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Abstract

In this work, we consider the problem of mode clustering in Markov jump models. This model
class consists of multiple dynamical modes with a switching sequence that determines how the
system switches between them over time. Under different active modes, the observations can have
different characteristics. Given the observations only and without knowing the mode sequence,
the goal is to cluster the modes based on their transition distributions in the Markov chain to
find a reduced-rank Markov matrix that is embedded in the original Markov chain. Our approach
involves mode sequence estimation, mode clustering and reduced-rank model estimation, where
mode clustering is achieved by applying the singular value decomposition and k-means. We show
that, under certain conditions, the clustering error can be bounded, and the reduced-rank Markov
chain is a good approximation to the original Markov chain. Through simulations, we show the
efficacy of our approach and the application of our approach to real world scenarios.

1 Introduction

Modeling dynamic systems has been a problem of great interest in the signal processing and con-
trol communities for decades. Many real-world phenomena cannot be described with one dynamical
model, and so switched models wherein the dynamics transition between different system models have
been studied and applied widely. In human-made systems, for example, a robot may have different
dynamics under different battery levels or when different modules within the robot fail. In nature,
the temperature and humidity level will have different fluctuations under different weather conditions;
brain electricity signals will behave differently under different emotions of the test subject. Note that
in all these examples, the modes can switch over time. To model this switching, one systematic and
probabilistic way is to assume the mode switching follows a Markov chain where future modes do not
depend on past modes given the most recent mode. This Markov jump model [1, 2] has been used in
power systems, air traffic management, economics, and communication systems [3–8].

A key challenge for such models is the model compactness – how does one represent such a com-
plicated dynamical system with as simple a model as possible? For example, modes like weather
conditions and human emotions have extremely complex underlying dynamics with strong correlations
over time. To satisfy the Markov property, one may concatenate underlying modes into a single Markov
state, and Markov chains built in this way will have a state space that grows exponentially with the
number of modes concatenated in the sequence. The same exponential growth rate applies when one
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models human-made systems with multiple sub-modules that each have multiple behavior modes (nor-
mal/abnormal). Allowing the Markov model to get extremely large is computationally inefficient for
analysis and control.

Prior work studying model reduction of Markov jump models does not consider reduction of discrete
state space, i.e. (reduction of number of Markovian modes), and prior work in state space reduction
of Markov chain does not further consider Markov jump models. There have been several works
studying the aggregation of states for Markov chains, which mainly relies on assumptions such as
strong/weak lumpability, or aggregatibility properties of a Markov chain [9–12]. There is therefore
significant potential in applying the abundant algorithms and theory in Markov chain aggregation to
Markov jump systems. This can achieve model reduction from a new perspective and will benefit the
analysis and control of, especially large, systems.

The work presented here addresses this gap. We observe that often times certain modes have similar
transition behaviors, and these correlations between the modes can be exploited to construct a reduced-
order model. By doing so, one may gain more insight into the nature of the complex model. Moreover,
we will have fewer parameters to estimate or fewer control variables to design when learning and
controlling the model, thus this may significantly reduce the computation burden. We are interested in
situations where the bottleneck is due to a large discrete state-space (i.e., large number of modes) and
aim to cluster and aggregate the modes for reduction. We achieve this model aggregation by clustering
the modes with similar transition distributions together. We assume the dynamics for each mode are
known, but we have no knowledge of the true mode sequence. In our approach, we cluster based on a
reduced-dimension representation of the empirical Markov transition matrix. We then re-estimate the
empirical Markov matrix using this cluster information, giving us a final low-rank estimate. We discuss
our method’s computational advantage, and we show our approach has guaranteed performance in the
sense that the clustering error and difference between reduced model and the true model can be upper
bounded. Experiments show the efficacy of our approach as well as how the performance scales with
the problem complexity.

1.1 Prior Work

Previous work on Markov jump systems includes: analysis of stability and stabilization [13], analysis
of system with time delays [14], optimal control [15], robust control [16], H∞ filtering [17], etc. In the
context of model reduction, prior work mainly focuses on the reduction of continuous state-space (or
observation space): [18] studies the H∞ model reduction and derives conditions under which a reduced
order system can be obtained via linear matrix inequalities; [19] reduces the model order with the
help of generalized dissipation inequalities and storage functions; [20] proposes a balanced truncation
algorithm to reduce model order and gives upper bound on approximation error. While, to the best
of our knowledge, the reduction of discrete state-space (number of modes) for Markov jump systems
has not been considered before.

2 Problem Formulation

2.1 Notation

In this paper, boldface and uppercase (lowercase) letters denote matrices (vectors); plain letters denote
scalars. If A is a matrix, then A(i, j) indexes the (i, j)th element in A and A(i, j:k) indexes the row
vector corresponding to the ith row and column j through k. A(i, :) indexes the ith row of A. Norms
without subscript, i.e. ‖·‖, all denote the `2-norm. We let [n] := {1, 2, . . . , n} and X0:N := {Xi}Ni=0.

For Markov chain with state space [n] and row stochastic transition matrix P ∈ Rnxn, we let
π ∈ Rn denote the stationary distribution vector of P, i.e. π

ᵀ
P = π

ᵀ
. Furthermore, we let πmax :=

2



maxi πi, πmin := mini πi. If P is ergodic, then π is unique and πmin > 0. Let πt ∈ Rn denote the
transient state distribution of P and π

ᵀ
t = π

ᵀ
t−1P. We denote with {Ω1, . . . ,Ωr} a partition of the state

space [n], where each Ωk denotes a cluster of states. We let Ω(i) denote the cluster with ith largest
cardinality.

