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Abstract—Distributed radio interferometric calibration based
on consensus optimization has been shown to improve the estima-
tion of systematic errors in radio astronomical observations. The
intrinsic continuity of systematic errors across frequency is used
by a consensus polynomial to penalize traditional calibration.
Consensus is achieved via the use of alternating direction method
of multipliers (ADMM) algorithm. In this paper, we extend the
existing distributed calibration algorithms to use ADMM with
an adaptive penalty parameter update. Compared to a fixed
penalty, its adaptive update has been shown to perform better in
diverse applications of ADMM. In this paper, we compare two
such popular penalty parameter update schemes: residual balance
penalty update and spectral penalty update (Barzilai-Borwein).
We apply both schemes to distributed radio interferometric
calibration and compare their performance against ADMM with
a fixed penalty parameter. Simulations show that both methods
of adaptive penalty update improve the convergence of ADMM
but the spectral penalty parameter update shows more stability.

Keywords—Distributed calibration, Interferometry: Radio inter-
ferometry

I. INTRODUCTION

Raw data produced by radio interferometric arrays are
almost always corrupted by systematic errors introduced by
the propagation medium (atmosphere) and by the instrument
(beam and receiver). Calibration is estimation of such errors
and correcting the data to remove the effects of such errors.
In order to handle large volumes of data produced by modern
radio interferometric arrays, efficient and accurate calibration
algorithms are necessary. The recent surge in popularity of
distributed optimization algorithms [1], [2] have enabled us to
address some of these issues related to calibration of large data
volumes in radio astronomy.

With the use of consensus optimization [2], it has been
shown that [3], [4] distributed calibration provides a way
of distributing the computational burden over a network of
computers while at the same time improving the quality of
calibration. This enables processing of huge amounts of data
that are already stored at various locations across a network of
computers and using the local computational power available at
each particular location with minimal network communication.
In order to do this, the inherent continuity of systematic
errors over frequency is exploited and this is added as a
constraint onto calibration. With this modification, calibration
is transformed into a consensus optimization [2] problem and
we use alternating direction method of multipliers (ADMM)

[1] as the underlying algorithm to reach consensus. Similar
distributed computing strategies are being developed in radio
interferometric imaging as well [5]–[8].

There is widespread use of the ADMM algorithm in
various and diverse applications including machine learning
[2], [9], image processing [10] and medical imaging [11].
Unlike most applications, radio interferometric calibration us-
ing ADMM has some unique properties. The cost function
that is minimized in calibration is nonlinear and nonconvex.
Even though the systematic errors (e.g., ionosphere, beam
shape, receiver gain) have well behaved continuity, the exact
description of this behavior using polynomials of low degree is
not accurate enough. This is due to the complex interactions of
the systematic errors, especially when a wide area of the sky
is observed. Therefore, consensus can be achieved only based
on an approximate model, which is clearly different than most
other application. Furthermore, while most other applications
use complicated network topologies, we use a simpler topology
with a set of data processing nodes connected to one fusion
center.

The convergence rate of ADMM and its dependence on
the penalty parameter are well studied and generally with
proper initialization [12]–[16] and also with adaptive update
[2], [17]–[21], it has been shown that convergence could be
improved. Our previous work [22] focused on the initialization
of the penalty parameter using the smallest eigenvalue of
the Hessian of the cost function. In this paper, we further
improve our calibration by enabling adaptive update of the
penalty parameter. We compare two adaptive penalty parameter
update schemes in this paper. The first scheme is residual
balancing [2], [17], [18] where the penalty is updated to
balance the primal and dual residuals of the ADMM algorithm.
In contrast, the second method is based on the spectral penalty
parameter update [19]–[21], which is based on the Barzilai-
Borwein adaptive step size selection method [23] in gradient
descent. We compare both methods using simulated radio
interferometric data and both methods give better performance
than the case where the penalty parameter is kept fixed. Radio
astronomical observations (even made by the same interfer-
ometric array) have varying instrumental models depending
on the direction of the sky being observed and the frequency
range and time interval at which data is taken. Therefore, we
find that the residual balancing method needs proper tuning
[18] to suit each particular observation. On the other hand, the
spectral penalty update is less prone to changes in instrumental
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model and is better suited in processing large data volumes
with minimal manual intervention.

The rest of the paper is organized as follows: In section
II we give an overview of distributed radio interferometric
calibration using consensus optimization. In section III, we
present schemes for updating the penalty parameter with
ADMM iterations. Simulation results are presented in section
IV where we demonstrate the improved performance with an
adaptive penalty parameter. Finally, we draw our conclusions
in section V.

