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Abstract

We study distributed multi-agent large-scale optimization problems, wherein the cost function is composed of

a smooth possibly nonconvex sum-utility plus a DC (Difference-of-Convex) regularizer. We consider the scenario

where the dimension of the optimization variables is so large that optimizing and/or transmitting the entire set of

variables could cause unaffordable computation and communication overhead. To address this issue, we propose the

first distributed algorithm whereby agents optimize and communicate only a portion of their local variables. The

scheme hinges on successive convex approximation (SCA) to handle the nonconvexity of the objective function,

coupled with a novel block-signal tracking scheme, aiming at locally estimating the average of the agents’ gradients.

Asymptotic convergence to stationary solutions of the nonconvex problem is established. Numerical results on a

sparse regression problem show the effectiveness of the proposed algorithm and the impact of the block size on its

practical convergence speed and communication cost.

I. INTRODUCTION

We consider a multi-agent system composed of N agents that cooperatively aim at solving the following (possibly

nonconvex) optimization problem:

minimize
x

U(x) ,
N∑
i=1

fi(x) +

B∑
`=1

r+` (x`)− r−` (x`)︸ ︷︷ ︸
r`(x`)

subject to x = [x>1 , . . . ,x
>
B ]>

x` ∈ K`, ∀` ∈ {1, . . . , B},

(P)

where x ∈ RdB is the vector of the optimization variables, partitioned in B blocks, whose `-th block is denoted by

x` ∈ Rd; fi : RdB → R is a smooth possibly nonconvex cost function of agent i; r` : Rd → R, ` ∈ {1, . . . , B}, is a

difference of convex (DC) function commonly known by all the agents; and K`, ` ∈ {1, . . . , B}, is a closed convex

set. Function r` usually plays the role of a regularizer, used to promote some favorable structure on the solution x,
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such as sparsity. The DC structure of r` is motivated by the need of capturing in a unified formulation both convex

and nonconvex regularizers, the latter being shown to achieve superior performance than their convex counterparts

[1]. Problem (P) is of broad interest and models a wide range of applications including network resource allocation,

target localization, as well as statistical learning problems.

Our goal is to design a distributed algorithm solving large-scale instances of (P). These problems, also referred

to as big-data problems, pose the following two challenges: (i) optimizing the objective function, or even just

computing the gradient with respect to all the variables, can be too costly; (ii) broadcasting over the network at

each iteration all agents’ local variables would incur in an unaffordable communication overhead. We are not aware

of any work in the literature that can address both challenges (i) and (ii) for problem (P). In fact, as discussed

next, the existing distributed algorithms either call for the optimization and transmission of the entire vector x per

iteration (or auxiliary variables of the same size of x) or impose restrictive structures on the objective function to

work.

There is a vast literature of distributed algorithms for both convex [2]–[10] and nonconvex problems [11]–[16].

Although substantially different, these methods are all based on two main steps, namely: a local optimization and

then a communication step of the entire vector x (or some related variables of the same size, e.g., multipliers).

They thus fail to address challenges (i) and (ii). On the other hand, (block) coordinate descent methods [4], [17]–

[19] and parallel algorithms [20]–[23] have been shown to be quite effective in handling large-scale problems by

optimizing one block of the variables per time. These algorithms, however, are not readily implementable in the

aforementioned distributed setting, because they assume that either all agents know the whole sum-utility or that,

at each iteration, each agent has access to the current value of the other agents’ variables. While these assumptions

are naturally satisfied in a share-memory system (e.g., data centric architecture) or complete (graph) networks, if

enforced for problem (P), they would call for an heavy message passing among the agents. We are aware of only

a few distributed schemes operating on block variables, namely: [24]–[26]. They however require a certain degree

of graph separability on the sum-utility function, meaning that each agent’s function fi can depend only on the

variables of that agent and its neighbors, which makes them not applicable to problem (P).

