MRI); 

a non-invasive and non-ionizing technology for high fidelity visualization of anatomical 

structures and physiological functions [9]. Collecting a sufficiently large number of MRI 

data to guarantee high-quality image reconstruction is an inherently slow process due to 

patient discomfort as well as to physical and physiological constraints imposed on the 

scanning speed [9]. Such obstacles arise prominently in dynamic (d)MRI, where data 

acquisition needs to abide also by the inescapable constraints imposed by the monitored 

dynamical process, e.g., a beating heart [8].

Under-sampling the dMRI data is an efficient way to speed up scanning times, at the price of 

aliasing effects in the reconstructed images. To surmount aliasing given the limited number 

of data, spatio-temporal correlations and any available prior knowledge regarding the dMRI 

mechanism have to be taken into account. Along these lines, compressed sensing [6], [11], 

[15] and the principal-component-analysis (PCA) or low-rank-approximation paradigm [5], 

[7], [10], [12], [26] are modeling frameworks that have shown a rich potential in 

incorporating successfully prior information and data dependencies into dMRI-recovery 

algorithms. For example, [26] extracts a low-dimensional subspace, via the singular-value-

decomposition of a highly under-sampled data matrix, prior to forming a convex inverse 
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problem whose solution yields high-quality reconstructed images. Elaborate dictionary 

learning (DL) techniques have also contributed largely to the dMRI literature [1], [14], [23], 

[24], [27]. Remarkably, in all of the previous DL techniques, etre is no utilization of the 

(presumably low-dimensional) data geometry, other than the popular algebraic tool of matrix 

factorization.

Driven by the recently successful machine-learning paradigm, manifold-learning techniques 

have been also implemented in dMRI recovery [13], [16], [22], [28]. Local linear embedding 

(LLE) [18] is used in [22] to achieve dimensionality reduction of the high-dimensional 

dMRI data, prior to the application of a reconstruction algorithm. Study [16] formulates a 

convex minimization recovery task which is penalized by a Laplacian-matrix-based 

quadratic term that quantifies all the available knowledge about the underlying smooth data 

manifold. Further, to exploit any potential non-linear dependencies between data, [28] maps 

the observed data to even higher dimensional functional spaces, via kernel mappings, and 

solves an inverse problem to recover the dependencies in the original input space. Very 

recently, a joint manifold-learning and sparsity-cognizant framework has been introduced in 

[13]. Prior to forming a convex minimization recovery task, the intrinsic low-dimensionality 

geometry of the data is learned from their highly under-sampled renditions via an LLE-

motivated framework [19]. Extensive experimentation has showed that learning, first, any 

(potentially non-linear) data geometry helps the solutions of convex inverse problems to 

produce higher quality reconstruction images than state-of-the-art PCA-based techniques 

[13].

The present study takes [13] a step forward into explicitly modeling the low-dimensional 

dMRI data geometry. Built again on an unknown smooth-manifold hypothesis for the data 

geometry, a small set of data representatives, called landmark points, are extracted from the 

under-sampled dMRI data cloud. These landmark points provide a concise description of the 

observed data, promoting low-dimensional and parsimonious data representations as well as 

efficient data storage. Motivated by the concept of tangent spaces of smooth manifolds, data 

are approximated via affine combinations of the extracted landmark points. Similarly to [13] 

and along the lines of [19], a dimensionality-reduction module is applied to compute the 

low-dimensional rendition, or, “compressed” versions of the landmark points. Having the 

previous affine combinations, as well as a linear decompression operator, as unknowns of 

the data-modeling hypothesis, a bi-linear model is derived [cf. (2)], cognizant of the 

underlying low-dimensional nature of the observed dMRI data. Exploiting also the fact that 

dMRI data usually capture periodic time series, e.g., a beating heart, a non-convex, bi-linear 

recovery task, penalized by terms which account for the periodicity of the recorded time 

series, is formulated to achieve high-fidelity data reconstruction. Subsequently, recently 

developed convex and non-convex minimization techniques are employed to solve the 

resultant recovery tasks. Preliminary numerical tests on synthetically generated high-

dimensional dMRI phantom data and comparisons against state-of-the-art methodologies 

underline the rich potential of the method for high-quality data recovery.
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II. PROPOSED FRAMEWORK

MRI data are observed at the discrete k-space, or frequency domain, which admits complex-

valued data and spans an area of size Np × Nf, where Np stands for the number of phase-

encoding lines and Nf for the number of frequency-encoding ones [9]. In dMRI, an 

additional dimension is added to the MRI k-space to account for the time horizon (the axis 

vertical on the paper in Fig. 1a), resulting in the augmented (k,t)-space. In other words, the 

dMRI (k,t)-space can be viewed as the Nfr-fold Cartesian product of the (Np × Nf)-sized 

