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Abstract—The paper considers a distributed algorithm for
global minimization of a nonconvex function. The algorithm
is a first-order consensus + innovations type algorithm that
incorporates decaying additive Gaussian noise for annealing,
converging to the set of global minima under certain technical
assumptions. The paper presents simple methods for verifying
that the required technical assumptions hold and illustrates it
with a distributed target-localization application.
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I. INTRODUCTION

Nonconvex optimization problems are prevalent through-
out machine learning and signal processing [1]–[4]. In settings,
such as the internet of things (IoT) and sensor networks, it can
be impractical to process information in a centralized fashion
due to the high volume of data inherently distributed across
many devices [5]–[7]. Moreover, due to privacy concerns,
users can be unwilling to share (potentially sensitive) data for
processing in a central location [8]. This necessitates the devel-
opment of distributed algorithms for nonconvex optimization.

We are interested in studying distributed algorithms
wherein (i) agents may only communicate with neighbors via
an overlaid communication network (possibly time-varying),
and (ii) there is no central node or entity to coordinate the
computation. Within this framework, we consider distributed
algorithms to optimize the function

U(x) :=
N∑
n=1

Un(x), (1)

where N denotes the number of agents in the network and
Un is a local function available only to agent n. Example
applications of distributed nonconvex optimization problems in
this framework include empirical risk minimization [9], target
localization [10], robust regression [11], distributed coverage
control [12], power allocation in wireless adhoc networks [13],
and others [14].

Work on distributed nonconvex optimization has focused
largely on ensuring convergence to first-order stationary points
[11], [13]–[17]. More recently, [18]–[20] have considered the
problem of demonstrating convergence to local optima and
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evasion of saddle points. In this paper, we consider the problem
of developing distributed algorithms for computing global
optima.

We will focus on the following annealing-based algorithm:

xn(t+ 1) =xn(t)− βt
∑

`∈Ωn(t)

(xn(t)− x`(t)) (2)

− αt (∇Un(xn(t)) + ζn(t)) + γtwn(t),

n = 1, . . . , N , where xn(t) ∈ Rd is the state of agent n at
iteration t ≥ 1; Ωn(t) denotes the set of agents neighboring
n at time t (per the communication graph); {αt}, {βt}, and
{γt} are sequences of decaying weight parameters; ζn(t) is a
d-dimensional random variable (representing gradient noise);
and wn(t) is d-dimensional Gaussian noise (introduced for
annealing). Note that this algorithm is distributed in the
sense that, to compute xn(t + 1), each agent only requires
information about their local function Un and the state x`(t)
of neighboring agents ` ∈ Ωn(t).

Algorithm (2) is a consensus + innovations type algorithm
[21]. The first term −βt

∑
l∈Ωn(t) (xn(t)− xl(t)) (referred to

as the consensus term) ensures that agents reach asymptotic
agreement; the second term −αt (∇Un(xn(t)) + ζn(t)) (re-
ferred to as the innovations term) ensures that agents descend
their local objective Un; the final term γtwn(t) is an annealing
term that ensures that limit points are global rather than local
minima. The algorithm may be seen as a distributed variant of
the (centralized) annealing-based algorithm studied in [22].

Convergence properties of (2) were studied in [23] where,
under certain assumptions, it was established that the algorithm
converges in distribution to the set of global optima of (1).
Some of the assumptions under which this convergence result
is proved are highly technical. In this paper we will review
the convergence results for (2) and present simple methods
for verifying that the required assumptions hold in the context
of a target localization example.

The remainder of the paper is organized as follows. Sec-
tion II sets up notation. Section III presents our assumptions
and the convergence result for (2). Section IV discusses a
distributed target localization application. Section V concludes
the paper.