Notation: Matrices and vectors are denoted by bold upper
and lower case letters as J and v, respectively. The transpose
and the Hermitian transpose are given by (.)T and (.)H . The
matrix Frobenius norm is given by ‖.‖. The set of real and
complex numbers are denoted by R and C respectively. The
identity matrix is given by I. The matrix trace operator is given
by trace(.).

II. RADIO INTERFEROMETRIC CALIBRATION

We consider an interferometric array consisting of N
stations. The radiation originating from any given direction
in the sky is seen at the interferometer formed by stations p
and q as Vpqf [24]

Vpqf = JpfCpqfJ
H
qf +Npqf (1)

where f is the frequency at which data is taken and
Vpqf ,Jpf ,Jqf ,Cpqf ,Npqf ∈ C2×2. The error-free signal
from the sky is given by Cpqf , which is essentially the Fourier
transform of the sky model and can be pre-computed [25].
The systematic errors corrupting the true signal are given by
the Jones matrices Jpf ,Jqf . The noise is given by Npqf and
is assumed to have complex, zero mean, circular Gaussian
elements.

In reality, the observed data is the sum of many signals as
in (1), originating from many directions in the sky. However,
we can simplify calibration along many such directions in
the sky using the space alternating generalized expectation
maximization (SAGE) algorithm [26], [27]. In this paper, we
describe our algorithms for calibration along a single direction
but the results presented in section IV is based on calibration
along multiple directions.

The cost function that is minimized is given as

gf (Jf ) =
∑

p,q

‖Vpqf −ApJfCpqf (AqJf )
H‖2 (2)

where the systematic errors for all N stations are grouped as
Jf ∈ C

2N×2,

Jf
△
= [JT

1f ,J
T
2f , . . . ,J

T
Nf ]

T . (3)

Using the canonical selection matrix Ap (∈ R2×2N ), where
only the p-th block is I ∈ R2×2,

Ap
△
= [0,0, . . . , I, . . . ,0], (4)

we can select the systematic errors for the station p as ApJf .
Note that in (2), the summation is taken over all the baselines
pq that have data, within a small bandwidth and time interval
within which the systematic errors are assumed to be fixed.

The variation of Cpqf in (2) with f is smooth and is known.
Moreover, the variation of the systematic errors Jf is assumed
smooth, but not exactly known. While conventional calibration
minimizes (2) without exploiting this smoothness, we can add
this as an additional constraint. Given that data is collected at
a set of frequencies F = {f1, f2, . . . , fP }, the reformulated
calibration problem can be stated as [3]

Jf = argmin
J

gf (J) subject to Jf = BfZ, ∀f ∈ F . (5)

In (5), the constraint Jf = BfZ enforces the continuity of Jf

with f . In order to do this, we use Bf ∈ R2N×2NF which is
a set of F basis functions in frequency (we use the same basis
functions for all N stations) and Z ∈ C2NF×2 is the global
variable that enforces continuity across all frequencies f ∈ F .

We can transform (5) into a consensus optimization prob-
lem as follows. First, we create the augmented Lagrangian as

Lf (Jf ,Z,Yf ) = gf (Jf )+‖YH
f (Jf−BfZ)‖+

ρf
2
‖Jf−BfZ‖2

(6)
where the subscript (.)f denotes data (and parameters) at
frequency f . In (6), gf(Jf ) is the original cost function as
in (2). The Lagrange multiplier is given by Yf (∈ C2N×2).
The global variable Z is shared by data at all P frequencies.
One noteworthy difference from our previous work [3], [22]
is that rather than being fixed, the penalty parameter ρf is
variable.

The ADMM iterations n = 1, 2, . . . for solving (6) are
given as

(Jf )
n+1 = argmin

J

Lf (J, (Z)
n, (Yf )

n, ρnf ) (7)

(Z)n+1 = argmin
Z

∑

f

Lf ((Jf )
n+1,Z, (Yf )

n, ρnf ) (8)

(Yf )
n+1 = (Yf )

n + ρnf
(
(Jf )

n+1 −Bf (Z)
n+1

)
(9)

ρn+1

f = update penalty parameter (10)

where we use the superscript (.)n to denote the n-th iteration
where (7) to (10) are executed in order. The steps (7),(9) and
(10) are done for each f in parallel, at each compute (slave)
node. The slave nodes are distributed across a network of
computers. The update of the global variable in (8) is done at
the fusion center. The extra step (10), which is an improvement
from our previous work [3], [22], will be discussed in section
III.