MRI k-space, where Nfr represents the number of collected MRI frames over time. K-space 

data 𝒴 j ∈ ℂ
Np × Nf (ℂ is the set of all complex-valued numbers), j ∈ {1, …, Nfr }, can be 

also viewed as the two-dimensional (discrete) Fourier transform of the Np × Nf image-

domain data 𝒳 j, i.e., 𝒴 j = ℱ 𝒳 j  Without any loss of generality, this study assumes that the 

“low-frequency” part of 𝒴 j is located around the center of the Np × Nf area. Availability of a 

large number of dMRI data is infeasible in practice; the (k,t)-space of Fig. 1a is usually 

severely under-sampled [8]. To extract useful information from (k,t)-space data, the present 

framework assumes full availability of a part of the low-frequency region of the (k,t)-space. 

For simplicity and illustration reasons, it is assumed that a small number ν (≪ Np ) of 

phase-encoding lines of (coined “navigator”) data are always available (the gray-colored 

area in Fig. 1a). These navigator data will be exploited to learn the intrinsic low-dimensional 

structure of the dMRI data. Other than the navigator data, highly (pseudo-randomly) under-

sampled (k,t)-space data are considered to be also available.

To facilitate processing and data representations, the (k,t)-space data are vectorized. More 

specifically, the vec 𝒴 j  operation stacks one column of 𝒴 j below the other to yield the 

complex-valued Np Nf × 1 vector y j := vec 𝒴 j , ∀j ∈ {1, …, Nfr}. To avoid notation 

clutter, ℱ stands also for the two-dimensional (discrete) Fourier transform even when 

applied to vectorized versions of image frames: ℱ vec 𝒳 j : = vec ℱ 𝒳 j = vec 𝒴 j . All 

vectorized k-space frames are gathered in the Np Nf × Nfr matrix Y : = y1, y2, …, yNfr
, so 

that the vectorized original image-domain data are X : = ℱ−1 Y . In a similar way, per jth 

k-space frame, the “navigator” data yield a νNf × 1 vector y j
nav and thus the νNf × Nfr 

matrix Ynav: = y1
nav, y2

nav, …, yNfr
nav . Clearly, Ynav = ΩY, where Ω is a submatrix of the 

identity matrix INpNf that selects the rows of Y which correspond to the navigator data. 

Recovering Y from its partial Ynav is viable only under errors, e.g., an approximation can be 

obtained via Ω†Ynav, where Ω† stands for the Moore-Penrose pseudoinverse of Ω. The 

following modeling hypothesis generalizes the previous argument.

Assumption 1. There exist an Np Nf ×νNf matrix G1 and an Np Nf × Nfr matrix E1, which 

gathers all approximation errors, such that (s.t.) Y = G1Ynav + E1.
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A. Landmark points

The high-dimensional navigator data y j
nav

j = 1

Nfr
 carry useful information about spatio-

temporal dependencies in the (k,t)-space. To promote parsimonious data representations, 

especially in cases where Nfr attains large values, it is desirable to extract a subset 

ℓk k = 1
N1 ⊂ y j

nav
j = 1

Nfr (N1 ≤ Nfr), called landmark points, which provide a “concise 

description,” in a user-defined sense, of the data cloud y j
nav

j = 1

Nfr
. To this end, the following 

modeling assumption imposes structure on y j
nav

j = 1

Nfr
.

Assumption 2. Data y j
nav

j = 1

Nfr
 lie on a smooth low-dimensional manifold ℳ [21] 

embedded in the high-dimensional Euclidean space ℂ
νNf (cf. Fig. 1b).

For example, the most commonly met case of a smooth manifold in theory and practice is a 

linear subspace. Based on As. 2 and the concept of the tangent space of a smooth manifold, 

it is conceivable that neighboring landmark points cooperate affinely to describe vector y j
nav

(the gray-colored area in Fig. 1b depicts all possible affine combinations of ℓk1
, ℓk2

, ℓk3
). 

Upon defining the νNf × Nl matrix Λ: = ℓ1, ℓ2, …, ℓN1
, it is assumed that there exists an Nl 

×1 vector bj that renders the approximation error yj
nav‐Λbj  small, where ⋅  denotes the 

standard Euclidean norm of space ℂ
νNf. Since affine combinations are desirable, bj is 

constrained to satisfy 1N1
⊤ bj=1, where 1N1

 stands for the all-one Nl × 1 vector and superscipt 

⊤ denotes vector/matrix transposition. Moreover, motivated by the low-dimensional nature 

of ℳ, according to As. 2, it is envisioned that only a few landmark points cooperate into 

representing y j
nav, i.e., bj is sparse. The previous arguments are summarized into the 

following modeling hypothesis.