2.2 Preliminaries

The Markov switched model we consider has the following form:

yt =

na∑
i=1

ai(Xt)yt−i +

nc∑
j=1

cj(Xt)ut−j + nt, (1)

X0:N ∈ [n]N+1 ∼ Markov chain(P), (2)

where yt, ut, nt are scalars and represent the model output, input and noise at time t respectively.
And yt depends on {yt−i}na

i=1, {ut−j}
nc
j=1 linearly through the parameters {ai(Xt)}na

i=1, {cj(Xt)}nc
j=1 from

mode Xt at time t. There are n modes in total and the mode sequence X0:N is assumed to follow a
Markov chain with row stochastic Markov matrix P ∈ Rnxn. The initial state distribution π0 can be
arbitrary. Note that one can omit input ut by taking nc = 0, which corresponds to an autonomous
model. If we let

wXt := [a1(Xt), . . . , ana(Xt), c1(Xt), . . . , cnc(Xt)]
ᵀ
, (3)

φt := [yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]
ᵀ
, (4)

then we obtain a simpler representation of the model:

yt = w
ᵀ
Xt
φt + nt, (5)

where the pair {yt,φt} can be viewed as the observation/data.
Furthermore, we assume the Markov matrix P has the following structure:

P = P̄ + ∆, (6)

where P̄ is a Markov matrix that is r-aggregatable, i.e. there exists an r-cluster partition {Ω1,Ω2, . . . ,Ωr}
on the state space [n] such that

∀k ∈ [r],∀i, j ∈ Ωk, P̄(i, :) = P̄(j, :). (7)

We assume rank(P̄) = r, which guarantees there are only r unique rows in P̄. Matrix ∆ is the
perturbation that accounts for the difference of the true Markov matrix P and the r-aggregatable
Markov matrix P̄. Note that so far we only assume modes are clustered based on their similarities in
transition distributions and for future work we will take the mode dynamics and group connectivity
into account.

2.3 Problem Formulation

Assuming parameters for all the modes {wk}nk=1 are known, given observation trajectory {yt, ut}Nt=0

with length N , we want to find an r-aggregatable approximation P̃ of P such that the partition
information in P̃ could recover {Ω1,Ω2, . . . ,Ωr} in P̄.

We seek an r-aggregatable approximation of the original Markov matrix while preserving the clus-
tering information in the underlying aggregatable Markov matrix. Given a Markov chain, one could
use the power method [21] to iteratively simulate the evolution of the state distribution or compute
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the stationary distribution. So, one motivation to solve the aforementioned problem is that, during the
power method, it requires O(n2) scalar multiplications in one iteration for P but only O(rn) for the
r-aggregatable P̃. Meanwhile, the compromise in accuracy brought by the reduction of computation
can be upper bounded with the following theorem.

Theorem 1. The differences between two Markov matrices P and P̃ in terms of stationary distribution
satisfy

‖π− π̃‖1 ≤
n∑
i=2

1

1− λi(P)
‖P− P̃‖∞. (8)

Furthermore, if P and P̃ are both ergodic, their transient distributions and satisfy

‖πt − π̃t‖1 ≤ Cρt + ‖π− π̃‖1 (9)

for some C > 0 and 0 < ρ < 1.

We can see that as long as the approximation error ‖P− P̃‖∞ is upper bounded, the stationary and
transient behavior differences between the true Markov matrix P and the r-aggregatable approximation
P̃ can be bounded. This gives the justification for using P̃ as a surrogate for P in the power method.
The distance ‖P− P̃‖∞ with P̃ obtained from our approach is bounded in Theorem 4.

3 Our Approach

Our approach to solve the problem mentioned above is given in Algorithm 1. In Line 3, we estimate
the active mode at time t by picking the mode whose dynamics gives the smallest residual error
|yt−w

ᵀ
kφt|. Then, in Line 5, based on the estimated mode sequence, we estimate P with the empirical

Markov matrix P̂ in which the transition probability from mode i to mode j is estimated with the
frequency of transition pair (i, j) with respect to mode i. In Line 7, we take the SVD of P̂ and
preserve the first r singular value components. This is essentially a denoising step that reduces the
influence of perturbation ∆ and estimation error in P̂, and the obtained Ur is a dimension-reduced
representation of P̂ that bears the low-rank structure in P̄. Then, we use k-means to estimate the
clustering information in P̄. Finally, in Line 9, we compute P̃ by taking modes within the same
estimated cluster as a single mode and re-computing the empirical Markov matrix.

Note that if a certain mode does not show up at all in the trajectory, i.e. the denominators in Line
5 and Line 9 might be 0, then we simply assign uniform distribution to that mode, i.e. P̂(i, j) = 1/n.
We show in the proof that when the trajectory is long enough, every mode will show up with high
probability.

4 Theoretical Guarantees

4.1 Relevant Definitions

Before discussing theoretical guarantees of the proposed approach, we introduce some definitions that
will be used later.

Definition 1 (Mixing Time of MC). Let P ∈ Rnxn be a row stochastic Markov transition matrix with
stationary distribution π. Then for all ε > 0, the ε−mixing time is defined as

τ(ε) = min

{
k : max

i∈[n]

1

2
‖(Pk)(i, :)

ᵀ − π‖1 ≤ ε
}
. (13)

Moreover, we let τ∗ = τ(1
4).
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Algorithm 1: Mode Clustering for Markov Jump Model

Input: Observation {yt, ut}Nt=0, dynamics {wk}nk=1

1 for t = 0, . . . , N do
2 φt := [yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]

ᵀ

3 X̂t = arg min
k∈[n]

|yt −w
ᵀ
kφt|

4 end
5 Compute empirical Markov matrix:

P̂(i, j) =

∑N
t=1 1{X̂t−1 = i, X̂t = j}∑N

t=1 1{X̂t−1 = i}
(10)

6 SVD decomposition: P̂ = UΣV
ᵀ

7 Ur = U(:, 1:r)
8 Solve the following k-means problem:

Ω̂1:r, ĉ1:r = arg min
Ω̂1,...,Ω̂r
ĉ1,...,ĉr

r∑
k=1

∑
i∈Ω̂k

‖Ur(i, :)− ĉk‖2 (11)

9 Aggregatable approximation: assume i ∈ Ω̂s

P̃(i, j) =

∑
k∈Ω̂s

∑N
t=1 1{X̂t−1 = k, X̂t = j}∑

k∈Ω̂s

∑N
t=1 1{X̂t−1 = k}

(12)

Output: Partition {Ω̂1, . . . , Ω̂r} and matrix P̃

Since k-means is used in Algorithm 1, we assume a (1 + ε) solution to the k-means problem can be
obtained and later show how ε affects the overall clustering error.