In this work, we propose BLOCK-SONATA, the first distributed algorithm for the general class of problem (P)

that is able to address both challenges (i) and (ii): each agent iteratively optimizes and transmits only one block

of its local variables. More specifically, BLOCK-SONATA consists of two steps, namely: 1) a local optimization

step wherein agents locally solve a covexification of (P), with respect to a chosen block of their local variables;

and 2) a blockwise consensus step, aiming at forcing an agreement among the agents’ local copies. Moreover, a

novel blockwise signal tracking scheme is also employed to dynamically estimate the gradient of the sum-utility

function, using only local information via block-communications. Agents select the blocks to optimize/transmit in

an uncoordinated fashion. Asymptotic convergence is established under mild assumptions. Compared to our recent

proposal [27], BLOCK-SONATA is computationally more efficient, since it does not require at each iteration the

computation of the entire gradient of the functions fi.



II. PROBLEM SETUP

We study problem (P) under the following assumptions.

Assumption 2.1 (On Problem (P)):

(i) K` 6= ∅ is closed and convex;

(ii) fi : RdB → R is C1 on (an open set containing) K;

(iii) ∇fi is Li-Lipschitz continuous and bounded on K;

(iv) r+` : Rd → R is convex (possibly nonsmooth) on K, with bounded subgradients on K; and r−` : Rd → R is

convex on K, with Lipschitz continuous bounded gradient on K;

(v) U is coercive on K, i.e., limx∈K,‖x‖→∞ U(x) =∞.

Assumption 2.1 is standard and can be easily satisfied in practice; see, e.g., [23]. Here we only remark that both

the local cost fi and the common regularizer
∑B
`=1 r` need not be convex.

On the communication network: The communication among the agents is modeled by a fixed, directed graph

G = ({1, . . . , N}, E), where E ⊆ {1, . . . , N}× {1, . . . , N} is the set of edges. There is an edge (i, j) ∈ E if agent

i can send a message to agent j. We denote by Ni the set of in-neighbors of node i in G, including itself, i.e.,

Ni , {j ∈ {1, . . . , N} | (j, i) ∈ E} ∪ {i}. To let information propagate over the network, we make the following

assumption.

Assumption 2.2 (Network connectivity): The graph G is strongly connected.

The above setting and problem are quite general and model many applications of practical interest. An example

in the context of sparse signal estimation is briefly outlined next.

Sparse regression: Consider the problem of estimating a sparse signal x0 from linear measurements {bi}Ni=1,

where bi = Dix0 + ni with ni being the measurement noise at agent i’s side. The problem can be formulated as

minimize
x∈K

N∑
i=1

‖bi −Dix‖2 +R(x), (1)

where R : RdB → R is a sparsity-promoting regularizer having the structure R(x) , λ ·
∑dB
k=1 r(xk) [cf. (P)], with

λ > 0. The DC structure of R is motivated by the fact that both convex regularizers (e.g., `1, `2, and elastic net)

and the widely used nonconvex regularizers (e.g., SCAD, Log, Exp, `p norm for 0 < p < 1) can be written as [1]

r(x) , η(θ) · |x|︸ ︷︷ ︸
r+(x)

− (η(θ) · |x| − r(x))︸ ︷︷ ︸
r−(x)

, (2)

where r− : R→ R is a convex function with Lipschitz continuous derivative. Problem (1) is clearly an instance of

Problem (P).

III. ALGORITHMIC DESIGN

Before describing the proposed distributed algorithm, we introduce a block-wise dynamic average consensus

scheme, whereby the agents aim at cooperatively tracking the average of a time-varying signal via block-wise

communications.



A. Average signal tracking via block communications

We consider the problem of tracking the average of a signal over a graph G satisfying Assumption 2.2. Each

agent i can evaluate locally a time-varying signal {uti}t∈N, and all agents aim at tracking the average signal

ūt , 1
N

∑N
i=1 u

t
i by exchanging information over the network. We assume that the cost of acquiring uti is non-

negligible, e.g., uti can be the gradient of a function with respect to a large number of variables. Distributed tracking

has been studied in [16]. However, such a scheme requires at each iteration the acquisition of the entire signal uti

as well as the communication of a vector having the same size of uti, which is too costly. To cope with the curse

of dimensionality, we develop next a signal tracking scheme that operates at the level of the blocks of signals uti

while enabling block-communications.

