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Abstract

Tensor decompositions are powerful tools for large data
analytics as they jointly model multiple aspects of data
into one framework and enable the discovery of the la-
tent structures and higher-order correlations within the
data. One of the most widely studied and used de-
compositions, especially in data mining and machine
learning, is the Canonical Polyadic or CP decompo-
sition. However, today’s datasets are not static and
these datasets often dynamically growing and changing
with time. To operate on such large data, we present
OCTen the first ever compression-based online paral-
lel implementation for the CP decomposition.We con-
duct an extensive empirical analysis of the algorithms
in terms of fitness, memory used and CPU time, and
in order to demonstrate the compression and scalability
of the method, we apply OCTen to big tensor data.
Indicatively, OCTen performs on-par or better than
state-of-the-art online and offline methods in terms of
decomposition accuracy and efficiency, while saving up
to 40-200 % memory space.

1 Introduction

A Tensor is a multi-way array of elements that repre-
sents higher-order or multi-aspect data. In recent years,
tensor decompositions have gained increasing popular-
ity in big data analytics [18]. In higher-order structure,
tensor decomposition are capable of finding complex
patterns and higher-order correlations within the data.
Corresponding to matrix factorization tools like SVD
(Singular Value Decomposition), there exist generaliza-
tions for the tensor domain, with the most widely used
being CANDECOMP/PARAFAC or CP [8] which ex-
tracts interpretable factors from tensor data, and Tucker
decomposition [24], which is known for estimating the
joint subspaces of tensor data. In this work we fo-
cus only on the CP decomposition, which is extremely
effective in exploratory knowledge discovery on multi-
aspect data. In the era of information explosion, data
is generated or modified in large volume. In such en-
vironments, data may be added or removed from any
of the dimensions with high velocity. When using ten-

sors to represent this dynamically changing data, an
instance of the problem is that of a “streaming”, “in-
cremental”, or “online” tensors1. Considering an exam-
ple of time evolving social network interactions, where
a large number of users interact with each other ev-
ery second (Facebook users update ≈ 684K informa-
tion and Twitter users send ≈ 100K tweets every sin-
gle minute2); every such snapshot of interactions is a
new incoming slice(s) to the tensor on its “time” mode,
which is seen as a streaming update. Additionally, the
tensor may be growing in all of its n-modes, especially
in complex and evolving environments such as online
social networks. In this paper, our goal is, given an
already computed CP decomposition, to track the CP
decomposition of an online tensor, as it receives stream-
ing updates, 1) efficiently, being much faster than re-
computing the entire decomposition from scratch after
every update, and utilizing small amount of memory,
and 2) accurately, incurring an approximation error that
is as close as possible to the decomposition of the full
tensor. For exposition purposes, we focus on the time-
evolving/streaming scenario, where a three-mode tensor
grows on the third (“time”) mode, however, our work
extends to cases where more than one modes is online.

As the volume and velocity of data grow, the need
for time- and space-efficient online tensor decomposition
is imperative. There already exists a modest amount
of prior work in online tensor decomposition both for
Tucker [2, 23] and CP [15, 27].However, most of the
existing online methods [2, 27, 15] , model the data in
the full space, which can become very memory taxing as
the size of the data grows. There exist memory efficient
tensor decompositions, indicatively MET for Tucker [12]
and PARACOMP [21] for CP, neither of which are able
to handle online tensors. In this paper, we fill that gap.

Online tensor decomposition is a challenging task
due to the following reasons. First, maintaining high-
accuracy (competitive to decomposing the full ten-

1Notice that the literature (and thereby this paper) uses the

above terms as well as “dynamic” interchangeably.
2http://mashable.com/2012/06/22/data-created-every-

minute/
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Figure 1: OCTen framework. Compressed tensor
summaries Yp and Zp are obtained by applying ran-

domly generated compression matrices (Up,Vp,Wp) and

(U
′
p,V

′
p,W

′
p) to Xold and Xnew or incoming slice(s) re-

spectively. The updated summaries are computed by Xp

= Yp + Zp. Each Xp is independently decomposed in
parallel. The update step anchors all compression and

factor matrices to a single reference i.e. (Pa,Pb,Pc) and

(As,Bs,Cs), and solves a linear equation for the overall
A, B, and C.

sor) using significantly fewer computations and mem-
ory than the full decomposition calls for innovative and,
ideally, sub-linear approaches. Second, operating on
the full ambient space of data, as the tensor is being
updated online, leads to super-linear increase in time
and space complexity, rendering such approaches hard
to scale, and calling for efficient methods that work on
memory spaces which are significantly smaller than the
original ambient data dimensions. Third, in many real
settings, more than one modes of the tensor may re-
ceive streaming updates at different points in time, and
devising a flexible algorithm that can handle such up-
dates seamlessly is a challenge. To handle the above
challenges, in this paper, we propose to explore how to
decompose online or incremental tensors based on CP
decomposition. We specifically study: (1) How to make
parallel update method based on CP decomposition for
online tensors? (2) How to identify latent component ef-
fectively and accurately after decomposition? Answer-
ing the above questions, we propose OCTen (Online
Compression-based Tensor Decomposition) framework.
Our contributions are summarized as follows:
• Novel Parallel Algorithm We introduce
OCTen, a novel compression-based algorithm
for online tensor decomposotion that admits an
efficient parallel implementation. We do not limit
to 3-mode tensors, our algorithm can easily handle
higher-order tensor decompositions.