Definition 2 (Approximate Solution to k-means Clustering Problem). For problem in (11), we say
Ω̂1, . . . , Ω̂r, ĉ1, . . . , ĉr is a (1 + ε) solution if

r∑
s=1

∑
i∈Ω̂s

‖Ur(i, :)− ĉs‖2 ≤ (1 + ε) min
Ω1,...,Ωr
c1,...,cr

r∑
s=1

∑
i∈Ωs

‖Ur(i, :)− cs‖2. (14)

Definition 3 (Misclustering Rate). Let {Ω1,Ω2, . . . ,Ωr} be the underlying true clustering partition
of [n] and {Ω̂1, Ω̂2, . . ., Ω̂r} be an estimate of the true partition. We define misclustering rate of
{Ω̂1, Ω̂2, . . ., Ω̂r} as

MR(Ω̂1, Ω̂2, . . . , Ω̂r) = min
k∈K

r∑
j=1

|{i : i ∈ Ωj ; i /∈ Ω̂k(j)}|
|Ωj |

, (15)

where K is the set of all bijections from [r] to [r].

Since the partition is invariant to the labels of clusters, when we evaluate the misclustering rate,
we compute the error under the best label matching, which is the reason we need K. Note that in (15),
each summand has numerator no larger than the its denominator, so M(Ω̂1, Ω̂2, . . . , Ω̂r) ≤ r trivially.
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4.2 Main Results

Let N ′ :=
∑N−1

t=0 1{X̂t 6= Xt} denote the number of mistakes in the estimated mode sequence and

η := N ′

N denote the mistake rate. In the following analyses, Lemma 2 gives conditions under which
N ′ = 0. Theorem 3 and Theorem 4 give the upper bounds on misclustering rate and approximation
error.

Lemma 2. Assume for all t, |nt| < nmax and for all j ∈ [n]\Xt,

|φᵀ
t (wXt −wj)| > 2nmax, (16)

then the sequence estimated in Line 3 of Algorithm 1 is correct, i.e. N ′ = 0.

When nt = 0, the dynamics given in (5) defines a hyperplane plus noise. Data points at the inter-
section of these hyperplanes (a set of measure zero in the noiseless case) are not useful in distinguishing
the mode. (16) essentially means that such data points do not exist.

Theorem 3. Assume: (i) the framework in Section 2.2 holds; (ii) P is ergodic; (iii) {Ω̂1, . . . , Ω̂r} is a

(1 + ε1) solution to the k-means problem; (iv) ‖∆‖ ≤ σr(P̄)

8
√

(2+ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1; (v) mistake rate η < πmin
2 .

Then for all ε2 > 0, let ε̃2 = min

{
ε2,

πmin
2 − η, πmin

4(σ1(P̄)+‖∆‖)

(
σr(P̄)

8
√

(2+ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1− ‖∆‖
)}

, if N ≥

200τ∗πmax log(ε̃−1
2 )ε̃−2

2 [log(24nτ∗) + log(log(ε̃2
−1))], with probability no less than

1− exp

(
− N

200τ∗πmax log(ε̃−1
2 )ε̃−2

2

)
, (17)

we have

MR(Ω̂1, Ω̂2, . . . , Ω̂r) ≤ 64(2 + ε1)r

(
‖∆‖
σr(P̄)

+
4(ε2 + 1.5η)(‖∆‖+ ‖P̄‖)

πminσr(P̄)

)2

. (18)

In Theorem 3, the ergodicity condition on Markov matrix P and mistake rate η ≤ πmin
2 guarantees

that P can be well learned from a single trajectory. When ε2 is small enough, ε̃2 becomes ε2, which will
be more interpretable for the probability and trajectory length lower bounds. Through some further
inspection of Theorem 3, we could see the bounds improve as any of the following decreases: number of
modes n, number of clusters r, perturbation ‖∆‖, mixing time τ∗, condition number σ1(P̄)/σr(P̄), and
disparities in stationary distribution π and cluster population, namely πmax/πmin and |Ω(1)|/|Ω(r)|. The
disparities play a role here because as disparities increases, certain modes or clusters may be dominated
by the others and become less likely to show up in the data. This will make them less learned in the
algorithm and the estimation and clustering error will increase accordingly.

Theorem 4. Under the same conditions as Theorem 3, if MR = 0, then with the same probability
lower bound we could have

‖P− P̃‖∞ ≤ 12
√
nπ−1

minσ1(P)(ε2 + 1.5η) + 2‖∆‖∞. (19)

Theorem 4 gives the upper bound on the approximation error of P̃, which can be used to upper
bound the stationary and transient behavior differences in Theorem 1. The limitation of the theorem
is that the result holds only when the clustering error is 0.
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5 Experiments

5.1 Synthetic Data

We first study the performance of our approach with synthetic data. In the Markov jump model, we
let na=3, nc=2 and number of modes n = 50. For each mode, the dynamics are generated by uniformly
sampling its poles on (−1, 1). We let input ut ∼ N (0, 1) and noise nt ∼ Unif(−nmax, nmax). The state
space [n] is partitioned into r clusters Ω1:r randomly such that every possible partition is sampled with
equal probability. The mode transition probabilities P̄(Ωk, :) for every k and initial mode distribution
π0 are sampled from uniform Dirichlet distribution.