Assumption 3. There exist a sparse Nl ×Nfr matrix B, with 1N1
⊤ B = 1Nfr

⊤ , and a νNf ×Nfr 

matrix E2, which gathers approximation errors, s.t. Ynav = ΛB + E2.

The previous modeling assumption holds true in the prototypical case where ℳ is a linear 

subspace. In such a case, any linearly independent subset of y j
nav

j = 1

Nfr
, which spans the 

column (range) space of Ynav, can be selected as the columns of Λ. Notice also that under 
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such a choice for Λ, the coefficient matrix B satisfies 1N1
⊤ B = 1Nfr

⊤ , since the column (range) 

space of Ynav, being a linear subspace, is also the affine hull [17] of the columns of Λ.

Although several strategies may be implemented to identify the landmark points Λ of a data 

cloud that lies onto or close to a general manifold ℳ, a greedy optimization methodology, 

introduced in [2], is adopted here. In short, at every step of the algorithm, a landmark point 

is selected from y j
nav

j = 1

Nfr
 by maximizing, over all un-selected y j

nav
j = 1

Nfr
, the minimum 

distance to the landmark points which have been already selected up to the previous step of 

the algorithm. The algorithm of [2] scores a computational complexity of order 𝒪 N1Nfr , 

which is naturally heavier than that of the naive random-selection algorithm that chooses 

ℓk k = 1
N1  randomly from y j

nav
j = 1

Nfr
.

B. Reducing the dimension of the landmark points

The landmark points Λ, obtained in the previous section, are still high-dimensional. To meet 

restrictions imposed by finite computational resources, it is desirable to reduce the 

dimensionality of Λ. To this end, the methodology of [19], which is motivated by [3], [18], 

is employed. The approach comprises two steps.

1) Given Λ and a user-defined λW > 0 solve the convex minimization task

min
w ∈ ℂ

N1 × N1
Λ − ΛW F

2 + λW W 1

s . to 1N1
⊤ W = 1N1

⊤ and diag(W) = 0,
(1)

where ⋅
F

 stands for the Frobenius norm of a matrix. A few comments on the choice of the 

loss function and constraints follow. Since ℓk k = 1
N1  lie on the manifold ℳ, then according to 

As. 2, Fig. 1b and the discussion regarding y j
nav, any point taken from ℓk k = 1

N1  may be 

faithfully approximated by an affine combination of the rest of the landmark points. In other 

words, there exists a matrix W s.t. Λ ≈ ΛW. With 1N1
⊤ W = 1N1

⊤  manifesting the previous 

desire for affine combinations, the constraint diag(W) = 0 is used to exclude the trivial 

solution of the identity matrix IN1
 for W. Task (1) is an affinely constrained composite 

convex minimization task, and, hence, the framework of [20] can be employed to solve it, 

due to the flexibility by which [20] deals with affine constraints when compared with state-

of-the-art convex optimization techniques.
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2) Once W has been obtained from the previous step and for a user-defined integer number d 
≪ Np Nf, solve

min

Λ﹀ ∈ ℂ
d × N1

Λ﹀ − Λ﹀W F
2s . to Λ﹀Λ﹀* = Id,

where the constraint Λ﹀Λ﹀ * = Id is used to exclude the trivial solution of Λ﹀ = 0. It is not 

difficult to verify that the solution of the previous task is nothing but the complex conjugate 

transpose of the matrix (denoted by the * superscipt) which comprises the d minimal 

eigenvectors of IN1
− W IN1

− W
∗
.

The following hypothesis establishes a linear relation between Λ and its low-dimensional 

rendition Λ﹀.

Assumption 4. There exist an Np Nf × d matrix G3 and an Np Nf × Nl matrix E3, which 

gathers all approximation errors, so that Λ = G3Λ﹀ + E3.

Matrix G3 can be viewed as the “decompression” operator which reconstructs the “full” Λ 
from its low-dimensional representation Λ﹀.