• Correctness guarantees By virtue of using ran-
dom compression, OCTen can guarantee the iden-
tifiability of the underlying CP decomposition in
the presence of streaming updates.

• Extensive Evaluation Through experimental
evaluation on various datasets, we show that

OCTen provides stable decompositions (with qual-
ity on par with state-of-the-art), while offering up
to 40-250 % memory space savings.
Reproducibility: We make our Matlab implemen-

tation publicly available at link 3. Furthermore, all the
small size datasets we use for evaluation are publicly
available on same link.

2 Preliminaries

Tensor : A tensor is a higher order generalization of
a matrix. An N -mode tensor is essentially indexed
by N variables. In particular, regular matrix with
two variables i.e. I and J is 2-mode tensor, whereas
data cube ( I,J and K) is viewed as a 3-mode tensor
X ∈ RI×J×K . The number of modes is also called
”order”. Table 1 contains the symbols used throughout
the paper. For the purposes of background explanation,
we refer the reader to [18] for the definitions of Khatri-
Rao and Kronecker products which are not necessary
for understanding the basic derivation of our framework.

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar

R Set of Real Numbers

◦ Outer product

‖A‖F , ‖a‖2 Frobenius norm, `2 norm

⊕ Summation

⊗ Kronecker product[18]

� Khatri-Rao product[18]
Table 1: Table of symbols and their description

Canonical Polyadic Decomposition: One of
the most popular and extensively used tensor decom-
positions is the Canonical Polyadic (CP) or CANDE-
COMP/ PARAFAC decomposition [5, 8, 3] referred as
CP decomposition. Given a N-mode tensor X of dimen-
sion RI1×I2×...IN , its CP decomposition can be written
as A(n) ∈ RIn×R, where n = (1, 2, . . . N) and R rep-
resents the number of latent factors or upper bound
rank on tensor X. Henceforth, the 3-mode tensor of
size RI×J×K can be represented as a sum of rank-one
tensors: X ≈

∑R
r=1 A(:, r) ◦B(:, r) ◦C(:, r) where A ∈

RI×R,B ∈ RJ×R,C ∈ RK×R. The unfold n-mode ten-
sor X can be written as khari-rao product of its modes
as X(n) ≈ A(n)(A(N) · · · �A(n+1) �A(n−1) �A(1))T .
We refer the interested reader to several well-known sur-
veys that provide more details on tensor decompositions
and its applications [11, 18].

3http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/OCTen.

zip

 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/OCTen.zip
 http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/OCTen.zip


3 Problem Formulation

In many real-world applications, data grow dynamically
and may do so in many modes. For example, given
a dynamic tensor in a movie-based recommendation
system, organized as users × movie × rating × hours,
the number of registered users, movies watched or
rated, and hours may all increase over time. Another
example is network monitoring sensor data where tons
of information like source and target IP address, users,
ports etc., is collected every second. This nature of
data gives rise to update existing decompositions on the
fly or online and we call it incremental decomposition.
In such conditions, the update needs to process the
new data very quickly, which makes non-incremental
methods to fall short because they need to recompute
the decomposition for the full dataset. The problem
that we solve is the following:

Given (a) an existing set of summaries
{Y1,Y2 . . .Yp}, which approximate tensor

Xold of size { I(1)× I(2)× . . . I(N−1)× told} at time
t , (b) new incoming batch of slice(s) in form of
tensor Xnew of size {I(1)×I(2)× . . . I(N−1)×tnew},
find updates of (A(1),A(2) , . . . , A(N−1), A(N))
incrementally to approximate tensor X of di-
mension {I(1) × I(2) × . . . I(N−1) × I(N)} and rank

R, where I(N) = (told + tnew) = I
(N)
1...n + I

(N)
(n+1)...m

after appending new slice or tensor to N th mode.

4 OCTen Framework

As we mention in the previous section, to the best of our
knowledge, there is no algorithm in the literature that
is able to efficiently compress and incrementally update
the CP decomposition in the presence of incoming
tensor slices. However, there exists a method for static
data [21]. Since this method considers the tensor in
its entirety, it cannot handle streaming data and as
the data size grows its efficiency may degrade. In
this section, we introduce OCTen, a new method
for parallel incremental decomposition designed with
two main goals in mind: G1: Compression, speed ,
simplicity, and parallelization; and G2: correctness in
recovering compressed partial results for incoming data,
under suitable conditions. The algorithmic framework
we propose is shown in Figure 1 and is described below:

We assume that we have a pre-existing set of
summaries of the X before the update. Summaries
are in the form of compressed tensors of dimension
[Q×Q×Q].