Each agent i maintains a local variable xt(i), whose `-th block is denoted by xt(i,`), with ` ∈ {1, . . . , B}. At

iteration t, each agent i picks a block-index, say `ti, and broadcasts the block xt(i,`ti)
to its neighbors. Based

on the information (blocks) received from its neighbors and the acquired block of the local signal uti, agent

i updates block-wise its entire vector xt(i) (according to the mechanism that we will introduce shortly). Since

there is no coordination among the agents, they will likely transmit blocks associated with different indices. This

implies that blocks with different index will “travel” on different communication graphs, which in general do

not coincide with G: agent j(6= i) is an in-neighbor of i if j ∈ Ni and agent j sends block ` to i at iteration

t. This naturally suggests the adoption of block-dependent communication graphs, one per block `. Specifically,

Gt` , ({1, . . . , N}, Et`), which is a time-varying subgraph of G associated to block ` at iteration t, whose edge set

is defined as Et` , {(j, i) ∈ E | j ∈ N t
i,`, i ∈ {1, . . . , N}}, where N t

i,` is the in-neighborhood of agent i associated

with the block-index `, N t
i,` , {j ∈ Ni | `tj = `} ∪ {i} ⊆ Ni.

Using block-dependent graphs one can solve the tracking problem block-wise. Therefore, in the following, we

focus only on block `, without loss of generality. The task reduces to developing a tracking algorithm over the

time-varying directed graph {Gt`}t∈N. Building on [16], we propose the following adapt-then-combine scheme:

vt(i,`) = xt(i,`) +
1

φt(i,`)
(ut+1
i,` − uti,`)

φt+1
(i,`) =

∑
j∈N t

i,`

atij` φ
t
(j,`), φ0(i,`) = 1, ` ∈ {1, . . . , B},

xt+1
(i,`) =

1

φt+1
(i,`)

∑
j∈N t

i,`

atij` φ
t
(j,`) v

t
(j,`),

(3)

where {atij`}ij is a set of weights that need to be properly chosen. Collecting these weights in a matrix At
` , [atij`]ij ,

we make the following standard assumptions on At
`.

Assumption 3.1 (On the Weighting Matrix At
`): For all ` ∈ {1, . . . , B} and t > 0, matrix At

` satisfies the following

conditions:

(i) atii` ≥ ϑ > 0, for all i ∈ {1, . . . , N};

(ii) atij` ≥ ϑ > 0, for all (j, i) ∈ Et` ;

(iii) At
` is column stochastic, i.e., 1>At

` = 1>.



Roughly speaking, the block-tracking scheme in (3), can be interpreted as follows: each agent first updates its

local estimate towards the current signal ut+1
i,` , and then averages it with the local updates of its neighbors. The

scalar variable φ(i,`) is introduced to obtain a convex combination of the received v(i,`)’s through the equivalent

weights (atij` φ
t
(j,`))/φ

t+1
(i,`) (recall that, by Assumption 3.1, At

` is column stochastic, but in general is not row

stochastic).

While the tracking scheme (3) unlocks block-communications, it still requires, at each iteration, the acquisition

of the entire signal uti. To cope with this issue, we propose to replace uti with a surrogate local variable, denoted

by ûti, initialized as û0
i = u0

i . At iteration t, agent i acquires only a block of signal uti, say block `ti for notation

simplicity, and updates ûti as

ûti,` =

uti,`, if ` = `ti,

ût−1i,` , if ` 6= `ti,

(4)

where uti,` [resp. ûti,`] denotes the `-th block of uti [resp. ûti]. That is, vector ûti collects agent i’s most recent

information on uti.

To summarize, the proposed block-tracking scheme reads as (3), where uti,` [resp. ut+1
i,` ] is replaced by ûti,`

[resp. ût+1
i,` ], defined in (4). To ensure convergence–i.e., limt→∞ ‖xt(i,`)− ût`‖ = 0, for all `–we need the following

assumptions on the connectivity of {Gt`}t∈N, which is widely used in the literature of push-sum-like algorithms.

Assumption 3.2: For all ` ∈ {1, . . . , B}, there exists a finite integer T > 0 such that the graph sequence {Gt`}t∈N
is T -strongly connected, i.e., the union graph ({1, . . . , N},∪t+T−1s=t Es` ) is strongly connected, for all t > 0.

Since each digraph Gt` is induced by the adopted block-selection rule, its connectivity clearly depends on it. A key

question, addressed next, is then: how to design, in a distributed and uncoordinated way, agents’ block-selection

rules and At
` that fulfill Assumption 3.1 and 3.2?