II. NOTATION

We use ‖·‖ to indicate the standard Euclidean norm. Given
x ∈ Rd and r > 0, Br(x) denotes the open ball of radius
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r about x. We let λ denote the Lebesgue measure and let
N := {1, 2, . . .}. For k ≥ 1, we say a function f : Rd → R
is of class Ck if f is k-times continuously differentiable. For
a function f : Rd → R, when well defined, we let ∇f(x)
denote the gradient, ∇2f(x) denote the Hessian, and ∆f(x) =∑d
i=1

∂2f(x)
∂x2
i

denote the Laplacian of f .

We will assume that agents may communicate over an
undirected, time-varying graph Gt = (Vt, Et), where Vt
denotes the set of vertices (or agents) and Et denotes the
set of edges. We assume that Gt is devoid of self-loops, so
that (i, i) /∈ Et for any i ∈ {1, . . . , N} or t ≥ 1. A link
(i, j) ∈ Et denotes the ability of agents i and j to communicate
at time t. The adjacency matrix associated with Gt is given
by A = (atij), where atij = 1 if (i, j) ∈ Et, and atij = 0
otherwise, and the degree matrix is given by the diagonal
matrix Dt with diagonal entries dti =

∑N
j=1 a

t
ij . The graph

Laplacian of Gt is given by the matrix Lt = Dt −At.

Given a measure π on a measurable space (Rk,Σ), and a
(measurable) function f : Rk 7→ R, we use the convention

π(f) :=

∫
fdπ, (3)

whenever the integral exists. For a stochastic process {Zt},
with Zt ∈ Rd, and a function f : Rd → R, we use the
convention

Et0,z0 [f(Zt)] := E[f(Zt)|Zt0 = z0]. (4)

III. CONVERGENCE RESULT

A. Assumptions

The main convergence result for (2) will be given in
Theorem 1. We will make the following assumptions.

Assumption 1. The function Un(·) is C2 with Lipschitz
continuous gradients, i.e., there exists an L > 0 such that

‖∇Un(x)−∇Un(x́)‖ ≤ L ‖x− x́‖ , ∀n.

Assumption 2. The function Un(·) satisfies the following
bounded gradient-dissimilarity condition:

sup
x∈Rd

‖∇Un(x)−∇U(x)‖ <∞, ∀n.

Assumption 3. U(·) is a C2 function such that

(i) minU(x) = 0,
(ii) U(x)→∞ and ‖∇U(x)‖ → ∞ as ‖x‖ → ∞,

(iii) inf(‖∇U(x)‖2 −∆U(x)) > −∞.

Assumption 4. For ε > 0 let

dπε(x) =
1

Zε
exp

(
−2U(x)

ε2

)
dx,

Zε =

∫
exp

(
−2U(x)

ε2

)
dx.

U is such that πε has a weak limit π as ε→ 0.

We note that π is constructed so as to place mass 1 on the
set of global minima of U . A simple condition ensuring the
existence of such a π will be discussed in Lemma 1.

Assumption 5. lim inf‖x‖→∞

〈
∇U(x)
‖∇U(x)‖ ,

x
‖x‖

〉
≥ C(d),

C(d) =
(

4d−4
4d−3

) 1
2

.

Assumption 6. lim inf‖x‖→∞
‖∇U(x)‖
|x| > 0

Assumption 7. lim sup‖x‖→∞
‖∇U(x)‖
‖x‖ <∞

Let {Ht} denote the natural filtration corresponding to the
update process (2), i.e., for all t,

Ht = σ
(
x0, L0, · · · , Lt−1, ζ0, · · · , ζt−1,w0, · · · ,wt−1

)
.

Assumption 8. The {Ht+1}-adapted sequence of undirected
graph Laplacians {Lt} are independent and identically dis-
tributed (i.i.d.), with Lt being independent of Ht for each
t, and are connected on the mean, i.e., λ2(L̄t) > 0 where
L̄t = E[Lt].

Assumption 9. The sequence {ζt} is {Ht+1}-adapted and
there exists a constant L1 > 0 such that

E[ζt | Ht] = 0 and E[‖ζt‖2 | Ht] < L1

for all t ≥ 0.