The error metrics we evaluate are: (i) clustering error CE = n−1 mink∈K
∑r

j=1 |{i : i ∈ Ωj ; i /∈
Ω̂k(j)}| where K is given in Definition 3; (ii) ‖π̃− π‖1, i.e. the difference between P̃ and P in terms
of stationary distributions. For each parameter setup, we record the average of these two metrics over
100 experiments.

5.1.1 Without Perturbation (∆ = 0)

We first evaluate how the performance depend on number of clusters r and noise magnitude nmax. We
set perturbation ∆ = 0 for these test cases. The experiment results are given in Fig.(1a-1d). We set
nmax = 0.1 in Fig.(1a-1b) and r = 6 in Fig.(1c-1d).

5.1.2 With Perturbation (∆ 6= 0)

In this test case, we fix n = 50, r = 6, nmax = 0.05, N = 105. The space of ∆ is a polytope which makes
it difficult to sample uniformly, so instead for i ∈ Ωk, we sample P(i, :) from Dirichlet distribution
with parameters αP(Ωk, :) and record ∆ = P − P̄. In this case, E[P(i, :)] = P(Ωk, :) and α controls
how much P(i, :) deviates from P(Ωk, :). We sweep α and use scatter plots Fig.(1e-1f) to show how
the error metrics vary with ‖∆‖.

5.2 Practically Motivated Example—Patrol Robot

Now we consider a more realistic case involving Markov jump system that can possibly benefit from
our approach. Assume in a region, we have n stations each with position pi ∈ R and at time t there is
only one active station st that generates requests; the sequence of active stations s0:t follows a Markov
chain P. There is a robot with position xt ∈ R at time t aiming to reach the active station as fast and
close as possible. Assuming the dynamics and control law of the robot are given by

xt+1 = xt + ut + nt,

ut = K(pst − xt),
(20)

the closed-loop dynamics take the form

xt+1 = (1−K)xt +Kpst + nt, (21)

which is a Markov jump model. In this setting, if the underlying Markov chain bears aggregatability
property to some extent, we could use our approach to uncover the corresponding partition of modes
as well as find an approximation of Markov transition matrix with stationary distribution that is easier
to compute. Understanding the similarities between the stations’ activation schedule can be useful to
design improved control strategies for the robot.

In the experiment, we set n = 50, pi = i,K = 0.7, nt ∼ N (0, 0.1), N = 106 and sample P̄,P same
as 5.1.1. Over the average of 100 runs, clustering error CE = 0.04 and ‖π̃− π‖1 = 0.07.
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Figure 1: Performance vs: (a,b) N and r; (c,d) N and nmax; (e,f) ‖∆‖

6 Conclusions & Future Work

In this paper, we consider the problem of model aggregation for Markov jump system from the per-
spective of clustering the modes based on their transition distributions. The proposed approach has
guaranteed clustering error upper bound and exhibits decent performance in the experiments.

There are several interesting directions for future work: (i) we will see how lumpable Markov chain
can help reformulate the model reduction problem; (ii) in the algorithm, after obtaining an estimate
of the Markov transition matrix, one might use it to get a better estimate of the mode sequence,
so several iterations between estimating switching sequence and Markov transition matrix may make
both estimates more accurate; (iii) after the mode clustering, it is worth investigating if we could use
a single mode to characterize the switching dynamics of all the modes within the cluster so that we
could truly reduce the number of modes in the model.
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A Technical Lemmas

This section provides technical lemmas that are used to prove the main results of the paper. The
proofs for main theorems are given later in Section B.

A.1 Lemmas on Matrix Perturbation Theory

Note that in Line 7 of Algorithm 1, SVD is performed on matrix P̂. To analyze this step, in this
section, we give a few lemmas about how the perturbation of a matrix will affect its left singular vector
matrix.

Definition 4 (Distance between column spaces). For two matrices E,F ∈ Rnxn, rank(E)=rank(F)=r,
let E ,F denote their column spaces and ΠE and ΠF denote corresponding projection matrices of the
column spaces. Then, the principal angles [22] θ1, . . . , θr between E ,F can be shown to be the arcsines
of first r singular values of matrix (I −ΠE)ΠF. Let sin Θ(E,F) := diag(sin(θ1), . . . , sin(θr)). The
sin Θ distance between column space of E and F is defined as ‖sin Θ(E,F)‖F , which satisfies

‖sin Θ(E,F)‖F = ‖(I−ΠE)ΠF‖F . (22)
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Lemma 5 (Wedin’s Perturbation Theorem [23]). Let A, Â ∈ Rmxn. Let A = UΣV
ᵀ

be the SVD of
A where singular values on the diagonal of Σ are arranged in descending order. Let Ur = U(:, 1:r),
Σr = Σ(1:r, 1:r),Vr = V(:, 1:r) denote the first r singular components of matrix A. Similarly, let
{Ûr, Σ̂r, V̂r} denote the first r singular components of matrix Â. Then, if σr(Â)− σr+1(A) > 0,

max{‖sin Θ(Vr, V̂r)‖, ‖sin Θ(Ur, Ûr)‖} ≤
max{‖(A− Â)V̂r‖, ‖Ûᵀ

r(A− Â)‖}
σr(Â)− σr+1(A)

. (23)

Otherwise (note that in this case, we have σr(A)− σr+1(Â) ≥ 0), we have

max{‖sin Θ(Vr, V̂r)‖, ‖sin Θ(Ur, Ûr)‖} ≤
max{‖(A− Â)Vr‖, ‖Uᵀ

r(A− Â)‖}
σr(A)− σr+1(Â)

. (24)

Note that the norm in the above equations can be replaced with any unitarily invariant norm.