By the definition of Gt` , all the edges in the underlying graph G leaving node i will be also edges of Gt` if agent i

sends block ` at time t. Since G is strongly connected (cf. Assumption 2.2), Gt` is T -strongly connected if, starting

from any time t > 0, all agents send block ` within T iterations, which translates in the following essentially cyclic

block-selection rule.

Assumption 3.3 (Block-selection Rule): For each agent i ∈ {1, . . . , N}, there exists a (finite) constant Ti > 0

such that ∪Ti−1
s=0 {`

t+s
i } = {1, . . . , B}, for all t ≥ 0.

Note that the above rule does not impose any coordination among the agents: at each iteration, different agents

may update different blocks. It is not difficult to show that, under Assumptions 2.2 and 3.3, there exits a 0 < T ≤

max
i∈{1,...,N}

Ti, such that ∪T−1s=0 G
t+s
` , ` ∈ {1, . . . , B}, is strongly connected, for all t ≥ 0.

We show next how agents can locally build a matrix At
` satisfying Assumption 3.1. Observe that at iteration t,

if agent j selects block `, it sends vt(j,`) to any agent i that is its out-neighbor; or send it to no one, otherwise. In

addition, atjj` must be nonzero by Assumption 3.1. Consequently, the j-th column of At
`, denoted by At

`(:, j), can

only have the following two possible sparsity patterns: (i) all atij`, with i ∈ {{1, . . . , B} : (j, i) ∈ E}, is nonzero if

`tj = `; (ii) only atjj` is nonzero if `tj 6= `. To meet the requirement that At
` is column stochastic, agent j thus either

select a stochastic vector At
`(:, j) matching the sparsity pattern described in case (i), if `tj = `; or set At

`(:, j) to



be the j-th vector of the canonical basis, if `tj 6= `. It is not difficult to check that such weights can be constructed

locally by each agent, with no coordination with the others.

We conclude this section, noting that the proposed block-trackig scheme can be used also to solve the average

consensus problem wherein agents aim to estimate the average of their initial estimates, i.e., (1/N)
∑N
i=1 x

0
(i).

Specifically, by reinterpreting the consensus problem as tracking of the average of the constant signal x0 ,

[x0>
(1), . . . ,x

0>
(N)]

>, it is enough to set uti ≡ x0, t ≥ 0, and absorb the v-variable, which leads to the following

block-consensus algorithm:

φt+1
(i,`) =

∑
j∈N t

i,`

atij`φ
t
(j,`),

xt+1
(i,`) =

1

φt+1
(i,`)

∑
j∈N t

i,`

atij`φ
t
(j,`)x

t
(j,`),

∀` ∈ {1, . . . , B}. (5)

B. BLOCK-SONATA: A constructive approach

We are now in the position to introduce our algorithmic framework. Observe that what couples the functions fi

in Problem (P) is the common vector variable x. To decouple the problem a natural step is then introducing for

each agent i a local copy x(i) of x. Yet, agent i faces the following challenges: (i) the dimension of x(i) is large;

(ii) fi and −r−` are nonconvex; and (iii)
∑
j 6=i fj is unknown. To cope with these issues, we introduce BLOCK-

SONATA (cf. Algorithm 1), an iterative scheme leveraging SCA techniques, coupled with a parallel blockwise

consensus/tracking step based on (3) and (5), as detailed next.

Local optimization: At iteration t, agent i selects and optimizes a block of xt(i), say `ti [this addresses challenge (i)].

To deal with the nonconvexity of fi and −r−
`ti

[challenge (ii)], we approximate fi with a strongly convex surrogate

f̃i,`ti and −r−
`ti

by its linearization at xt(i,`ti). The unknown term
∑
j 6=i fj is replaced by a linear function whose

coefficient π̃t(i,`ti) aims to track
∑
j 6=i∇fj,`ti(x

t
(i)) [challenge (iii)]. The resulting problem (7) is thus a strongly

convex approximation of problem (P) and admits a unique solution x̃t(i,`ti)
. Agent i then updates its local copy

xt(i,`ti)
along direction x̃t(i,`ti)

−xt(i,`ti)
, with step-size γt, see (8). Note that agent i does not optimize blocks ` 6= `ti,

hence we let vt(i,`) = xt(i,`), ∀` 6= `ti. Agent i then broadcasts vt(i,`ti)
to its neighbors.