C. Data recovery task

Putting modeling assumptions 1, 3 and 4 together, it can be verified that there exist matrices 

G and E s.t.Y = GΛ﹀B + E. Upon defining U: = ℱ−1 G , and since 

GΛ﹀B = ℱ U Λ﹀B = ℱ(UΛ﹀B) due to the definition of ℱ (cf. Sec. II), the following bi-linear 

model between Y and the unknowns (U, B) is established:

Y = ℱ(UΛ﹀B) + E . (2)

Bi-linearity means that whenever one of the block of variables (U, B) is fixed to a specific 

value, then the dependence between Y and the other block of variables is linear (modulo the 

error E term). Interestingly, the linearity of the inverse Fourier transform ℱ−1 suggests that 

the previous modeling hypothesis holds true also in the image domain: 

ℱ−1 Y = UΛ﹀B + ℱ−1 E .

In practice, only few (k,t)-space data are known. To explicitly take account of the limited 

number of data, a (linear) sampling operator 𝒮 ⋅  is introduced where 𝒮 Y  keeps only those 

entries of Y that are collected by the measurement system. It is also often in dMRI that 

image frames capture a periodic process, e.g., heart movement, other than the static 

background. In other words, it is reasonable to assume that the one-dimensional Fourier 

transform ℱt of the time profile of every MR pixel, i.e., every row of the matrix ℱt(UΛ﹀B), is 

a sparse vector. Since the DC Fourier coefficients do not provide any useful information on 

periodic time series, the linear operator 𝒫 ⋅  is also applied to 𝒫[ℱt(UΛ﹀B)] to remove the 
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first column of ℱt(UΛ﹀B), which gathers the DC Fourier coefficients of all the MR-pixel time 

profiles.

Algorithm 1 Solving the bi‐linear recovery task of 3
Input:Available are data  𝒮 Y .  These include the navigator Ynav ones .  Choose parameters λ1, λ2,  λ3,  CU,  τU,  τB > 0,  as well as ς ∈ (0, 1) and γ0 ∈ 0, 1 .

1:   Compute landmark points Λ from the columns of Ynav according to Sec .  II‐A .

2:  Compute the low‐dimensional rendition  Λ﹀ of Λ according to Sec. II‐B .
3:  Arbitrarily fix  (U0,  B0, Z0) and set n = 0.

4:  while n ≥ 0 do
5:     Available are (Un, Bn, Zn) and γn .

6:     Let γn + 1: = γn(1 − ζγn) .

7:     Obtain Un via (4),  Bn via (5),  and the (i,   j)th entry of Zn, ∀(i,   j), via the following soft‐thresholding rule:

Zn i j
: = 𝒫ℱt(Un Λ﹀Bn i j

. 1 −
λ2/λ1

max λ2/λ1, 𝒫ℱt(Un Λ﹀Bn i j

.

8: Update
Un + 1, Bn + 1, Zn + 1 : = 1 − γn + 1 Un, Bn, Zn + γn + 1 Un, Bn, Zn .

9: Set n equal to n + 1 and go to step 5.
10: end while
Output:Extract the limit points U∗ and B∗ of sequences (Un)

n
and (Bn)n,  respectively, and recover the dMRI data by the estimate X: = U∗ Λ﹀B∗ .

To summarize, given parameters λ1, λ2, λ3, CU > 0, the bi-linear data-recovery task is 

formulated as

min
(U,B,Z)

1
2 𝒮(Y) − 𝒮ℱ(UΛ﹀B) F

2 +
λ1
2 Z − 𝒫ℱt(UΛ﹀B) F

2 + λ2 Z 1 + λ3 B 1

s . to Uei ≤ CU, ∀i ∈ 1, …, d and 1N1
⊤ B = 1Nfr

⊤ ,
(3)

where ei denotes the ith column of the identity matrix Id and the auxiliary variable Z is used 

to incorporate the sparsity of 𝒫[ℱt(UΛ﹀B)] into the design. Notice that the CU bound is used 

to prevent unbounded solutions for U due to the bi-linearity in UΛ﹀B. To solve the non-

convex task (3), the successive-convex-approximation framework of [4] is employed and 

presented in a concise form in Alg. 1.