Lemma 6 (Weyl’s Bound [24]). Given A, Â ∈ Rmxn, their singular values satisfy

max
i≤min{m,n}

|σi(A)− σi(Â)| ≤ ‖A− Â‖. (25)

Lemma 7 (Combination of Wedin’s Perturbation Theorem and Weyl’s Bound). Let A, Â ∈ Rmxn. Let
A = UΣV

ᵀ
be the SVD of A where singular values on the diagonal of Σ are arranged in descending

order. Let Ur = U(:, 1:r),Σr = Σ(1:r, 1:r),Vr = V(:, 1:r) denote the first r singular components of
matrix A. Similarly, let {Ûr, Σ̂r, V̂r} denote the first r singular components of matrix Â. Then

max{‖sin Θ(Vr, V̂r)‖, ‖sin Θ(Ur, Ûr)‖} ≤
2‖A− Â‖

σr(A)− σr+1(A)
. (26)

Proof. Note that if 2‖A− Â‖ ≥ σr(A) − σr+1(A), then (26) holds trivially since ‖sin Θ(·, ·)‖ ≤ 1.
So, it suffices to consider the case when 2‖A− Â‖ < σr(A)− σr+1(A).

Using Weyl’s bound in Lemma 6, we have

σr(Â) ≥ σr(A)− ‖A− Â‖, (27)

σr+1(Â) ≤ σr+1(A) + ‖A− Â‖. (28)

For the case when σr(Â)− σr+1(A) > 0, Wedin’s perturbation theorem in Lemma 5 can give

max{‖sin Θ(Vr, V̂r)‖, ‖sin Θ(Ur, Ûr)‖} ≤
‖A− Â‖

σr(Â)− σr+1(A)
. (29)

Using (27), we have

max{‖sin Θ(Vr, V̂r)‖, ‖sin Θ(Ur, Ûr)‖} ≤
‖A− Â‖

σr(A)− σr+1(A)− ‖A− Â‖
. (30)

The condition 2‖A− Â‖ < σr(A)− σr+1(A) implies that the RHS of (30) is nonnegative and strictly
smaller than 1, so adding ‖A− Â‖ to both the numerator and denominator of the RHS of (30) shows
(26).

For the case when σr(Â)−σr+1(A) ≤ 0, the same result can be shown using Wedin’s perturbation
bound, equation (28) and similar argument.
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Lemma 8. Let U1,U2 ∈ Rnxr where n ≥ r and U
ᵀ
1U1 = U

ᵀ
2U2 = I. Then

min
O∈O(r)

‖U1 −U2O‖2F ≤ 2‖sin Θ(U1,U2)‖2F , (31)

where O(r) denotes the orthogonal group with dimension r, i.e. the set of all r-dimensional orthonormal
matrices.

Proof. Let the singular value decomposition of matrix U
ᵀ
1U2 be U

ᵀ
1U2 = WΣV

ᵀ
. For any orthonor-

mal O, we have

‖U1 −U2O‖2F =tr[(U1 −U2O)(U
ᵀ
1 −O

ᵀ
U

ᵀ
2)]

=tr[U1U
ᵀ
1 + U2U

ᵀ
2 − 2OU

ᵀ
1U2]

=2r − 2tr(OWΣV
ᵀ
)

=2r − 2tr(ΣÕ) (Õ := V
ᵀ
OW)

=2r − 2

r∑
i=1

Σ(i, i)Õ(i, i).

(32)

Following the definition of Õ, we see Õ is orthonormal, thus Õ(i, i) ≤ 1, ∀i ∈ [r]. Also note that
Σ(i, i) ≥ 0, we have

∑r
i=1 Σ(i, i)Õ(i, i) ≤

∑r
i Σ(i, i) = tr(Σ), where equality holds when Õ(i, i) =

1,∀i ∈ [r], i.e. Õ = I and O = VW
ᵀ
. Therefore,

min
O∈O(r)

‖U1 −U2O‖2F ≤ 2(r − tr(Σ)). (33)

For the RHS of (31), we have

‖sin Θ(U1,U2)‖2F =‖(I−U1U
ᵀ
1)U2U

ᵀ
2‖2F

=tr[U2U
ᵀ
2(I−U1U

ᵀ
1)(I−U1U

ᵀ
1)U2U

ᵀ
2]

=tr[(I−U1U
ᵀ
1)U2U

ᵀ
2]

=tr(U2U
ᵀ
2)− tr(U

ᵀ
1U2U

ᵀ
2U1)

=r − tr(WΣV
ᵀ
VΣW

ᵀ
)

=r − tr(Σ2),

(34)

where the first equality follows Definition 4. Since Σ(i, i) ≤ 1, ∀i ∈ [r], we have tr(Σ) ≥ tr(Σ2).
Following this and together with (33) and (34), we can conclude the proof.

A.2 Lemmas on Clustering

In this section, we present some lemmas that can be applied to the clustering analysis in our algorithm.

Definition 5 (Membership Matrix and Membership Matrix Set). We call a matrix A ∈ Rnxr where
r ≤ n a membership matrix for n points and r clusters if each row of A has exactly one element equal
to 1 and 0’s for the rest of elements. And A(i, j) = 1 if and only if “point i belongs to cluster j”.

We let Mn,r := {M | M ∈ Rnxr,M is a membership matrix} denote the set of all membership
matrices for n points and r clusters.

