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Abstract—In a cluttered environment, the probabilistic data
association (PDA) model allows constructing efficient estimators.
In this case, the Fisher information matrix (FIM) is equal
to the FIM in the clean environment multiplied by the so-
called information reduction factor. This factor depends implicitly
on the detection and false alarms probabilities, hence on the
threshold prior to the estimation step. The topic of this paper
is to seek the optimal threshold, the one that maximizes the
information reduction factor. Whereas the Poisson law is used as
an approximation in PDA model, here we consider the binomial
law for the large false alarms probabilities. An example, coming
from signal processing, illustrates our analysis.

I. INTRODUCTION

Depending on the architecture of a surveillance system,
target tracking takes place at three different levels:

o “Track-before-detect” (TBD) based on unthresholded
measurements (for example in [1]).

o “Track-after-detect”: after the detection step, the available
data are composed of false alarms and correct detections.
The tracking can be made by the Probabilistic Data
Association (PDA) algorithm. We are facing a cluttered
environment.

o “Track-after-detect” and extraction of the line of mea-
surements: the input of the tracking function is a line of
supposedly ‘good’ measurements, which is an optimistic
and unrealistic situation. Such tracking is said to be in a
clean environment.

The topic of this paper takes place in the second scheme.
We are concerned with the determination of the ‘optimal’
threshold in the detection step. Indeed, a poor choice of the
threshold can lead to too high a number of false alarms
or a very low level of detection probability. In both cases,
we intuitively understand that no information may be drawn
from these situations. We deduce that the information might
be maximal at a particular threshold. Fortunately, we have
a tool to quantify the information contained in the available
measurements: the Fisher Information Matrix (FIM).

In the PDA model, the FIM in the presence of clutter equals
the FIM in a clean environment multiplied by a scalar factor
[2]. The so-called ¢, factor lies between O and 1, and explains
the information loss due to a certain amount of false alarms
and non-unity detection probability [2], [3]. This factor is a
function of the detection probability and the amount of false
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alarms in a restricted space. With all these considerations,
the existence of an optimal detection threshold that would
maximize ¢, is a fundamental question. This paper deals with
the search for an optimal threshold that maximizes g». Optimal
thresholds have been investigated in [4], [5], with a specific
criterion at each time (target position error in [4], track lifetime
and track loss in [5]).

Our paper is composed of four main sections. Section II
presents briefly the PDA with its uses and necessary statistical
assumptions, as well as the computation of the FIM in PDA.
Section IIT shows how to optimize g2, by changing the false
alarms repartition model. After detailing a simple example to
solve our problem, we present in Section IV some numerical
results. Then, the conclusion, appendix and references follow.

II. THE FISHER INFORMATION MATRIX IN PROBABILISTIC
DATA ASSOCIATION

A. Introduction to Probabilistic Data Association

Probabilistic Data Association (PDA) is well described in
[3]. PDA is used in realistic tracking contexts. Indeed, it
takes into account the presence of false alarms (which are
the element of the clutter), as well as a non-unity detection
probability. The main aim is to estimate the parameters of
interest when true detections are drowned in false alarms, and
don’t surely appear. Historically, two estimation techniques
have been studied:

o A recursive technique : Probabilistic Data Association
Filter (PDAF) allowing real-time estimation, based upon
a modified Kalman filter.
o« A batch technique : PDA Likelihood Maximization
(PDA-MLE).
In our study, the latter is used. Some statistical assumptions
are necessary to establish our model, following [2], [3] :

o The detections due to the target are corrupted by an
additional zero-mean white Gaussian noise. The power
of the noise is 02. Subsequently, these detections will be
called “true detections”.

o The clutter is distributed according to an uniform law in
a finite scan space u. The clutter is composed of the false
alarms.