These are generated by multiplying random com-
pression matrices {U,V,W} that are independently ob-
tain from an absolutely continuous uniform distribution

with respect to the Lebesgue measure, with tensor’s cor-
responding mode i.e. U is multiplied with I-mode and
so on; see Figure 1 and Section 4.2 for its role in cor-
rect identification of factors. The compression matrices
are generated for each incoming batch or slice. For sim-
plicity of description, we assume that we are receiving
updated slice(s) on the third mode. We, further, assume
that the updates come in batches of new slices, which,
in turn, ensures that we see a mature-enough update to
the tensor, which contains useful structure. Trivially,
however, OCTen can operate on singleton batches and
for > 3 modes also.

In the following, Xold is the tensor prior to the
update and Xnew is the batch of incoming slice(s).

Considering S =
∏[N−1]

i=1 I(i) and T =
∑[N−1]

i=1 I(i) ,
we can write space and time complexity in terms of S
and T . Given an incoming batch, OCTen performs the
following steps:

4.1 Parallel Compression and Decomposition
When handling large tensors X that are unable to fit
in main memory, we may compress the tensor X to a
smaller tensor that somehow apprehends most of the
systematic variation in X. Keeping this in mind, for
incoming slice(s) Xnew, during the parallel compression
step, we first need to create ’p’ parallel triplets of
random compression matrices (uniformly distributed)
{Up,Vp,Wp} of X. Thus, each worker (i.e. Matlab
parpool) is responsible for creating and storing these
triplets of size U ∈ RI×Q, V ∈ RJ×Q and W ∈
Rtnew×Q. These matrices share at least ’shared’ amount
of column(s) among each other. Mathematically, we can
describe it as follows:
(4.1)

X =


{U1,V1,W1}
{U2,V2,W2}

. . .
{Up,Vp,Wp}

 =


{(u U1′), (v V1′), (w W1′)}
{(u U2′), (v V2′), (w W2′)}

. . .
{(u Up′), (v Vp′), (w Wp′)}


where u, v and w are shared and have dimensions of
RI×Qshared ,RJ×Qshared and Rtnew×Qshared .

For compression matrices, we choose to assign each
worker create a single row of each of the matrices
to reduce the burden of creating an entire batch of
{U′p,V

′

p,W
′

p} of Xnew. We see that each worker is
sufficient to hold these matrices in main memory.
Now, we created compressed tensor replica or sum-
maries {Z1,Z2 . . .Zp} by multiplying each triplets of
compression matrices and Xnew;see Figure 1. Zp is 3-

mode tensor of size RQ×Q×Q. Since Q is considerably
smaller than [I ,J, K], we use O(Q3) of memory on each
worker.

For Xold, we already have replicas {Y1,Y2 . . .Yp}
obtained from each triplets of compression matrices



{Up,Vp,Wp}and Xold;see Figure 1. In general, the
compression comprises N-mode products which leads
to overall complexity of (Q(1)Stnew + Q(2)Stnew +
Q(3)Stnew + . . . Q(N)Stnew) for dense tensor X, if the
first mode is compressed first, followed by the second,
and then the third mode and so on. We choose to keep
Q1, Q2, Q3 . . . QN of same order as well non-temporal
dimensions are of same order in our algorithm, so time
complexity of parallel compression step for N-mode data
is O(QStnew) for each worker. The summaries are al-
ways dense, because first mode product with tensor is
dense, hence remaining mode products are unable to
exploit sparsity.

After appropriately computing summaries
{Z1,Z2 . . .Zp} for incoming slices, we need to up-
date the old summaries {Y1,Y2 . . .Yp} which were
generated from previous data. We don’t save entire
Xold, and instead we save the compressed summaries
i.e. Y only. Each worker reads its segment and process
update in parallel as given below.

(4.2)


X1
X2

.

.

.
Xp

 =


Y1
Y2

.

.

.
Yp

 ⊕


Z1
Z2

.

.

.
Zp

 �


W
′
1(k, q)

W
′
2(k, q)

.

.

.

W
′
p(k, q)

 =


(As(1),Bs(1),Cs(1))

(As(2),Bs(2),Cs(2))

.

.

.
(As(p),Bs(p),Cs(p))



where k is the number of slices of incoming tensor and q
is the slice number for the compressed tensor. Further,
for the decomposition step, we processed ’p’ summaries
on different workers, each one fitting the decomposition
to the respective compressed tensor {X1,X2 . . .Xp}
created by the compression step. We assume that the
updated compressed tensor {X1,X2 . . .Xp} fits in the
main memory, and performs in-memory computation.
We denote pth compressed tensor decompositions as
(As(p),Bs(p),Cs(p)) as discussed above. The data for
each parallel worker Xp can be uniquely decomposed,
i.e. (Ap,Bp,Cp) is unique up to scaling and column
permutation. Furthermore, parallel compression and
decomposition is able to achieve Goal G1.