Step 7 of Alg. 1 comprises convex minimization sub-tasks. More specifically, at every step 

of the algorithm, given (Un, Bn, Zn), the following estimates are required (for τU , τB > 0):

Un = arg min
U

1
2 𝒮(Y) − 𝒮ℱ(UΛ﹀Bn) F

2 +
τU
2 U − Un F

2 +
λ1
2 Zn − 𝒫ℱt(UΛ﹀Bn) F

2

s . to Uei ≤ CU, ∀i ∈ 1, …, d ,
(4)

and

Bn ∈ arg min
B

1
2 𝒮(Y) − 𝒮ℱ(UnΛ﹀B) F

2 +
τB
2 B − Bn F

2 +
λ1
2 Zn − 𝒫ℱt(UnΛ﹀B) F

2 + λ3 B 1

s . to 1N1
⊤ B = 1Nfr

⊤ .
(5)
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Both (4) and (5) can be viewed as affinely constrained composite convex minimization tasks, 

so that [20] can be used to solve them. From a computational complexity perspective, it is 

important to point out that the proposed scheme relies on minimization sub-tasks for three 

block variables, whose computational complexities depend on the solver adopted for the 

optimization. It is also worth noting that those three minimization sub-tasks are independent 

of each other, hence they can be solved in parallel. Details on the implementation issues of 

parallel optimization techniques, which speed up execution time, and of [20], as the 

optimization module which solves the minimization sub-tasks, are deferred to an upcoming 

journal publication.

III. NUMERICAL TESTS

Following [13], an MRXCAT phantom [25], based on extended cardiac torso (XCAT), was 

used to generate breath-hold cardiac cine data of size (Np , Nf , Nfr ) = (408, 408, 360). Data 

are dynamic, since they include 15 cardiac cycles and 24 cardiac phases, and under-sampled: 

i) A number of ν := 4 navigator lines are considered (cf. Fig. 1); ii) Only 8 samples, picked 

randomly, out of the Nfr -length time profile of each k-space pixel are considered. The 

locations of the chosen samples are distributed independently over all time profiles. Overall, 

the under-sampling factor turns out to be (approximately) equal to 32. The proposed method 

is tested vs. the PCA-based PS-sparse scheme [26] and [13]. Validation is performed via the 

normalized-root-mean-square error NRMSE := X − X F/ X F where X is the original 

image-domain data (cf. Sec. II) and X stands for an estimate of X, computed via any of the 

employed reconstruction schemes. Parameters of each method are tuned to achieve the best 

possible NRMSE performance. With regards to the proposed method, the dimensionality of 

the compressed data is d := 4, while the number of landmark points is set to Nl := 60.

Figs. 2 and 3 depict results of the numerical tests for all employed algorithms. Fig. 2 

demonstrates reconstruction results for image frame #351 of the dMRI data. Further, Fig. 3 

compares the NMRSE errors across all 360 frames. It can be observed that i) the errors for 

the proposed scheme are uniform across all 360 frames, as opposed to the fluctuations 

observed for the other two schemes, and ii) the proposed scheme achieves the lowest 

NMRSE across all frames. Quantitative results on the whole data set (408 × 408 × 360) 

show an NRMSE of 0.051 for the proposed scheme, which is lower in comparison to the 

value of 0.081 for PS-Sparse [26] and 0.079 for [13].

IV. CONCLUSIONS AND THE ROAD AHEAD

A modeling framework of manifold data and its application to dMRI were introduced. Given 

a cloud of highly under-sampled dMRI data, landmark points were computed to capture the 

underlying low-dimensional manifold-data geometry. Low-dimensional renditions of the 

landmark points were also computed to promote parsimonious representations and efficient 

storage of data. Overall, the dMRI reconstruction task was viewed as an inverse problem 

where the data fidelity is modeled via a bi-linear term, and the objective function is 

penalized by a term which quantifies the a-priori information on the periodicity of the 

observed time series. Preliminary numerical tests on synthetically generated phantom dMRI 

data underline the rich potential of the proposed framework against state-of-the-art dMRI 
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reconstruction techniques. On-going research includes tests on real data, comparisons with 

additional state-of-the-art techniques and several extensions of the advocated model, which 

will be presented during CAMSAP 2017.
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Fig. 1. 
(a) The Np × Nf × Nfr (k,t)-space. Data geometry is learned from the “navigator” data, i.e., 
the data which lie in the gray-colored ν × Nf × Nfr area of the (k,t)-space (ν ≪ Np ). (b) 

Landmark points ℓki i = 1

3
 are affinely combined to describe y j

nav. All possible affine 

combinations of ℓki i = 1

3
 are denoted by the gray-colored area.
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Fig. 2. 
Original frame #351, of size 408 × 408, and its reconstructed versions. NRMSE values per 

method are: 0.059 for PS-sparse [26], 0.06 for [13] and 0.052 for the proposed method.
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Fig. 3. 
Frame-wise NRMSE: Comparing the proposed scheme (yellow curve), [13] (blue curve, 

‘MLS’) and [26] (red curve, ‘PS’) over all 360 MRXCAT frames of size 408 × 408. The 

proposed method achieves the lowest NRMSE uniformly across all frames.
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