Blockwise consensus/gradient tracking: To force consensus on xt(i), agent i update in parallel all its blocks xt(i,`), ` ∈

{1, . . . , B}, based on the received variables vt(j,`tj). Leveraging the block consensus scheme (5), the aforementioned

updates read (9)–(10).

Finally, we need to introduce the update of π̃t(i,`) so that limt→∞ ‖π̃
t
(i,`) −

∑
j 6=i∇`fj(xt(i))‖ = 0. To this end,

we rewrite
∑
j 6=i∇`fj(xt(i)) as

∑
j 6=i
∇`fj(xt(i)) = N · 1

N

N∑
j=1

∇`fj(xt(i))︸ ︷︷ ︸
∇`f(xt

(i)
)

−∇`fi(xt(i)).

Since ∇`fi(xt(i)) can be evaluated locally by agent i, the task boils down to estimate the average gradient ∇`f(xt(i)),

∀` ∈ {1, . . . , B}. We can then readily invoke the blockwise tracking scheme (3) with `t+1
i selected according to

the essentially cyclic rule (Assumption 3.3) and uti , ∇fi(xt(i)), leading to the updates (11)-(12).



Algorithm 1: BLOCK-SONATA

Set t = 0, φ0
(i) = 1, ĝ0

i = y0
(i) = ∇fi(x0

(i)), `0i ∈ {1, . . . , B}.

Local Optimization:

π̃t(i,`ti) =N · yt(i,`ti) −∇`tifi
(
xt(i)
)
, (6)

x̃t(i,`ti)
, argmin

x`t
i
∈K`t

i

r+
`ti

(x`ti) + f̃i,`ti(x`ti ;x
t
(i)) + (π̃t(i,`ti) −∇r

−
`ti

(xt(i,`ti)
))>(x`ti − xt(i,`ti)

), (7)

vt(i,`ti)
= xt(i,`ti)

+ γt(x̃t(i,`ti)
− xt(i,`ti)

); (8)

Broadcast vt(i,`ti), φ
t
(j,`), y

t
(j,`ti)

to the out-neighbors;

Averaging and Gradient Tracking:

For `∈{1, . . . , B}: receive φt(j,`),v
t
(j,`) from j∈N t

i,`, and set

φt+1
(i,`) =

∑
j∈N t

i,`

atij` φ
t
(j,`), (9)

xt+1
(i,`) =

1

φt+1
(i,`)

∑
j∈N t

i,`

atij` φ
t
(j,`)v

t
(j,`); (10)

Select `t+1
i ∈ {1, . . . , B} and update

ĝt+1
i,` =

∇`t+1
i
fi(x

t+1
(i) ), if ` = `t+1

i ,

ĝti,`, otherwise;

(11)

For `∈{1, . . . , B}: receive φt(j,`) y
t
(j,`) + ĝt+1

j,` − ĝtj,` from j∈N t
i,`, and set

yt+1
(i,`) =

1

φt+1
(i,`)

∑
j∈N t

i,`

atij`

(
φt(j,`)y

t
(j,`) + ĝt+1

j,` − ĝtj,`

)
. (12)

Remark 3.4: Note that the block selected in the tracking step (11) needs not to be the same as the one used

in the optimization step (6). However, in BLOCK-SONATA we let them be equal so that to perform the two

aforementioned steps only one block-gradient computation is needed. �

Having introduced the algorithm, the remaining question is how to choose the surrogate functions f̃i and the

step-size γt. Convergence of BLOCK-SONATA is guaranteed under the following assumptions.

Assumption 3.5 (On the Surrogate Functions): Given Problem (P) under Assumption 2.1, each surrogate function

f̃i,` : K` ×K → R satisfies:

(i) f̃i,`(•;x) is uniformly strongly convex on K`;

(ii) ∇f̃i,`(x`;x) = ∇`fi(x), for all x ∈ K;

(iii) ∇f̃i,`(x`; •) is uniformly Lipschitz continuous on K;

where ∇f̃i,` denotes the partial gradient of f̃i,` with respect to its first argument.