4.2 Factor match for identifiability According to
Kruskal [9], the CP decomposition is unique (under
mild conditions) up to permutation and scaling of the
components i.e. A,B and C factor matrices. Consider
an 3-mode tensor X of dimension I, J and K of rank
R. If rank
(4.3)
rc = F =⇒ K ≥ R & I(I − 1)(J − 1) ≥ 2R(R− 1),

then rank 1 factors of tensor X can be uniquely
computable[9, 10]. Kronecker product[4] property is de-
scribed as (UT ⊗CT ⊗WT )(A�B�C) = ((UTA)�
(VTB) � (WTC)) ≈ (Ã, B̃, C̃). Now combining

Kruskal’s uniqueness and Kronecker product property,
we can obtain correct identifiable factors from sum-
maries if

(4.4) min(Q, rA) + min(Q, rB) + min(Q, rC) ≥ 2R+ 2

where Kruskal-rank of A, denoted as rA, is the maxi-
mum r such that any r columns of A are linearly inde-
pendent;see [21]. Hence, upon factorization of 3-mode

Xp into R components, we obtain A = aTpAΠpλ
(1/N)
p

where a is shared among summaries decompositions
, Πp is a permutation matrix, and λp is a diago-
nal scaling matrix obtained from CP decomposition.
To match factor matrices after decomposition step,
we first normalize the shared columns of factor ma-
trices (As(i),Bs(i),Cs(i)) and (As(i+1),Bs(i+1),Cs(i+1))
to unit norm ||.||1 . Next, for each column of
(As(i+1),Bs(i+1),Cs(i+1)), we find the most similar col-
umn of (As(i),Bs(i),Cs(i)), and store the correspon-
dence. Finally, we can describe factor matrices as :

(4.5)

Ãs =


aT1
aT2
.
.
.

aTp

∗ÃΠλ
(1/N)

, B̃s =


bT1
bT2
.
.
.

bTp

∗B̃Πλ
(1/N)

, C̃s =


cT1
cT2
.
.
.

cTp

∗C̃Πλ
(1/N)

where Ãs, B̃s, and C̃s are matrices of dimension
Ãs ∈ RpQ×R, B̃s ∈ RpQ×R and C̃s ∈ RpQ×R

respectively and N is number of dimensions of tensor.
For 3-mode tensor, N = 3 and for 4-mode tensor, N = 4
and so on. Even though for 3-mode tensor, A and B
do not increase their number of rows over time, the
incoming slices may contribute valuable new estimates
to the already estimated factors.Thus, we update all
factor matrices in the same way. This is able to partially
achieve Goal G2.

4.3 Update results Final step is to remove all the
singleton dimensions from the sets of compression ma-
trices {Up,Vp,Wp} and stack them together. A sin-
gleton dimension of tensor or matrix is any dimension
for which size of matrix or tensor with given dimensions
becomes one. Consider the 5-by-1-by-5 array A. After
removing its singleton dimension, the array A become
5-by-5. Now, we can write compression matrices as:

(4.6) P̃a =


U(:, :, 1)T

U(:, :, 2)T

.

.

.

U(:, :,p)T

 , P̃b =


V(:, :, 1)T

V(:, :, 2)T

.

.

.

V(:, :,p)T

 , P̃c =


W(:, :, 1)T

W(:, :, 2)T

.

.

.

W(:, :,p)T



where P̃a, P̃b, and P̃c are matrices of dimension
P̃a ∈ RpQ×I , P̃b ∈ RpQ×J and P̃c ∈ RpQ×K

respectively. The updated factor matrices (A,B, and C)



for 3-mode tensor X (i.e. Xold +Xnew) can be obtained
by :

(4.7)

A = P̃−1
a ∗ Ãs, B = P̃−1

b ∗ B̃s, C =
[
Cold; P̃−1

c ∗ C̃s

]
where A,B and C are matrices of dimension

RI×R, RJ×R and RK1...n,(n+1)...m×R respectively.
Hence, we achieve Goal G2.

Finally, by putting everything together, we obtain
the general version of our OCTen for 3-mode tensor,
as presented in Algorithm 1 in supplementary material.
The matlab implementation for method is available
at link1. The higher order version of OCTen
is also given in supplementary materials. We refer
the interested reader to supplementary material that
provide more details on OCTen and its applications.

Complexity Analysis: As discussed previously,
compression step’s time and space complexity is
O(QStnew) and O(Q3) respectively. Identifiability and
update can be calculated in O(pQI+pQR). Hence, time
complexity is considered as O(p2QI+p2QIR+QStnew).
Overall, as S is larger than any other factors, the time
complexity of OCTen can be written as O(QStnew). In
terms of space consumption, OCTen is quite efficient
since only the compressed matrices, previous factor ma-
trices and summaries need to be stored. Hence, the total
cost of space is pQ(pT +tnew +R)+(T +told)R+Q3.

5 Empirical Analysis

We design experiments to answer the following ques-
tions: (Q1) How much memory OCTen required for
updating incoming data? (Q2) How fast and accurately
are updates in OCTen compared to incremental algo-
rithms? (Q3) How does the running time of OCTen
increase as tensor data grow (in time mode)? (Q4)
What is the influence of parameters on OCTen? (Q5)
How OCTen used in real-world scenarios?

For our all experiments, we used Intel(R) Xeon(R),
CPU E5-2680 v3 @ 2.50GHz machine with 48 CPU cores
and 378GB RAM.