Assumption 10. For each n, the sequence {wn(t)} is a
sequence of i.i.d. d-dimensional standard Gaussian vectors
with covariance Id and with wn(t) being independent of Ht
for all t. Further, the sequences {wn(t)} and {w`(t)} are
mutually independent for each pair (n, `) with n 6= `.

Assumption 11. The sequences {αt}, {βt}, and {γt} satisfy

αt =
cα
t
, βt =

cβ
tτβ

, γt =
cγ

t1/2
√

log log t
, for t large,

where cα, cβ , cγ > 0 and τβ ∈ (0, 1/2).

Finally, let C0 be the constant as defined after (2.3) in [22].

Assumptions 1–2 ensure that each Un is well behaved so
that asymptotic consensus can be achieved by the consensus
component of (2). Assumptions 3–7 ensure that U is well
behaved so that convergence to a global minimum is possible.
Assumption 8 ensures that the communication network is suf-
ficiently well connected, while Assumptions 9 and 10 ensure
that the algorithm explores the state space and tends towards
a descent direction. Finally, Assumption 11 ensures that the
weight parameters in (2) appropriately balance the objectives
of reaching consensus, descending the objective, and exploring
the state space.

B. Convergence Result

The main convergence result for process (2) is given in
the following theorem. Informally, the theorem states that Xn

converges in distribution to a random variable placing mass 1
on the set of global minima of U .

Theorem 1. Let {x1(t)}t≥1, . . . , {xN (t)}t≥1 satisfy the re-
cursion (2) with respective initial conditions x0,1, . . . , x0,N .
Let Assumptions 1–11 hold. Further, suppose that cα and cγ in
Assumption 11 satisfy c2γ/cα > C0, where C0 is defined after
Assumption 11. Then, for any bounded continuous function
f : Rd → R and for all n = 1, . . . , N , we have that

lim
t→∞

E [f(xn(t))] = π(f). (5)



In the above theorem we recall that we use conventions (3)–
(4). We also recall that the relationship between the condition
for weak convergence used in (5) and other conditions for weak
convergence (or convergence in distribution) are elucidated in
the so-called portmanteu theorem [24]. A complete proof of
Theorem 1 can be found in [23].

IV. ILLUSTRATIVE EXAMPLE

Consider the problem of using N sensors in a network
to collaboratively locate the position of T targets lying on a
plane. All sensors and targets lie within some compact set K
with diameter R = maxx1,x2∈K ‖x1 − x2‖, known apriori to
all agents. Each sensor n has knowledge of its own location
sn ∈ R2 and the distance between itself and target k, denoted
by dnk.

In order to formulate the problem of localizing the targets
as an optimization problem, we begin by defining the following
auxiliary function. Given arbitrary y, r ∈ [0,∞), let

g(y, r) :=

{
φ1(y, r) 0 ≤ y ≤ r/2
(y − r)2 r/2 < y

where, for all r ∈ [0,∞), the function y 7→ φ1(y, r) is finite-
valued, monotone increasing, of class C3, and is chosen such
that y 7→ g(y, r) is also C3 (φ1 may be constructed using
a Hermite interpolating polynomial [25]). Given x ∈ R2 and
d ∈ [0,∞) let

f(x, r) := g(‖x‖, r).

Examples of the functions g and f are shown in Figures 1a
and 1b. These functions are prototypes that will be used in the
formulation of the optimization problem. Informally, if s is
the location of a sensor and it is known that a target lies a
distance r from s, then f(x − s, r) is minimized (with value
zero) along the ring with radius r about s. Finally, we let the
objective of player n be given by

Un(x) =


∑T
k=1 f(xkn − sn, dnk) 1

T ‖xn‖ < R

φ2(xn) R ≤ 1
T ‖xn‖ < R+ 1

‖xn‖2 1
T ‖xn‖ > R,

(6)
where xk ∈ R2 is an estimate of the location of target k, x is
the vector stacking (xk)Tk=1, and φ1 and φ2 are chosen so that
Un is C3. The functions φ1 and φ2 may be constructed using
Hermite interpolating polynomials [25].