« The amount of false alarms at a specific sample k follows
a discrete probability law fip,. Usually, pus, = P, the



Poisson law of parameter A\u (expected number of false
alarms).
« True detections appear at most one time at each sampling
time, with a detection probability P,.
o The available measurement vector at scan k is zp —
(Z1ks > Zma k) T
o The vectors z;, are independent conditionally to X for
k=1:K.
Applying the total probability theorem, we end up with the
likelihood' of X given the measurement vector zj:
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with s (X) the state model at time k. Thanks to the indepen-
dence assumption, we get L(X|z) = Hszl L(X|zg)-

L(X|Zk) =
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B. The Fisher Information Matrix

We recall the well-known expression for the FIM in a clean
environment, called .J:

J Z szk

In the presence of clutter, the computation of the FIM is more
complicated, but can be done with the above assumptions. The
technique consists in restricting the measurement space to a
gate around the true detection [2]-[4]. Its size, denoted by v,
depends on the standard deviation of the measurements:
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Since the true detections have a Gaussian distribution, the most
informative measurements are located in this gate when g = 5.
Indeed, more than 99 % of a Gaussian population are within
five standard deviations of the mean. Conversely, measure-
ments outside the gate contain no additional information. As
a consequence, the likelihood function can be approximated by
the one computed only with measurements in the gate. Doing
this, the FIM in a cluttered environment is proven to be equal
to the FIM in clean environment multiplied by a factor go:

F = QQJ (4)

When i, is a Poisson law (the usual assumption), g2
is expressed with respect to parameters Av, and detection
probability Py: g2 = q2(Py, Avg) [11-[3], [7].

III. OPTIMIZATION OF THE INFORMATION REDUCTION
FACTOR
A. Poisson law versus binomial law

The use of the Poisson law in (1) is justified by the fact that
the threshold of the prior test is chosen for a low probability
of false alarms Py, [8]. Indeed, if M is the number of

'We implicitly use the notation proposed in [6].

measurement cells on which the test is carried out, we have
Au ~ M Py,, provided Py, is small enough. Consequently,
Avg ~ Ny Py,, where Ny is the number of measurement cells
in the gate. Hence, ¢- is a function of the couple (Pg; Pyq).
Finally, using the ROC curves of the detector, we end up with
a new expression for g2, depending only on the threshold ¢:
q2(Pua; Avg) = ga2(1)

The search for the maximum ¢o is nothing else than the
search for the optimal ¢{. But, the optimal ¢ could define a
probability of false alarm which could be large. In this case,
the use of the Poisson law is no longer justified. This is
why we have to introduce the ‘natural’ false alarm probability
into (1): the binomial law with N, and Pj, as parameters.
Generally speaking, N, depends on an analysis of the methods
of measurement, and the way the data are processed and
quantified.

B. Information Reduction Factor Derived from a Binomial
Law

The reduction information factor go may then be derived
from the binomial distribution:
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g2 is then a sum of m-fold integrals, with B(m — 1) being

the binomial distribution with parameters N, and Py,, t the
detection threshold, and
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The derivation of the above is detailed in the Appendix, and
based on [2], [7].

We note that under the conditions of the convergence of
the binomial towards the Poisson distribution, go expressed
with both distributions has the same values. Fig. 1 gives us
an example of the two g2, coming from signal processing and
detailed hereafter. So, we have generalized the information
reduction factor concept, by extending it to cases with high
Py,.

IV. APPLICATION TO SIGNAL PROCESSING

A. Problem Formulation

The context we describe serves as an example for optimal
threshold research. The framework is the following: we have
a sine wave signal, with unknown amplitude, frequency and
phase [9]. This is our signal of interest. This sine wave is



corrupted by an additive zero-mean white Gaussian noise.
There are two detection hypotheses:
L[] HO
. H1
Ref. [10] shows that the Neyman-Pearson optimal test is
equivalent to comparing the periodogram of the signal to
a threshold. The probability distribution of the periodogram
under each previous hypothesis is:

“there is only noise”
“there are signal of interest and noise”