5.1 Evaluation Measures We evaluate OCTen
and the baselines using three criteria: fitness, proces-
sor memory used, and wall-clock time. These measures
provide a quantitative way to compare the performance
of our method. More specifically, Fitness measures the
effectiveness of approximated tensor and defined as :

Fitness(%) = 100 ∗
(

1− ||X− X̃||F
||X||F

)
higher the value, better the approximation. Here X is
original tensor and X̃ is drawn tensor from OCTen.

CPU time (sec): indicates the average running
time for processing all slices for given tensor, measured
in seconds, is used to validate the time efficiency of an
algorithm.

Process Memory used (MBytes): indicates the
average memory required to process each slices for given
tensor, is used to validate the space efficiency of an
algorithm.

5.2 Baselines In this experiment, four baselines
have been selected as the competitors to evaluate the
performance. OnlineCP[27]: It is online CP decom-
position method, where the latent factors are updated
when there are new data. SambaTen[7]: Sampling-
based Batch Incremental Tensor Decomposition algo-
rithm is the most recent and state-of-the-art method
in online computation of canonical parafac and per-
form all computations in the reduced summary space.
RLST[15]: Recursive Least Squares Tracking (RLST)
is another online approach in which recursive updates
are computed to minimize the Mean Squared Error
(MSE) on incoming slice. ParaComp[21]: an im-
plementation of non-incremental parallel compression
based tensor decomposition method. The model is
based on parallel processing of randomly compressed
and reduced size replicas of the data. Here, we simply
re-compute decomposition after every update.

5.3 Experimental Setup The specifications of each
synthetic dataset are given in Table 2. We generate
tensors of dimension I = J = K with increasing I
and other modes, and added gaussian distributed noise.
Those tensors are created from a known set of randomly
(uniformly distributed) generated factors with known
rank R, so that we have full control over the ground
truth of the full decomposition. For real datasets ,
we use AUTOTEN [17] to find rank of tensor. We
dynamically calculate the size of incoming batch or
incoming slice(s) for our all experiments to fit the data
into 10% of memory of machine. Remaining machine
CPU memory is used for computations for algorithm.
We use 20 parallel workers for every experiment.

Table 2: Table of Datasets analyzed
I=J=K NNZ Batch size p Q shared Noise (µ, σ)

50 125K 5 20 30 5 (0.1, 0.2)
100 1M 10 30 35 10 (0.2, 0.2)
500 125M 50 40 30 6 (0.5, 0.6)
1000 1B 20 50 40 10 (0.4, 0.2)
5000 7B 10 90 70 25 (0.5, 0.6)
10000 1T 10 110 100 20 (0.2, 0.7)
50000 6.25T 4 140 150 30 (0.6, 0.9)

Note that all comparisons were carried out over 10
iterations each, and each number reported is an aver-
age with a standard deviation attached to it. Here, we
only care about the relative comparison among base-



line algorithms and it is not mandatory to have the
best rank decomposition for every dataset. In case of
method-specific parameters, for ParaComp algorithm,
the settings are chosen to give best performance. For
OnlineCP, we choose the batchsize which gives best per-
formance in terms of approximation fitness. For fair-
ness, we also compare against the parameter configu-
ration for OCTen that yielded the best performance.
Also, during processing, for all methods we remove un-
necessary variable from baselines to fairly compare with
our methods.

5.4 Results

5.4.1 [Q1 & Q2] Memory efficient, Fast and Ac-
curate For all datasets we compute Fitness(%),CPU
time (seconds) and Memory(MB) space required. For
OCTen, OnlineCP, ParaComp,Sambaten and RLST
we use 10% of the time-stamp data in each dataset
as existing old tensor data. The results for qualitative
measure for data is shown in Figure 2. For each of ten-
sor data ,the best performance is shown in bold. All
state-of-art methods address the issue very well. Com-
pared with OnlineCP, ParaComp,Sambaten and RLST,
OCTen give comparable fitness and reduce the mean
CPU running time by up to 2x times for big tensor
data. For all datasets, PARACOMP’s accuracy (fitness)
is better than all methods. But it is able to handle upto
X ∈ R104×104×250 size only. For small size datasets, On-
lineCP’s efficiency is better than all methods. For large
size dataset, OCTen outperforms the baseline methods
w.r.t fitness, average running time (improved 2x-4x) and
memory required to process the updates. It significantly
saved 40-200% of memory as compared to Online CP,
Sambaten and RLST as shown in Figure 2. It saved
40-80% memory space compared to Paracomp. Hence,
OCTen is comparable to state-of-art methods for small
dataset and outperformed them for large dataset. These
results answer Q1 & Q2 as the OCTen have comparable
qualitative measures to other methods.

5.4.2 [Q3] Scalability Evaluation To evaluate the
scalability of our method, firstly, a tensor X of small
slice size (I ∈ [20, 50, 100]) but longer time dimension
(K ∈ [102− 106]) is created. Its first ≤10% timestamps
of data is used for Xold and each method’s running time
for processing batch of ≤10 data slices at each time
stamp measured.

As can be seen from Figure 3, increasing length
of temporal mode increases time consumption quasi-
linearly. However the slope is different for various
non-temporal mode data sizes. In terms of memory
consumption, OCTen also behaves linearly. This is

expected behaviour because with increase in temporal
mode, the parameters i.e. p and Q also grows. Once
again, our proposed method illustrates that it can
efficiently process large sized temporal data. This
answers our Q3.