The function Un may be interpreted as follows. For x with
xk ∈ K, k = 1, . . . , T the function Un operates “as expected”
(assigning high cost if ‖xk − sn‖ is not close to dnk). For
xk outside the set K, we have Un(x) = ‖x‖2 for all n. This
ensures that Assumption 2 is satisfied. Finally, the transitory
component φ2 merely ensures that Un transitions sufficiently
smoothly between these two modes.1

Given Un, n = 1, . . . , N as defined in (6), the target
localization problem is formulated as the unconstrained op-
timization of the sum function (1).

1We remark that similar formulations of this problem using a quartic
objective function have been considered in [14], [26]. Here, we reformulate
the problem in terms of a quadratic objective in order to ensure that the
assumptions in Section III-A are satisfied. See Section IV-A for more details.

(a) Example of function f
used in the construction of g. (b) Example of function g used in

the construction of Un.

A. Verification of Assumptions

In Theorem 1 we assumed that U and Un satisfied As-
sumptions 1–7.2 We now verify that these assumptions hold in
the target localization example.

Assumptions 1–2 hold since, by construction, Un(x) =
‖x‖2 for x sufficiently large. It is straightforward to verify that
parts (i)–(ii) of Assumption 3 hold. Part (iii) of Assumption 3
holds due to the fact that each Un is quadratic for x sufficiently
large. In particular, for x large we have Un(x) = ‖x‖2, so that
‖∇Un(x)‖2 ≥ ∆Un(x).

The following result from [27] (see [27], Theorem 3.1) will
allow us to verify that Assumption 4 holds.3

Lemma 1. Let N := {x : U(x) = infx U(x)}. Suppose that
(i) λ({U(x) < a}) > 0 for any a > infx U(x),
(ii) minx U(x) exists and equals zero,
(iii) There exists ε > 0 such that {U(x) ≤ ε} is compact,
(iv) U is C3.
Assume that N consists of a finite set of isolated points and
that the Hessian ∇2U(x) is invertible for all x ∈ N . Then the
limit π in Assumption 5 exists.

It is straightforward to verify that the sum function U
satisfies conditions (i)–(iv) of Lemma 1. To verify that the
Hessian ∇2U(x) is invertible for x ∈ N requires some
additional care.

Letting, {zk}Tk=1, zk ∈ R2 denote the set of target
locations, we will make the following additional assumption.

Assumption 12.
(i) N ≥ 3 and sn 6= sm for all sensors n 6= m.
(ii) For each target k, there exist at least two sensors m and
n such that zk, sn, and sm are not colinear. That is, zk 6=
sn + λ(sm − sn) for any λ ∈ R.

Under part (i) of this assumption, the vector of targets z =
(zk)Tk=1 is the unique global minimum of U , i.e., N = {z}.
Under part (ii) of this assumption, the Hessian ∇2U(x) is
invertible at z. This may be confirmed algebraically using the
form of Un in (6).

Finally, Assumptions 5–7 are seen to hold by again using
the fact that each Un is quadratic for x large.

2The remaining Assumptions 8–11 concern the algorithm (2), and not the
optimization problem.

3Lemma 1 below has been adapted to fit our presentation and is slightly
weaker than the result proved in [27].



In the numerical example to be given next, we will ex-
plicitly choose the graph Gt, weight sequences {αt}, {βt},
and {γt}, and random variables ζn(t) and wn(t) so that the
remaining assumptions (Assumptions 8–11) are satisfied.

B. Numerical Example

In this section we consider a simple numerical example
illustrating the functioning of the distributed annealing algo-
rithm. We emphasize that these results are not optimal—the
parameters are not chosen to optimize convergence rate, but
merely to illustrate the general operation of the algorithm.

