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Abstract—We develop a method to jointly estimate the carrier
frequency offset (CFO) and the narrowband channel in mil-
limeter wave (mmWave) MIMO systems operating with one-bit
analog-to-digital converters (ADCs). We assume perfect timing
synchronization and transform the underlying CFO-channel
optimization problem to a higher dimensional space using lifting
techniques. Exploiting the sparsity of mmWave MIMO channels
in the angle domain, we perform joint estimation by solving a
noisy quantized compressed sensing problem of the lifted ver-
sion, using generalized approximate message passing. Simulation
results show that our method is able to recover both the channel
and the CFO using one-bit measurements.

I. INTRODUCTION

Hardware architectures using one-bit ADCs at the receiver
are attractive for mmWave systems, due to the low power
consumption and hardware complexity compared to those
with high resolution ADCs [1]. Analysis of such systems,
however, is challenging because the underlying theory of
communication techniques in MIMO systems with one-bit
ADC:s is considerably different from the full resolution ones.
Furthermore, efficient signal processing algorithms have to be
developed considering the non-linear quantization effect due
to one-bit ADCs.

At mmWave carrier frequencies, MIMO channels are ap-
proximately sparse in the angle domain, due to the propagation
characteristics of the environment [[I]. Exploiting the sparse
nature of mmWave channels, several compressed sensing
based algorithms have been proposed to estimate the channel
with fewer measurements [2][3]. Prior work has also consid-
ered channel estimation using low resolution ADCs [4]. Most
of these algorithms, however, assume perfect synchronization
and fail to perform well in the presence of carrier frequency
offset. Methods that are compressive and robustly estimate
the channel against synchronization impairments are limited
[S] and primarily focus on analog beamforming architecture
with full resolution ADCs. As far as low resolution receiver
architectures are concerned, a method to jointly estimate the
CFO and the single-input-single-output (SISO) channel using
feedback dither control was proposed in [6]. Our method does
not assume any such feedback and estimates the mmWave
MIMO channel while exploiting the sparse nature of mmWave
channels.

This material is based upon work supported in part by the National Science
Foundation under Grant No. NSF-CCF-1527079, and by a gift from Huawei
Technologies, Inc.

In this paper, we propose a compressive joint CFO and
channel estimation algorithm using one-bit measurements. We
consider uniform linear arrays (ULAs) at the transmitter (TX)
and the receiver (RX), with a one-bit ADC architecture at the
RX. We assume perfect timing synchronization and also that
a single oscillator drives all the RF chains at a given end (TX
or RX). The latter assumption is valid when the antennas are
closely located and the RF signal is generated from the same
reference oscillator [7]. Therefore, a unique CFO is defined
for the MIMO system. Our methodology involves increasing
the dimension of the CFO-channel estimation problem using
lifting [8] and then applying the Expectation Maximization
- Generalized Approximation Message Passing (EM- GAMP)
[9] to recover the lifted vector from the one-bit measurements.
The recovered lifted vector is then decomposed into vectors
corresponding to the CFO and the channel. Simulation results
show that our proposed method estimates both the CFO and
the mmWave MIMO channel matrix compressively using the
one-bit measurements.

Notation: A is a matrix, a is a column vector and a, A
denote scalars. Using this notation AT A* represent the
transpose, conjugate transpose of A respectively. We use A ()
and A ;) to denote the i row and j™ column of A. The
symbol ® is used to denote the kroenecker product. vec (A) is
a vector obtained by stacking all the columns of A. The matrix
Uy € CNXN denotes a DFT matrix of dimension N and is

~2m(k—1)(£—1)

given by Uy (k,¢) = e™J N ,for k, 0 €{1,2,..,N}.