5.4.3 [Q4] Parameter Sensitivity We extensively
evaluate sensitivity of number of compressed cubes
required ’p’ , size of compressed cubes and number of
shared columns required for OCTen. we fixed batch
size to ≈ 0.1 ∗ K for all datasets ,where K is time
dimension of tensor . As discussed in section 4, it is
possible to identify unique decomposition . In addition,
if we have

(5.8) p ≥ max([
(I − shared)

(Q− shared)

J

Q

K

Q
])

for parallel workers, decomposition is almost definitely
identifiable with column permutation and scaling. We
keep this in mind and evaluate the OCTen as follows.

(a) Sensitivity of p :The number of compressed
cubes play an important role in OCTen. We performed
experiments to evaluate the impact of changing the
number of cubes i.e. p with fixed values of other
parameters for different size of tensors. We see in figure
4 that increasing number of cubes result in increase
of Fitness of approximated tensor and CPU Time and
Memory (MB) is super-linearly increased. Consider the
case of I = J = K = 1000, from above condition, we
need P ≥ max

([
1000−10
50−10

1000
50

100
50

])
≈ 25. We can see

from Figure 4, the condition holds true.

(b) Sensitivity of Q : To evaluate the impact of
Q , we fixed other parameters i.e. ’p’ and ’shared’. We
can see that with higher values of the ’Q’, Fitness is
improved as shown in Figure 5. Also It is observed that
when equation 5.8 satisfy, fitness become saturated.
Higher the size of compressed cubes, more memory is
required to store them.

(c) Sensitivity of shared : To evaluate the
impact of ’shared’ , we fixed other parameters i.e. ’p’
and ’Q’.We observed that this parameter does not have
impact on CPU Time (sec) and Memory space(MB).
The best fitness is found when shared ≤ Q

2 as shown in

figure 6. Fitness decreases when shared ≥ Q
2 because

the new compressed cubes completely loses its own
structure when joined to old compressed cubes. To
retain both old and new structure we choose to keep
parameter shared ≤ Q

2 for all experiments.
In sum, these observations demonstrate that:

1) a suitable number of cubes and its size i.e. p,Q
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Figure 2: (a,b) Experimental results for speed and accuracy of approximation of incoming slices. We see that
OCTen gives comparable accuracy and speed to baseline.(c) Results for memory required to process the incoming

slices. The OCTen remarkably save the memory as compared to baseline methods.This answers our Q1 and Q2.
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Figure 3: CPU time (in seconds) and Memory (MB) used

for processing slices to tensor X incrementing in its time

mode. The time and space consumption increases quasi-
linearly. The mean fitness is ≥90% for all experiments

on compressed tensor could improve the fitness
and result in better tensor decomposition, and 2)
For identifiability ’p’ must satisfy the condition,

p ≥ max([ (I−shared)
(Q−shared)

J
Q

K
Q ]), to achieve better fitness,

lower CPU Time (seconds) and low memory space
(MB). This result answers Q4.

5.4.4 [Q5] Effectiveness on real world dataset
To evaluate effectiveness of our method on real world
networks, we use the Foursquare-NYC sequential tem-
poral dataset [26] and American College Football Net-
work (ACFN) [20] (analysis provided in supplemen-
try material). Foursquare-NYC dataset includes long-
term (≈ 10 months) check-in data in New York city col-
lected from Foursquare from 12 April 2012 to 16 Febru-
ary 2013. The tensor data is structured as [user (1k),
Point of Interest (40k), time (310 days)] and each ele-
ment in the tensor represents the total time spent by
user for that visit. Our aim is to find next top@5 places
to visit in NYC per user. We decompose the tensor
data into batches of 7 days and using rank = 15 esti-
mated by AutoTen [17]. For evaluation, we reconstruct
the complete tensor from factor matrices and mask the

known POIs in the tensor and then rank the locations
for each user. Since we do not have human supplied
relevance rankings for this dataset, we choose to visu-
alize the most significant factor (locations) using maps
provided by Google. If the top ranked places are with-
in 5 miles radius of user’s previous places visited, then
we consider the decomposition is effective. In the Figure
7(a), the five red markers corresponds to the five highest
values of the factor. These locations correspond to well-
known area in NYC : Brooklyn Bridge , Square garden ,
Theater District and Museum of Art. The high density
of activities (green points) verifies their popularity. Fig-
ure 7(b,c) shows the top@5 results for users #192 and
user #902, the red marker shows the next locations to
visit and yellow marker shows the previous visited lo-
cations. More interestingly, we can see that user #192
visited coffee shops and restaurants most of the time
food, top@5 ranked locations are also either restaurants
or food & drink shops. Similarity, user #902, most vis-
ited places are Fitness center, top@5 ranked locations
are park, playground and Stadium. Both case studies
shows the effectiveness of the decomposition and con-
firms that the OCTen can be used for various types of
data analysis and this answers Q5.