III. UPDATING PENALTY PARAMETER

Since the constraint Jf = BfZ in (5) is not guaranteed to
be entirely accurate, increasing the value of ρf too much would
bias the solutions towards this constraint and therefore increase
the estimation error. Moreover, the observed data Vpqf in (1)
always contain contributions from weak signals from the sky
that are not part of the sky model Cpqf [28], [29] and we
do not expect to see continued improvement of solutions with
increased number of ADMM iterations. Hence, in this paper,
we use a fixed number of ADMM iterations rather than using
various stopping criteria [2].

We compare two popular schemes for the update of the
penalty parameter, which can be plugged in to (10) of the
ADMM iterations. In both cases, the initial value (n = 1) for



ρ1f is chosen by using the magnitude of the lowest eigenvalue

of the Hessian, say |λ|, (scaled down by a factor ≈ 1/10) as
described in [22]. In addition, to safeguard that the updated ρnf
does not increase too much, thereby giving too much weight
to the constraint in (6), |λ| is also used as an upper bound to
all updates of ρf . In other words, if a possible update of ρf
is higher than |λ|, it is clamped at this value.

A. Residual balancing penalty update

The idea behind the residual balancing method [2], [17],
[18] is to select penalty parameter such that both the primal
residual Rn

f

R
n
f = J

n
f −BfZ

n (11)

and the dual residual Sn
f

S
n
f = ρnfBf (Z

n − Z
n−1) (12)

have balanced norms. This provides a balance between the
original cost function and the constraint in (6). Heuristically,
the penalty parameter is updated as

ρn+1

f =





τρnf if ‖Rn
f ‖ > µ‖Sn

f ‖
τ−1ρnf if ‖Rn

f ‖ < µ−1‖Sn
f ‖

ρnf otherwise,

(13)

where µ(> 1) and τ(> 1) are two constants that are given a
priori and typical values used are µ = 10 and τ = 2 [2].

B. Spectral penalty update

The spectral parameter update [19], [20] is based on
the Barzilai-Borwein method [23] used in adaptive step size
selection of gradient descent optimization schemes [30]. For
this scheme, we need extra variables that have the lifetime
of the total ADMM iterations, i.e., Ŷ0

f , Ŷf ,J
0
f ∈ C2N×2. At

the first ADMM iteration (n = 1), using the current solutions

(Jf )
1
, initialize Ŷ

0
f = J

0
f = (Jf )

1
. It is also noteworthy

that the penalty is not updated at each ADMM iteration, on
the contrary, it is done with a periodicity T (≥ 2). At the n-th
ADMM iteration, if n is a multiple of T , we perform an update
as follows. First, we find step sizes αSD, αMG (the subscripts
SD and MG stand for steepest descent and minimum gradient
[30]) and correlation coefficient α as

(
Ŷf

)n+1

= (Yf )
n + ρnf

(
(Jf )

n+1 −Bf (Z)
n
)
, (14)

∆Yf =
(
Ŷf

)n+1

− Ŷ
0
f , ∆Jf = (Jf )

n+1 − J
0
f , (15)

δ11 = trace
(
real(∆Y

H
f ∆Yf )

)
(16)

δ12 = trace
(
real(∆Y

H
f ∆Jf )

)

δ22 = trace
(
real(∆J

H
f ∆Jf )

)
,

α =
δ12√
δ11δ22

, αSD =
δ11
δ12

, αMG =
δ12
δ22

. (17)

Note that (14) differs from (9) because (Z)n is used in the
former and (Z)n+1 is used in the latter. Next, a candidate for
the updated penalty α̂ is chosen as

α̂ =

{
αMG if 2αMG > αSD

αSD − αMG

2
otherwise.

(18)

Finally, if there is sufficient correlation for this update,

ρn+1

f =

{
α̂ if α ≥ α

ρnf otherwise
(19)

where α is a constant (typically > 0.2) to ensure the new
update is not a spurious result. At the last step, the auxiliary
variables are updated as

Ŷ
0
f =

(
Ŷf

)n+1

, J
0
f = (Jf )

n+1
(20)

to be used in the next update of the penalty.