Assumption 3.6 (On the step-size): The sequence {γt}, with each 0 < γt ≤ 1, satisfies: (i)
∞∑
t=0

γt = ∞ and



∞∑
t=0

(γt)2 <∞; (ii) γt/η ≤ γt+1 ≤ γt, for all t ≥ 0 and some η ∈ (0, 1).

Assumption 3.5 states that f̃i should be regarded as a (simple) strongly convex approximation of fi that preserves

its first order properties. Several valid choices for f̃i are available; see, e.g., [15], [23]. Assumption 3.6 is the standard

diminishing step-size rule (i) with the extra requirement (ii), which ensures all the blocks contribute “equally” to the

optimization. Condition (ii) can be met easily in practice [28], [29]; an example is given in Sec. IV. The convergence

of BLOCK-SONATA is given in the following theorem, whose proof is omitted due to space limitation; see [30].

Theorem 3.7: Let {(xt(i))
N
i=1}t∈N be the sequence generated by BLOCK-SONATA, and let x̄t,(1/N)

∑N
i=1 x

t
(i).

Suppose Assumptions 2.1, 2.2, 3.1, 3.2, 3.5, and 3.6 are satisfied; then there hold:

(i) consensus: ‖xt(i) − x̄t‖ → 0 as t→∞, for all i ∈ {1, . . . , N};

(ii) convergence: {x̄t}t∈N is bounded and every of its limit points is a stationary solution of Problem (P).

BLOCK-SONATA enjoys the property that at each iteration agents not only solve a low-dimensional optimization

problem, but also transmit a limited amount of information. Moreover, compared to our previous scheme in [27], in

BLOCK-SONATA, the gradient of fi are computed only with respect to one block rather than the whole variable,

and this further saves local computation cost.

IV. NUMERICAL SIMULATIONS

In this section we test BLOCK-SONATA on an instance of the sparse regression problem (1), where K is a

box constraint set, and R is chosen to be the logarithmic function [31], with λ = 0.1; in its DC reformulation in

(2) we set θ = 10 (the specific expression of η(θ) and thus r+ and r− therein can be found in [1]). Finally, let

fi(x) = ‖bi −Dix‖2 +R(x).

As surrogate f̃i,` of fi (cf. Assumption 3.5), we use the linearization of fi at the current iterate, i.e.,

f̃i,`(x(i,`);x
t
(i))

=
(
2D>i,`(Di − bi)

)>
(x(i,`) − xt(i,`))+

τi
2
‖x(i,`) − xt(i,`)‖

2

− λ ·
d∑
k=1

(
dr−((xt(i,`))k)

dx
(x(i,`) − xt(i,`))k

)
,

(13)

where (xt(i,`))k denotes the k-th scalar component of xt(i,`), and dr−((xt(i,`))k)/dx is the derivative of r− evaluated

at (xt(i,`))k It is worth noting that (13) admits a unique minimizer, whose expression is omitted because of the

space limit.

We simulated a network of N = 50 agents communicating over a fixed undirected graph G, generated using

an Erdős-Rényi random model. We compared two extreme topologies: a densely and a poorly-connected one,

with algebraic connectivity equal to 45 and 5, respectively. There are 500 optimization variables, and we set

K , [−10, 10]500. The components of the ground-truth signal x0 are generated independently according to the

Gaussian distribution N (0, 1). To impose sparsity on x0, we set the smallest 80% of the entries of x0 to zero.

Each agent i has a measurement matrix Di ∈ R50×500 with i.i.d. N (0, 1) distributed entries (with `2-normalized

rows), and the observation noise ni has entries i.i.d. distributed according to N (0, 0.5). The diminishing step-size

γt follows the rule γt = γt−1(1− µγt−1), with γ0 = 0.1 and µ = 10−4. The proximal parameter is τi = 5 for the

poorly connected example and τi = 1 for the densely connected one.



To evaluate the algorithmic performance, we use two merit functions. The first one–given by J t , ‖x̄t −

PK
(
SSηλ

(
x̄t − (

∑N
i=1∇fi(x̄t) − λ ·

∑dB
k=1 dr

−((x̄t)k)/dx)
))
‖∞–measures the distance from stationarity of the

average of the agents’ iterates x̄t while the second one–Dt , maxi∈{1,...,N} ‖xt(i) − x̄t‖–quantifies the consensus

disagreement at each iteration.