6 Related Work

In this section, we provide review of the work related to
our algorithm. At large, incremental tensor methods
in the literature can be categorized into two main
categories as described below:
Tensor Decomposition: Phan el at. [19] had pur-
posed a theoretic method namely GridTF to large-
scale tensors decomposition based on CP’s basic math-
ematical theory to get sub-tensors and join the output
of all decompositions to achieve final factor matrices.
Sidiropoulos el at.[15], proposed algorithm that focus
on CP decomposition namely RLST (Recursive Least
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Figure 4: OCTen Fitness, CPU Time (sec) and memory used vs. Number of compressed tensors ’p’ on different

datasets. With large ’p’, high fitness is achieved.
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Figure 5: OCTen Fitness, CPU Time (sec) and memory used vs. size of compressed tensors ’Q’ on different datasets.

Figure 6: OCTen fitness
vs. shared columns

of compressed tensors

’shared’ on different
datasets. It is observed

that parameter ’shared’
has negligible effect on

CPU time (sec) and

memory used(MB).
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Squares Tracking), which recursively update the fac-
tors by minimizing the mean squared error. In 2014,
Sidiropoulos el at. [21] , proposed a parallel algo-
rithm for low-rank tensor decomposition that is suit-
able for large tensors. The Zhou, el at. [27] describes
an online CP decomposition method, where the la-
tent components are updated for incoming data. The
most related work to ours was proposed by [7] which
is sampling-based batch incremental tensor decomposi-
tion algorithm. These state-of-the-art techniques focus
on only fast computation but not effective memory us-
age. Besides CP decomposition, tucker decomposition
methods[23, 16] were also introduced. Some of these
methods were not only able to handle data increasing
in one-mode, but also have solution for multiple-mode
updates using methods such as incremental SVD [6].
Latest line of work is introduced in [2] i.e TuckerMPI
to find inherent low-dimensional multi-linear structure,
achieving high compression ratios. Tucker is mostly fo-

cused on recovering subspaces of the tensor, rather than
latent factors, whereas our focus is on the CP decompo-
sition which is more suitable for exploratory analysis.
Tensor Completion: Another field of study is tensor
completion, where real-world large-scale datasets are
considered incomplete. In literature, wide range of
methods have been proposed based on online tensor
imputation[13] and tensor completion with auxiliary
information[14, 1]. The most recent method in this
line of work is by Qingquan el at.[22], who proposed
a low-rank tensor completion with general multi-aspect
streaming patterns, based on block partitioning of the
tensor. However, these approaches cannot be directly
applied when new batches of data arrived. This provides
us a good starting reference for further research.

7 Conclusions

In this work, we focus on online tensor decomposi-
tion problem and proposed a novel compression based
OCTen framework. The proposed framework effec-
tively identify the low rank latent factors of compressed
replicas of incoming slice(s) to achieve online tensor de-
compositions. To further enhance the capability, we
also tailor our general framework towards higher-order
online tensors. Through experiments, we empirically
validate its effectiveness and accuracy and we demon-
strate its memory efficiency and scalability by outper-
forming state-of-the-art approaches (40-200 % better).
Regardless, future work will focus on investigating dif-



Figure 7: (a)OCTen’s five highest values of the factor are represented as red markers. (b,c) Visualization of the

top@5 POIs of the user#192 and user#902 obtained from reconstructed tensor using factor matrices. The yellow
markers are user’s previous visited POIs and red markers are recommended POIs.

ferent tensor decomposition methods and incorporating
various tensor mining methods into our framework.
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8 Supplementary Materials

8.1 Extending to Higher-Order Tensors
We now show how our approach is extended
to higher-order cases. Consider N-mode tensor
Xold ∈ RI1×I2×···×IN−1×told . The factor matrices are

(A
(1)
old,A

(2)
old, . . . ,A

(N−1)
old ,A

(T1)
old ) for CP decomposition

with N th mode as new incoming data. A new tensor
Xnew ∈ RI1×I2×···×IN−1×tnew is added to Xold to form
new tensor of RI1×I2×···×IN−1×T where T = told + tnew.
In addition, sets of compression matrices for old data are

{U(1)
p ,U

(2)
p , . . . ,U

(N−1)
p ,U

(T )
p } and for new data it is

{U
′(1)
p ,U

′(2)
p , . . . ,U

′(N−1)
p ,U

′(T )
p } for p number of sum-

maries.
Each compression matrices are converted into com-

pressed cubes i.e. for Xold compressed cube is of dimen-

sion Yp ∈ RQ(1)×Q(2)···×Q(N−1)×Q(N)

and same follows
for Xnew. The updated summaries are computed us-

ing Xp = Yp + Zp s.t. Xp ∈ RQ(1)×Q(2)···×Q(N−1)×Q(N)

.
After CP decomposition of Xp, factor matrices and ran-
dom compressed matrices are stacked as :

(Ã(1)
s , . . . , Ã(N−1)

s , Ã(N)
s )← Π

[
(Ã

(1)
s(i), . . . , Ã

(N−1)
s(i) , Ã

(N)
s(i));

(Ã
(1)
s(i+1), Ã

(2)
s(i+1), . . . , Ã

(N−1)
s(i+1) , Ã

(N)
s(i+1))

]
, i ∈ (1, p−1)

(8.9)

& (P̃
(1)
, P̃

(2)
, . . . , P̃

(N−1)
, P̃

(N)
) =



P̃
(1)
(1)
, P̃

(2)
(1)
, . . . , P̃

(N−1)
(1)

, P̃
(N)
(1)

P̃
(1)
(2)
, P̃

(2)
(2)
, . . . , P̃

(N−1)
(2)

, P̃
(N)
(2)

.