II. SYSTEM MODEL

Consider a narrowband MIMO system with ULAs of Ny
antennas at the TX and IV, antennas at the RX . Let f; be the
carrier frequency used at the TX to upconvert the baseband
signal. At the RX, each of the NN,, antennas is associated
with an RF chain, which downconverts the received signal
using a carrier frequency fo, that is different from f; due to
the oscillator mismatch. The resultant baseband signal is then
sampled using a pair of one-bit-ADCs as shown in Figl[l]

Let H € CN»*Nex pe the channel matrix and w,. be the
CFO in the digital domain. Note that we have a single CFO
(we) in our model because all the RF chains at a given end
(TX or RX) are driven by the same oscillator, as illustrated
in Fig For the n'" transmit vector T,y € CN=*1 within a



block of [V, transmissions, the received vector Y(n) € CNmxx1
at the output of ADCs, is given by

Y(n) = Q1 (/“"HT(,,) + Npp)) . Vn e {0,1,...,N, — 1}

(D
where Q(.) is an element-wise quantization function given by
Q1 (z) = sgn(Re{z}) + jsgn(Im{x}), with sgn(.) denoting
the signum function and N is IID gaussian noise with N;; ~

CN(0,1).
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Fig. 1. A MIMO system with two distinct oscillators operating at f1 and fa,
and one-bit ADCs at the receiver. Each ADC pair samples the in-phase and
quadrature-phase components of the baseband signal at a particular antenna.

The narrowband channel is modeled by considering a prop-
agation environment with NN, clusters and K, rays in the n'"
cluster. Let vy, m, 0rn,m and 0; 5, ., denote the complex gain,
angle-of-arrival and angle-of-departure of the m®™ ray in the
n'™ cluster. Let \ be the carrier wavelength and d be the
antenna spacing in the ULAs at the TX and the RX. With
Wrnm = % Sin(er,n,m)a Wt nm = 27)\Td 5111(975 n m) and the
Vandermonde vector

) T
eI (N-1)0 , )

the MIMO channel matrix H, in the baseband is given by

an @)= [

Wnn,m) ay;\;tx (th,m) .

3)
The channel matrix in can be interpreted as a linear
combination of several rank one matrices, each corresponding
to a propagation ray in the environment.

At mmWave frequencies, H in (3) is approximately sparse
when expressed in the angle domain [1]]. The channel matrix
would be exactly sparse if the constituent spatial frequencies
in the 2-D fourier representation, align exactly on the DFT
grid. For our analysis, we assume that the 2-D spatial fre-
quency components of H, of the form (w,,w,) come from

a discrete set, i.e, w, € <0, 12\,”, ﬁ,..,%},wy €
0, ]2\}:, jl\;: %ﬁfl) } Therefore, the beamspace represen-
tation of H, given by

H = Uy, _CU} . @)

is a sparse representation, i.e., C is a sparse matrix and let
s be the number of non zero entries. For our simulations,

we consider the realistic case in (B), which results in an
approximately sparse matrix C. Furthermore, we choose the
CFO to be maximally off grid to evaluate our algorithm in the
worst possible scenario. Our goal is to estimate the channel
H and the CFO simultaneously, given a training sequence and
the corresponding received bits at the RX.

III. JOINT CFO AND CHANNEL ESTIMATION

Let T € CNex*Mo be a transmit block of length N,,. From
(I) and (), a compact representation of the received block
Y € CV=*Ne s given by

Y =09 (HTdiag (aNp (we)) + N) . )

To increase compressibility of the lifted vector (discussed in
[II-A), we express a, (w.) in the fourier basis as aNp =
Uy b where b is the Np point DFT of {63‘*’6”}

@]) and @), we have
= i (diag (U3, b) TTU}, CT Uy, + NT) . (©6)

. From

We define the vectors y,c and n as y = vec (YT),
c = vec (CT) and n = vec (NT). Note that the CFO
and the channel can be perfectly recovered from the true b
and c respectively. The matrices G and J are defined as
G =a, (0)®Uj andJ = (Uy, ®Uj, T) . Using
the property vec (PQR) = (R” @ P) vec(Q), we rewrite
(@) as

y = Q; (diag (Gb)Jc +n). (7)

Finding the solution to (7)) is equivalent to solving a quantized
bilinear optimization problem, subject to sparsity of one of the
components (c). We approach this problem by moving to a
higher dimensional space (lifting), followed by solving a noisy
quantized compressed sensing problem and then a singular
value decomposition (SVD).