Consider an example of the target localization problem
having five sensors and one target.4 The sensors are connected
via a ring graph. The function φ1 (used in g) is constructed
using a Hermite polynomial to smoothly interpolate between
the functions (x−d)2 (outside the (d/2)-ball) and −x2+(d/2)2

(inside a (d/2− ε)-ball).5

Note that, since we are dealing with only one target we
have d = 2 so that U maps from R2 to R. We leverage
this low dimensionality to aid in visualizing the action of
the algorithm. The gradient vector field ∇U(x) is plotted
in Figure 2a along with the sensor and target locations. We
emphasize that the vector field displayed in Figure 2a is the
gradient vector field for ∇U(x) and not ∇

(∑N
n=1 Un(xn)

)
.

However, it is useful in visualizing the action of the algorithm
since, as x(t) approaches the consensus subspace, the average
process xavg(t) asymptotically follows this vector field.6

The unique global minimum of U occurs at x = z, where
z is the target location. The vector field has a local minimum
occurring near the point (.8, .3) and multiple small-gradient
regions that hamper the functioning of traditional gradient
descent techniques.

We ran 100 trials of the algorithm for 104 iterations each
using the following weight parameters: αt = 40 1

t , βt = .3 1
t1/4

,
γt = 1

(t log(log(t)))1/2
. To focus on the effects of annealing

noise alone, we set ζt ≡ 0. Each trial used the same initial
condition. The results of the simulations are displayed in
Table I and Figure 2a. Table I considers the distance of the
average xavg(t) = 1

N

∑N
n=1 xn(t) from the target location at

various time instances. The table shows the number of trials
for which xavg(t) fell within the ball Br(t) at (precisely)
the iteration t indicated in the column header. Theorem 1
implies that, for any r > 0, the probability that xavg(t) lies
inside the ball Br(z) about the target goes to 1 as t → ∞.
This is reflected in Table I. We note that while we have not
attempted to optimize convergence rate here, this may be a
useful direction for future research.

4The choice of small parameter sizes for N and T in this example facilitates
the visualization of the algorithm by allowing us to visually relate the behavior
to the asymptotic mean vector field with global and local minima in simple
figures.

5In these simulations, we used Un(x) =
∑T

k=1 f
(
‖xk

n − sn‖ − dnk

)
. In

all simulations, trajectories xk
n(t) remained in the ball B3(0), so incorporating

the remaining components of Un in (6) was unnecessary. An interesting future
research direction may be to formally relax Assumption 2 in Theorem 1.

6More precisely, the average process xavg(t) may be seen as an Euler
discretization of the differential equation ẋ = −∇U(x) + r(t), where
r(t)→ 0 as t→∞.

t = 500 t = 103 t = 2× 103 t = 5× 103 t = 104

r = .05 8 10 13 14 18
r = .1 29 26 39 41 50
r = .15 44 45 52 56 72
r = .2 59 62 70 71 84
r = .25 69 69 75 83 89

TABLE I: The number of trials for which xavg(t) was in the ball of radius r
about the target (row) at iteration t (column).

(a) Vector field for ∇U(x). Sensor locations are given by
magenta4’s, target location (and global minimum of U ) is given
by red +, and mean initialization xavg(1) is given by blue ×.

(b) Sample path of the distributed annealing algorithm. Magenta
triangles denote sensor locations and red + denotes target
location. As t → ∞, the process concentrates in the basin of
the global minimum.

Fig. 2

Figure 2b shows an example of a sample trajectory for
a single trial after 5 × 103 iterations. The trajectory diffuses
through the state space, over time concentrating in the basin
of the global minimum.

V. CONCLUSIONS

We considered an annealing-based algorithm for computing
global optima in distributed nonconvex optimization problems.
The convergence result for the algorithm relies on several
technical assumptions. Simple techniques for verifying that



the technical assumptions hold were presented alongside a
distributed target localization example.
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