Remark. Note that membership matrix is permutation invariant in the sense that, for any permutation
matrix Q ∈ Rrxr, membership matrix A and AQ represent the same membership information and the
only difference is that Q changes the cluster labels. So, the permutation invariance establishes an
equivalence relation among the set Mn,r.
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Lemma 9. Let X ∈ Rnxm be an arbitrary matrix with factorization X = MXCX, where MX ∈ Mn,r

is a membership matrix and CX ∈ Rrxm, rank(CX) = r. Let Ωi = {j | MX(j, i) = 1},∀i ∈ [r] and
UrΣrV

ᵀ
r be the SVD of X, which preserves only the first r singular value components. Then, for any

i ∈ Ωk and any j ∈ Ωl,

‖Ur(i, :)−Ur(j, :)‖ =

{
0 if k = l√

1
|Ωk| + 1

|Ωl| if k 6= l
. (35)

Proof. Since X = MXCX and CX has full row rank, we see rank(X) = r, thus ΣrV
ᵀ
r has full

row rank as well. From this, we have (i) ∀k, ∀i, j ∈ Ωk,X(i, :) = X(j, :), so Ur(i, :) = Ur(j, :); (ii)
∀k 6= l,∀i ∈ Ωk, ∀j ∈ Ωl,X(i, :) 6= X(j, :), so Ur(i, :) 6= Ur(j, :). Therefore, Ur has factorization
Ur = MXC for some C ∈ Rrxr. In another way, there are only r unique rows in Ur with C collecting
the unique rows and MX being the membership matrix shared with X.

Since I = U
ᵀ
rUr = CTM

ᵀ
XMXC = C

ᵀ
diag([|Ω1|, |Ω2|, . . . , |Ωr|])C, we can see that matrix C has

orthogonal rows and ‖C(i, :)‖ = 1√
|Ωi|

,∀i ∈ [r]. Therefore, ∀i ∈ Ωk, j ∈ Ωl,

‖Ur(i, :)−Ur(j, :)‖ = ‖C(k, :)−C(l, :)‖ =

{
0 if k = l√

1
|Ωk| + 1

|Ωl| if k 6= l
. (36)

Lemma 10 (Approximate k-means error bound, Lemma 5.3 in [25]). For ε > 0 and any two matrices
U, Ū ∈ Rnxr such that Ū = M̄C̄ with M̄ ∈ Mn,r, C̄ ∈ Rrxr, let {M,C} be a (1 + ε) solution to the
k-means problem on U:

M ∈Mn,r,C ∈ Rrxr
s.t. ‖MC−U‖2F ≤ (1 + ε) min

M′∈Mn,r,C′∈Rrxr
‖M′C′ −U‖2F .

Let Ωk = {i | i ∈ [n], M̄(i, k) = 1} denote the set of all points belonging to cluster k. For any

δk ≤ min
l 6=k
‖C̄(l, :)− C̄(k, :)‖, ∀k ∈ [r], (37)

define the set Sk = {i | i ∈ Ωk, ‖(MC)(i, :)− Ū(i, :)‖ ≥ δk/2}, then

r∑
k=1

|Sk|δ2
k ≤ 4(4 + 2ε)‖Ū−U‖2F . (38)

Moreover, define G =
⋃r
k=1(Ωk\Sk). If

(16 + 8ε)‖Ū−U‖2F /δ2
k < |Ωk|, ∀k ∈ [r], (39)

then there exists an r × r permutation matrix J such that M̄(G, :) = M(G, :)J, i.e. M and M̄ share
the same membership information for points in the set G.

Remark. Lemma 10 can be used to bound the number of mis-clustered points by k-means. In this
lemma, U represents the data matrix (possibly dimension reduced) for n data points. One applies
k-means to U and obtains the membership matrix M and cluster centers C. Ū represents the “clean”
data such that data points within the same true cluster have exactly the same rows and its membership
information M̄ is what one wants to recover and compares with. And its main takeaway is, under (38),
at least the points in set G can be clustered correctly from any (1 + ε) solution of the k-means problem.
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A.3 Lemmas on Markov Chain Concentration

In this section, Lemma 13 provides the estimation error bounds for Markov matrix estimation from a
single trajectory generated by the Markov chain. Lemma 14 analyzes the case when certain states in
the trajectory are perturbed. Lemma 11 and Lemma 12 are building blocks towards Lemma 13 and
Lemma 14.

Lemma 11 (Lemma 5 in [12]). Let τ(ε) be the mixing time of Markov chain given in Definition 1.
For any ε ≤ δ < 1/2, we have

τ(ε) ≤ τ(δ)

(⌈
log(ε/δ)

log(2δ)

⌉
+ 1

)
. (40)

Lemma 12 (Lemma 7 in [12]). Let P ∈ Rnxn be an ergodic row stochastic matrix with stationary
distribution π ∈ Rn. Let πmax = maxi πi, πmin = mini πi. Let τ(·) denote the mixing time of P, which
is given in Definition 1. Let F = diag(π)P denote the stationary frequency matrix. Given a trajectory
X0:N of the Markov chain, define π̂0 ∈ R1xn and F̃ ∈ Rnxn as

π̂0(i) =
1

N

N∑
t=1

1{Xt−1 = i}, (41)

F̂0(i, j) =
1

N

N∑
t=1

1{Xt−1 = i,Xt = j}. (42)

For any ε > 0, let α = τ(min(ε/2, πmax)) + 1, then

P
(
‖F̂0 − F‖ ≥ ε

)
≤ 2αn exp

(
− Nε2/8

2πmaxα+ εα/6

)
, (43)

P (‖π̂0 − π‖∞ ≥ ε) ≤ 2αn exp

(
− Nε2/8

2πmaxα+ εα/6

)
. (44)

Lemma 13. Consider the Markov chain given in Lemma 12 and its trajectory X0:N . Define τ∗ =
τ(1/4) and P̂0 ∈ Rnxn as

P̂0(i, j) =


∑N

t=1 1{Xt−1=i,Xt=j}∑N
t=1 1{Xt−1=i}

if
∑N

t=1 1{Xt−1 = i} 6= 0

1/n o.w.
, (45)

For any ε > 0, let ε̃ = min{πmin/2, ε}, then we have

P
(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖ε
)
≥ 1− 24nτ∗ log(ε̃−1) exp

(
− N

100τ∗πmax log(ε̃−1)ε̃−2

)
. (46)

Proof. For simplicity, restrict ε < πmin/2 for now. From Lemma 12, we have the concentration results
of F̂0, π̂0 given in (43) and (44), we will first simplify them before applying them to this proof.