.

.

P̃
(1)
(p)
, P̃

(2)
(p)
, . . . , P̃

(N−1)
(p)

, P̃
(N)
(p)



Finally, the update rule of each non-temporal mode
∈ (1, N − 1) and temporal mode ∈ (N) is :

(A(1), . . . ,A(N−1),AN ) ← (P̃(1)−1

∗ Ã(1)
s , . . . ,

(8.10) P̃(N−1)−1

∗ Ã(N−1)
s ,

[
A

(N)
old ; P̃(N)−1

∗ Ã(N)
s )

]
8.2 Necessary characteristics for uniqueness As
we mention above, OCTen is able to identify the
solution of the online CP decomposition, as long as the
parallel CP decompositions on the compressed tensors
are also identifiable. Empirically, we observe that if the
decomposition of a given data that has exact or near-
trilinear structure (or multilinear in the general case),
i.e. obeying the low-rank CP model with some additive
noise, OCTen is able to successfully, accurately, and
using much fewer resources than state-of-the-art, track
the online decomposition. On the other hand, when
given data that do not have a low trilinear rank, the
results were of lower quality. This observation is of
potential interest in exploratory analysis, where we do

not know 1) the (low) rank of the data, and 2) whether
the data have low rank to begin with (we note that this
is an extremely hard problem, out of the scope of this
paper, but we refer the interested reader to previous
studies [25, 17] for an overview). If OCTen provides
a good approximation, this indirectly signifies that the
data have appropriate trilinear structure, thus CP is
a fitting tool for analysis. If, however, the results are
poor, this may indicate that we need to reconsider the
particular rank used, or even analyzing the data using
CP in the first place. We reserve further investigations
of what this observation implies for future work.

Algorithm 1: OCTen for incremental 3-mode
tensor decomposition

Input: Xnew ∈ RI×J×K(n+1)...m ,summary Yi ∈ RQ×Q×Q,
R,p,Q, shared S.

Output: Factor matrices A,B,C of size (I ×R), (J ×R)
and (K1...n,(n+1)...m ×R).
while new slice(s) coming do

Zi ← {(U
′
i,V

′
i,W

′
i)} , Zi ∈ RQ×Q×Q, i ∈ (1, p)

Xi ← Yi ⊕ Zi , Xi ∈ RQ×Q×Q, i ∈ (1, p)

(Ãs(i), B̃s(i), C̃s(i))← CP (Xi, R), i ∈ (1, p)

(P̃a(i), P̃b(i), P̃c(i))← {(U
′
(i, [S, :], :)T ,V

′
(i, [S, :

], :)T ,W
′
(i, [S, :], :)T )}, i ∈ (1, p)

for i← 1 to p− 1 do
(Ãs, B̃s, C̃s)←
Π
[
(Ãs(i), B̃s(i), C̃s(i)) ; (As(i+1),Bs(i+1),Cs(i+1))

]
(P̃a, P̃b, P̃c)←[
(P̃a(i), P̃b(i), P̃c(i)) ; (P̃a(i+1), P̃b(i+1), P̃c(i+1))

]
end for
A← P̃−1

a ∗ Ãs ; B← P̃−1
b ∗ B̃s ;

C← [Cold; P̃
−1
c ∗ C̃s]

end
return (A,B,C)

8.3 OCTen at work We construct the ACFN tensor
data with the player-player interaction to a 115 x 115
grid, and considering the time as the third dimension of
the tensor. Therefore, each element in the tensor is an
integer value that represents the number of interactions
between players at a specific moment of time. Our aim
is to find the players communities (ground truth com-
munities = 12) changed over time in football dataset.
In order to evaluate the effectiveness of our method on
football dataset, we compare the ground-truth commu-
nities against the communities found by the our method.
Figure 8 shows a visualization of the football network
over time, with nodes colored according to the observed
communities. American football leagues are tightly-knit
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Figure 8: Visualization of the ground truth communities vs. the identified communities using OCTen on American
College Football Network (ACFN), which has 12 observed players communities i.e. C ∈ {C1, C2 . . . C12}. (a):

Represents the visualization of the network colored with ground truth communities. (b): Shows the visualization

of the network colored with predicted communities at time 1
3
T , where T is total time stamps. (c): Shows the

visualization of the network colored with predicted communities at time 2
3
T . (d): Shows the visualization of the

network colored with predicted communities at time T . We see that reconstructed views using OCTen helps to
identify the communities changing over time.

communities because of very limited matches played
across communities. Since these communities gener-
ally do not overlap, we perform hard clustering. We
find that communities are volatile and players belongs
to community #12 (from subfigure (a)) are highly dy-

namic in forming groups. We observe that OCTen is
able to find relevant communities and also shows the
ability to capture the changes in forming those commu-
nities in temporal networks.
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