A. Lifting the CFO-channel problem

Lifting is a technique that handles bilinear optimization
problems by moving to a higher dimensional space [10].
Although computationally intensive, it recovers both the vec-
tors in a stable manner unlike methods like alternating min-
imization that may converge to a local minima. Let z =
diag (Gb) Jc + n denote the unquantized version of y in (7).
The i*" entry of z can be written as

z; = (Gb),; (Jc), + n;
=GbIJW¢ +ny
. N\ T
= GOpeT (Jm) +n,
= (J(i) ® G(i)) vec (bcT) + n;.
We define an NNy N, dimensional compound vari-

able x = and a measurement matrix A €

CNelNp X NexNexNo - guch that AW = J@ @ G, Hence, the
unquantized noisy measurements are given by

z=Ax+n. ®)

vec (bcT



It may be noticed that sparsity of c directly translates to the
sparsity of the lifted vector x, i.e., the fraction of sparse entries
of ¢ and x is exactly equal to s/NyxN,x for a generic or
non-sparse b. When the CFO (w,.) is exactly a multiple of
27 /Ny, b has a single non-zero entry and x has a lower
sparsity fraction of s/N,xNixNp, thus improving the recovery
performance of our algorithm compared to the generic case.
For our simulations, we assume that the CFO is maximally off
grid to evaluate the worst case performance. The vectors b and
c can be recovered upto a scale factor from the left and right
singular vectors corresponding to the largest singular value of
the matrix version of x, i.e., x reshaped to a N, X NNy
matrix. Lifting followed by the SVD is shown to perform well
for sparse bilinear optimization problems [8]]. The disadvan-
tage, however, is operating in a higher dimensional space.
For instance, we have transformed a NN, Ny« + N, variable
problem to a NNV, dimension problem, using lifting.
The lifting approach may not be practical in some applications
like joint CFO and wideband channel estimation, due to high
memory and computational complexity.

B. The EM-GAMP for the lifted version

We use the EM-GAMP [9] to estimate the sparse lifted
vector x from the quantized measurements y, given by

y = Q1 (2)
= 0Q; (Ax+n), 9)

with A defined in Section [II-Al The EM-GAMP treats x
and y as realizations of random vectors, say X and ). The
matrix A and the quantization function Q; (.) determine the
conditional probability distribution p ()|X’). The sparse nature
of x is incorporated by assuming a parametrized bernoulli-
gaussian distribution on X'. With the random vector interpreta-
tion, the classical MMSE or MAP estimate of X, given Y =y
can be defined. Finding the closed form expressions of these
vector estimates, however, is difficult and iterative algorithms
like belief propagation (BP) have been used to find them.
Furthermore, the factor graph in BP is generally dense for
compressed sensing problems, due to the dense nature of A
in (9), and makes marginalization of the posterior probabilities
computationally intensive.

The approximate message passing (AMP) simplifies this
marginalization using the central limit theorem, thereby trans-
forming all messages to contain mean and variances of gaus-
sian probability density functions [11]. The EM-GAMP gen-
eralizes the AMP, by incorporating features like the capability
of handling non-linear transformations (like the quantization
Q1 () in our case) and learning the parameters of the prior
distribution using Expectation Maximization (EM). A detailed
treatment on the EM-GAMP applied to the one-bit compressed
sensing problem in (9) can be found in [12].

C. Estimating the CFO and the channel

Let X be the estimate of x = vec (bcT) in (H) obtained
by solving the EM-GAMP and X be the Np X Ny Ny matrix

such that vec <X) = %. The estimates b, conj (¢) are chosen
to be the left and right singular vectors corresponding to the
largest singular value of X [8]. The channel estimate (upto a
scale factor) can be given by,

H=Uy, CUy,_, (10)

where vec (CT) =C.