Since α = τ(min(ε/2, πmax)) + 1 in Lemma 12 and we restrict ε < πmin/2 for now, we see α =
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τ(ε/2) + 1. We can obtain an upper bound on α as follows:

α = τ(ε/2) + 1

(i)

≤
(⌈

log(2ε)

log(1/2)

⌉
+ 1

)
τ∗ + 1

(ii)

≤
((

log(2ε)

log(1/2)

)
+ 3

)
τ∗

=
(
log2(0.5ε−1) + 3

)
τ∗

≤
(
log2(ε−1) + 3

)
τ∗

(iii)

≤ 4τ∗ log2(ε−1)

≤ 6τ∗ log(ε−1),

(47)

where: (i) holds since ε/2 < πmin/4 ≤ 1/(4n) ≤ 1/4 so we could apply Lemma 11; (ii) holds since
mixing time τ∗ ≥ 1; (iii) holds since ε−1 > 2π−1

min ≥ 2n ≥ 2 thus log2(ε−1) ≥ 1. Plugging (47) into the
RHS of (43) and (44), we have

2αn exp

(
− Nε2/8

2πmaxα+ εα/6

)
≤12nτ∗ log(ε−1) exp

(
− N

8τ∗ log(ε−1)ε−1(12πmaxε−1 + 1)

)
≤12nτ∗ log(ε−1) exp

(
− N

100τ∗πmax log(ε−1)ε−2

)
,

(48)

where the last line holds since 0.5πmaxε
−1 > πmax/πmin ≥ 1.

In the remainder of the proof, we require the conditions ‖F̂0 − F‖ ≤ ε, ‖π̂0 − π‖∞ ≤ ε to be
satisfied. By applying union bound to (43) and (44) and plugging in (48), we can see

P
(
‖F̂0 − F‖ ≤ ε, ‖π̂0 − π‖∞ ≤ ε

)
≥ 1− 24nτ∗ log(ε−1) exp

(
− N

100τ∗πmax log(ε−1)ε−2

)
. (49)

When ‖π̂0 − π‖∞ ≤ ε < πmin/2, it is easy to see mini π̂0(i) ≥ πmin/2 > 0, which implies every
state has showed up at least once in the trajectory since otherwise there would be 0 element in π̂0.
Also, by the definition of F̂0, π̂0, P̂0, we can see P̂0 is determined only by the first line of (45) thus
P̂0 = diag(π̂0)−1F̂0 holds. Now, consider ‖P̂0 −P‖, we have

‖P̂0 −P‖ = ‖diag(π̂0)−1F̂0 − diag(π)−1F‖

≤ ‖diag(π̂0)−1(F̂0 − F)‖+ ‖
(
diag(π̂0)−1 − diag(π)−1

)
F‖

≤ ‖diag(π̂0)−1‖‖(F̂0 − F)‖+ ‖I− diag(π/π̂0)‖‖diag(π)−1F‖

=

(
min
i
π̂0(i)

)−1

‖(F̂0 − F)‖+ max
i

|π̂0(i)− πi|
π̂0(i)

‖P‖

≤ 2π−1
min‖(F̂0 − F)‖+

maxi |π̂0(i)− πi|
minj π̂0(j)

‖P‖

(i)

≤ 2π−1
minε+ 2π−1

minε‖P‖
(ii)

≤ 4π−1
min‖P‖ε,

(50)

15



where: (i) holds as ‖F̂0 − F‖ ≤ ε, ‖π̂0 − π‖∞ ≤ ε and (ii) holds as ‖P‖ ≥ ‖P 1√
n1
‖ = ‖ 1√

n1
‖ = 1.

Therefore, for any ε ≤ πmin/2, by combining (50) and (49), we have

P
(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖ε
)
≥ 1− 24nτ∗ log(ε−1) exp

(
− N

100τ∗πmax log(ε−1)ε−2

)
. (51)

Finally, we could remove the restriction ε ≤ πmin/2. We have, for any ε > 0 and let ε̃ = min{ε, πmin/2},
then

P
(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖ε
)
≥ P

(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖ε̃
)

≥ 1− 24nτ∗ log(ε̃−1) exp

(
− N

100τ∗πmax log(ε̃−1)ε̃−2

)
,

(52)

which concludes the proof.

Lemma 14. Consider all the conditions given in Lemma 12 and 13 except that there are N ′ perturba-
tions in the trajectory of Markov chain, i.e.