We compare the performance of both aforementioned meth-
ods in section IV. Comparing the computational cost, the
residual balancing method is simpler but the spectral method
is also not expensive as all what is needed is a few linear
operations and inner products. Moreover, the spectral update
is not performed at every ADMM iteration.

IV. SIMULATION RESULTS

We simulate an array of N = 47 receivers that calibrate
along K = 4 directions in the sky. The settings for the
simulations are quite similar to the one used in [22]. The
matrices corresponding to the systematic errors, i.e., Jpk,Jqk

in (1) are generated with their elements having values drawn
from a complex uniform distribution in [0, 1], multiplied by a
frequency dependence given by a random 8-th order ordinary
polynomial in frequency. The intensities of the K = 4 sources
are randomly generated in the range [1, 5] intensity units and
their positions are randomly chosen in a field of view of about
7×7 square degrees. The variation of intensities with frequency
is given by a power law with randomly generated exponent in
[−1, 1]. The noise matrices Npq in (1) are simulated to have
complex circular Gaussian random variables. The variance of
the noise is changed according to the signal to noise ratio
(SNR = 30)

SNR
△
=

∑
p,q ‖Vpq‖2∑
p,q ‖Npq‖2

. (21)

In addition, we add the signals of 400 weak sources, with
intensities uniformly distributed in [0.01, 0.1] intensity units,
randomly located within the 7×7 square degrees field of view.
The signals of these 400 weak sources act as an additional
source of noise and are simulated without any systematic
errors.

We generate data for P = 8 frequency channels in the
range 115 to 185 MHz. For calibration, we setup a 3-rd order
polynomial model (F = 4), using Bernstein basis functions
[31] for the matrix Bf in (6). We intentionally use a lower
order frequency dependence than what is actually present in the
data to create a realistic scenario where the exact model for the
systematic errors is not known. Initial values for the calibration
parameters are always set as Jp = I for p ∈ [1, N ]. The penalty
parameter for the K directions are initialized using 1/10 of
the magnitude of the lowest eigenvalue of the Hessian of (2),
as described in [22]. The magnitude of the lowest eigenvalue
is also used as an upper bound to any updated value of the
penalty.

The accuracy of calibration is measured using the normal-
ized (and averaged over all directions) mean squared error



(NMSE) between true Jf and its estimate as

NMSE
△
=

1√
2KN

√ ∑

over all k

‖Jf − ĴfU‖2 (22)

where U is a unitary matrix that removes the unitary ambiguity

in the estimated Ĵf [32].

We compare the spectral penalty update (with T = 2 and
α = 0.2), and the residual balance penalty update (with µ = 20
and τ = 2) against the performance of ADMM with a fixed
penalty. In Fig. 1, we show the variation of ρf with ADMM
iterations for both adaptive schemes, for one direction (out of
K) and frequency.

Fig. 1. Variation of ρf for the two adaptive update schemes with ADMM
iteration.

In Fig. 2, we show the variation of NMSE (averaged
over all frequencies) with ADMM iterations, for both adaptive
penalty updated schemes as well as for the case where the
penalty is fixed. In all cases, the initial penalty parameter is
the same. We see that while both adaptive update schemes
perform better than ADMM with a fixed penalty, the residual
balance update scheme shows more oscillations.

Fig. 2. NMSE (averaged over all frequencies) variation, with ADMM
iteration.

Fig. 3. Final NMSE after 100 ADMM iterations.

In Fig. 3, we show the final NMSE (after 100 ADMM
iterations) for all P = 8 frequencies. Both adaptive penalty
update methods have better NMSE than ADMM with a fixed
penalty. In a real observation, data is calibrated by taking small
segments and for a full observation, calibration such as the one
simulated in this example has to be carried out thousands of
times. Hence, rather than continuing ADMM iterations until
convergence, the iterations are halted at a predefined value.
Therefore, calibration schemes that show less oscillations in
NMSE are better suited. Therefore, we give preference to the
spectral penalty update as a practical calibration scheme.

V. CONCLUSIONS

We have compared the performance of adaptive penalty up-
date in ADMM applied to distributed radio interferometric cal-
ibration. We used two popular penalty update schemes, namely
the residual balancing update and the spectral (Barzilai-
Borwein) update. Both methods improve performance of cal-
ibration compared with ADMM with a fixed penalty pa-
rameter. However, the spectral penalty update shows more
stability and is preferable in practical applications. Software for
distributed radio interferometric calibration with the spectral
penalty parameter update is available at http://sagecal.sf.net/
and https://github.com/nlesc-dirac/sagecal.
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