A coarse estimate of the CFO (&) is derived from b,
a noisy version of the DFT of a, (we), using @, =

27 (j - 1) /N,, where j = argmax |b [1]’ This estimate,
ie{1,2,..,Np}
however, yields a CFO upto a resolution of 27 /N,,. We obtain
a finer estimate for the CFO using a 2N, point DFT of the
estimate of a, (we) , followed by applying an interpolation

technique proposed in [13]].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
method for joint CFO and narrowband channel estimation in
mmWave MIMO systems with one-bit ADCs. We consider the
system model in Section [l with ULAs of size Ny = Ny =
16, antenna spacing of d = \/2 for each of the ULAs and a
narrowband mmWave channel in with N, = 2 and 15 rays
per cluster. A laplacian distribution with an angle spread of
10 degrees is chosen for the angle-of-arrivals and departures
of the rays within a cluster. We consider a symbol rate T' =
0.5 s and a carrier frequency of f. = 28 GHz. An IID QPSK
training sequence (T') is chosen with IV, = 32 or 64, such that
SNR = 10log;, (Ntxrz), where r is the radius of the QPSK
constellation. For an N, length training, we get 2N, N, bits
of measurements to perform the joint estimation. Note that
the IID QPSK training can be realized with a TX hardware
architecture that is as simple as an analog beamforming system
that uses 2 bit phase shifters.

[N, =32, Af, = 93.75KHz
~0-N, = 64, Af. = 109.375 KHz

NMSE of channel estimate (dB
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SNR(dB)

Fig. 2. Average NMSE of the channel estimate obtained using our algorithm,
for an IID QPSK training sequence consisting of 32 and 64 pilots.

The CFO in typical wireless systems is of the order of parts
per millions (ppms) of the carrier frequency. For each of the
training lengths, the CFO (Af.) is chosen to be within the
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Fig. 3. The lower bound on the achievable rate as a function of SNR. It can

be noticed that the rate saturates beyond a certain SNR of 5dB, because only
quantization noise comes into play.
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Fig. 4. MSE of the CFO estimate as a function of SNR for 32 and 64 pilots.
In either case, the CFO was chosen to be maximally off grid to evaluate the
worst case performance of our algorithm.

practical limits and maximally off grid for a DFT bin width of
1/N,T. Therefore, we choose w. = 2nAf.T corresponding
to Af. = 93.75 KHz and 109.375 KHz for N, = 32 and 64
respectively. We evaluate our joint estimation algorithm using
the Normalised Mean Square Error (NMSE) of the channel
estimate (ﬂ), the lower bound on the achievable rate (R)
and the mean square error (MSE) of the CFO estimate ().
The NMSE of the channel estimate is defined as the average

of ‘ H- fyI:I‘ /|/H||  for several realizations of H, where
F
v = arg min HH — aI:IH for a given H, H. Neglecting the
a F
training overhead due to channel estimation, we evaluate the
lower bound on the achievable rate using the expression in
[12], which is derived using a linearization approximation
of the quantization function Q; (.). The MSE of the CFO

estimate is given by E [(we — &.)?|, where the expectation is

found by the empirical average over several realizations of the
channel matrix and the training. Simulation results suggest that
with few pilots, our algorithm performs the joint estimation
within acceptable limits, even with the heavily constrained
hardware.

V. CONCLUSION AND FUTURE WORK

We have proposed a joint CFO and channel estimation tech-
nique for narrowband mmWave systems using low resolution
ADC:s at the receivers. The key idea of our paper is to jointly
model the CFO-channel problem using lifting techniques,
solve a noisy quantized compressed sensing problem using
the EM-GAMP and recover the components corresponding to
CFO and channel using the SVD. Our method exploits the
sparsity of the mmWave channel matrix in the angle domain
and is able to perform joint estimation compressively. In our
future work, we will consider frame synchronization in addi-
tion to CFO and channel estimation, address the computational
complexity issues associated with lifting, and extend our work
to wideband systems using low resolution ADCs.
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