> [l

o Ho: central x2 distribution
« Hj: noncentral x3 distribution

The noncentrality parameter v depends on the SNR and on
the length of the samples as follows [10]:
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with NV the number of samples, A the amplitude of the sine
wave, and o2 the power of the noise. So, if we call the
Neyman-Pearson test A and the threshold ¢, we have by
definition

’y:

Py(t) 2 P(A > t|Hy) (10)

(1)

In this application, the temporal signal is segmented into
K non-overlapped scans. The periodogram of each scan is
compared to the threshold. The frequency cells of scan k
greater than the threshold compose the measurement vector
2k

By the knowledge of probability density function (pdf), we

deduce easily that
t
Pyo(t) = exp (—2>

The expression of Py is a numerical series detailed in [10],
in which an algorithm numerically computing Py is presented.
So, we are able to express both P; and Py, with respect to
the threshold. In this context, N, is the number of frequency
cells in the gate.

Pya(t) = P (A > t|Ho)

12)

B. Numerical Results

With the previous knowledge of the pdf under both hy-
potheses, and the new expression for g, we may henceforth
compute go with respect to the detection threshold. We com-
pute g2 numerically using Monte-Carlo runs [11] with 500 000
simulations, and N, set to 5. The search for the maximum is
based on a grid-search method. The optimal threshold in the
sense of ¢g» may then be placed on a ROC curve, to find the
optimal operating point, for different values of ~.

Fig. 1 shows the importance of choosing the binomial
law instead of the Poisson law to search for the maximum
q2. The Poisson law may indeed prevent the finding of the
maximum in certain cases, as shown by the considerations
from previous section. Most of the time, the search for the
maximum would be possible under the Poisson distribution
if the optimal threshold is not too low. Fig. 2 shows gy with
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Fig. 3. ROC curves for different values of ~y

respect to the threshold for different values of the noncentrality
parameter -y, as well as the optimal threshold in each case.
The higher the noncentrality parameter, the higher the optimal
threshold. This underscores the differences between the pdf
under both hypotheses. Fig. 3 represents the ROC curves for
each previous case and the operating point from the optimal
threshold, highlighting the powerful performance, even in the
case of relatively low ~.



V. CONCLUSION

In this paper, we have posed and solved the problem of
choosing the optimal detection threshold in a surveillance
system. The criterion is the amount of information relative to
the parameter of interest and contained in the retained binary
measurements. Based upon the assumptions of the PDA,
the optimal threshold is the one for which the information
reduction factor is the largest. An example of signal processing
illustrates our approach. In the future, a similar problem will
be studied when the measurements are no longer binary, but
coupled with their own energy as in [1].

APPENDIX
DERIVATION OF THE INFORMATION REDUCTION FACTOR
WITH BINOMIAL LAW

We derive ¢, with a binomial law, using the same principles
as explained in [2], [7]. First, we express the likelihood at time
k with (1) restricted to the validation region gate of volume v.
Moreover, [if, is replaced with the binomial distribution with
parameters N, and Py,. For the sake of clarity, the subscript
k is dropped:

L(xl) =1 ‘vid(“ Bm) f:i(_’? Bln =1

13)

where v, = 2go is the volume of the gate. After factorization
and highlighting that
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Then, it is possible to compute FIM in clutter from (15). The
latter is then the FIM in a clean environment multiplied by
the scalar factor go, which is now
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This way, g2 is a finite sum of m-fold integrals. We define
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Reintroducing in (16) the notations of a(¢) and 3,,(t) given
in (6) and (7), we get
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For §; fixed, g»(t) is an odd function with respect to &;.
Then, the cross-terms vanish from the integral because of the
symmetry of the integration domain:

ZﬂQ
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We use the parity of the function with respect to &; and note
that the integrals are the same for each considered index. After
some manipulations, we obtain
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After noting that
B(m) mom, 2 _
Bm(t)W 2 = de(t)B(m l)gm_1 (22)

we finally get the information reduction factor expressed with
binomial distribution given in (5).
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