We compare our algorithm with a non-block-wise distributed gradient algorithm; we adapted the gradient-push in

[2] to a constrained nonconvex problem according to the protocol proposed in [32] (no formal proof of convergence

for such scheme is available in the nonconvex setting). The performance of BLOCK-SONATA for different choices

of the block dimension are reported in Fig. 1 (a). Recalling that t is the iteration counter used in Algorithm 1, to

fairly compare the algorithm runs for different block sizes, we plot J t and Dt versus the normalized number of

iterations t/B.

The figure shows that for all runs (with different block sizes), both consensus and stationarity are achieved by

BLOCK-SONATA within 100 normalized iterations, while the plain gradient scheme using all the blocks is much

slower. Let tend be the completion time up to a tolerance of 10−3, i.e., the iteration counter of the distributed

algorithm such that J tend < 10−3. Fig. 1 (b) shows the normalized completion time tend/B versus the number of

blocks B. This highlights how the communication cost reduces by increasing the number of blocks.
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Figure 1: (a) optimality measurement J t (solid) and consensus error Dt (dashed) versus the normalized iteration for

several choices of blocks B: Algebraic connectivity equal to 5. (b) Completion time required to obtain J t < 10−3

versus the number of blocks B.

V. CONCLUSION

In this paper we studied non-convex distributed big-data optimization problems and proposed BLOCK-SONATA

to solve them. Leveraging on SCA techniques and a novel block-tracking/consensus mechanism, the proposed

distributed scheme is the fist one unlocking local block-optimization and block-communications. Asymptotic con-

vergence to a stationary point of the problem was established, and numerical tests on the sparse regression problem

demonstrated the effectiveness of algorithm.
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[20] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big data optimization,” Mathematical Programming, pp. 1–52, 2012.

[21] ——, “Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function,” Mathematical

Programming, vol. 144, no. 1-2, pp. 1–38, 2014.

[22] I. Necoara and D. Clipici, “Parallel random coordinate descent method for composite minimization: Convergence analysis and error

bounds,” SIAM Journal on Optimization, vol. 26, no. 1, pp. 197–226, 2016.

[23] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms for nonconvex big data optimization,” IEEE Transactions on

Signal Processing, vol. 63, no. 7, pp. 1874–1889, 2015.

[24] I. Notarnicola and G. Notarstefano, “A randomized primal distributed algorithm for partitioned and big-data non-convex optimization,” in

IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 153–158.

[25] R. Carli and G. Notarstefano, “Distributed partition-based optimization via dual decomposition,” in 52nd IEEE Conference on Decision

and Control (CDC), Dec 2013, pp. 2979–2984.



[26] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing stochastic gradient descent,” in Advances in

Neural Information Processing Systems (NIPS), 2011, pp. 693–701.

[27] I. Notarnicola, Y. Sun, G. Scutari, and G. Notarstefano, “Distributed big-data optimization via block-iterative convexification and averaging,”

in IEEE 56th Conference on Decision and Control (CDC), to appear, 2017.

[28] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous parallel algorithms for nonconvex big-data optimization: Model

and convergence,” arXiv preprint arXiv:1607.04818, 2016.

[29] ——, “Asynchronous parallel algorithms for nonconvex big-data optimization. part ii: Complexity and numerical results,” arXiv preprint

arXiv:1701.04900, 2017.

[30] I. Notarnicola, Y. Sun, G. Scutari, and G. Notarstefano, “Distributed big-data optimization via block-iterative gradient tracking,” Techical

Report, 2017.

[31] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the zero-norm with linear models and kernel methods,” Journal of machine

learning research, vol. 3, no. Mar, pp. 1439–1461, 2003.

[32] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected stochastic gradient algorithm for non-convex optimization,” IEEE

Transactions on Automatic Control, vol. 58, no. 2, pp. 391–405, 2013.


	I Introduction
	II Problem Setup
	III Algorithmic Design
	III-A Average signal tracking via block communications
	III-B Block-SONATA: A constructive approach

	IV Numerical Simulations 
	V Conclusion
	References