∑N
t=0 1{X̂t 6= Xt} = N ′, where X̂0:N denotes the perturbed

trajectory. Let

P̂(i, j) =


∑N

t=1 1{X̂t−1=i,X̂t=j}∑N
t=1 1{X̂t−1=i}

if
∑N

t=1 1{X̂t−1 = i} 6= 0

1/n otherwise.
(53)

Then, when N ′ < Nπmin
2 , ∀ε > 0, let ε̃ = min{πmin/2−N ′/N, ε}, we have

P
(
‖P̂−P‖ ≤ 4π−1

min‖P‖(ε+ 1.5N ′/N)
)
≥ 1− 24nτ∗ log(ε̃−1) exp

(
− N

100τ∗πmax log(ε̃−1)ε̃−2

)
. (54)

Proof. For now, assume ε < πmin/2−N ′/N . Let π̂0, F̂0, P̂0 be defined the same as Lemma 12 and 13
with the unperturbed trajectory X0:N , then according to the proof of Lemma 13, we have

P
(
‖F̂0 − F‖ ≤ ε, ‖π̂0 − π‖∞ ≤ ε, ‖P̂0 −P‖ ≤ 4π−1

min‖P‖ε
)
≥

1− 24nτ∗ log(ε−1) exp

(
− N

100τ∗πmax log(ε−1)ε−2

)
. (55)

Let π̂(i) = 1
N

∑N
t=1 1{X̂t−1 = i}, F̂(i, j) = 1

N

∑N
t=1 1{X̂t−1 = i, X̂t = j}. Then, for any i ∈ [n], we

can see

π̂(i) =
1

N

N∑
t=1

1{X̂t−1 = i}

=
1

N

(
N∑
t=1

1{Xt−1 = i}+

N∑
t=1

1{Xt−1 6= i, X̂t−1 = i} −
N∑
t=1

1{Xt−1 = i, X̂t−1 6= i}

)

= π̂0(i) +
1

N

(
N∑
t=1

1{Xt−1 6= i, X̂t−1 = i} −
N∑
t=1

1{Xt−1 = i, X̂t−1 6= i}

)
,

(56)

which gives

|π̂(i)− π̂0(i)| ≤ N ′

N
. (57)

Then, with probability no less than the bound given in (55), we have

π̂(i) ≥ π̂0(i)− N ′

N
≥ π(i)− ε− N ′

N
≥ πmin

2
> 0, (58)
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|π̂(i)− π(i)| ≤ |π̂(i)− π̂0(i)|+ |π̂0(i)− π(i)| ≤ N ′

N
+ ε, (59)

and

‖F̂− F‖ ≤ ‖F̂− F̂0‖+ ‖F̂0 − F‖

≤ ‖F̂− F̂0‖F + ε

=
1

N

√√√√√ ∑
i,j∈[n]

(
N∑
t=1

1{X̂t−1 = i, X̂t = j} −
N∑
t=1

1{Xt−1 = i,Xt = j}

)2

+ ε

≤ 1

N

√√√√√
 ∑
i,j∈[n]

∣∣∣∣∣
N∑
t=1

1{X̂t−1 = i, X̂t = j} −
N∑
t=1

1{Xt−1 = i,Xt = j}

∣∣∣∣∣
2

+ ε

(i)

≤ 1

N

√
(2N ′)2 + ε

=
2N ′

N
+ ε,

(60)

where (i) holds since N ′ perturbations in the trajectory can at most ruin 2N ′ transition pairs in total.
Since (58) guarantees for any i ∈ [n], π̂(i) > 0, similar to the derivation in (50), we have

‖P̂−P‖ ≤
(

min
i

π̂(i)

)−1

‖F̂− F‖+
maxi |π̂(i)− π(i)|

mini π̂(i)
‖P‖. (61)

Combining (58), (59) and (60), we have

‖P̂−P‖ ≤ 2π−1
min(

2N ′

N
+ ε) + 2π−1

min(
N ′

N
+ ε)‖P‖

≤ 2π−1
min(

2N ′

N
+ ε)‖P‖+ 2π−1

min(
N ′

N
+ ε)‖P‖

≤ 4π−1
min(

3N ′

2N
+ ε)‖P‖.

(62)

So,

P
(
‖P̂−P‖ ≤ 4π−1

min‖P‖(ε+ 1.5N ′/N)
)
≥ 1− 24nτ∗ log(ε−1) exp

(
− N

100τ∗πmax log(ε−1)ε−2

)
. (63)

Finally, we could remove the restriction ε < πmin/2 − N ′/N . For any ε > 0, let ε̃ = min{ε, πmin/2 −
N ′/N}, then

P
(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖(ε+ 1.5N ′/N)
)
≥ P

(
‖P̂0 −P‖ ≤ 4π−1

min‖P‖(ε̃+ 1.5N ′/N)
)

≥ 1− 24nτ∗ log(ε̃−1) exp

(
− N

100τ∗πmax log(ε̃−1)ε̃−2

)
,

(64)

which concludes the proof.

B Proofs for Main Theorems

In this section, we list the proofs for the main theorems appear in the paper. The main idea of the proof
for Theorem 3 is inspired by [12], which is developed for discrete Markov chains. We generalize the
work in [12] to the case when Markov matrix is not exactly aggregatable and there are perturbations
in the Markov chain trajectory, i.e., the mode sequence is estimated from the observation trajectory
of an underlying switched system rather than being directly observed.
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B.1 Proof for Theorem 1

Proof. From Section 3.6 in [26], one can easily obtain (8). For (9), we have

‖πt − π̃t‖1 ≤ ‖πt − π‖1 + ‖π̃t − π̃‖1 + ‖π− π̃‖1. (65)

By Markov convergence theorem [27], we could upper bound the first two terms and finish the proof.

B.2 Proof for Lemma 2

Proof. Suppose pair {yt,φt} is generated by wi, i.e. yt = w
ᵀ
iφt + nt. Then based on Line 3 in

Algorithm 1, X̂t = Xt when |yt −w
ᵀ
iφt| < |yt −w

ᵀ
jφt|,∀j 6= i, which is equivalent to

|nt| < |(wi −wj)
ᵀ
φt + nt|. (66)

A sufficient condition to guarantee (66) is (wi −wj)
ᵀ
φt > 2nmax, ∀j 6= i.

B.3 Proof for Theorem 3

We first consider the case when there is no estimation error in empirical Markov matrix P̂, i.e. P̂ = P,
then generalize this to Theorem 3.

Lemma 15. Assume: (i) the framework in Section 2.2 holds; (ii) in Algorithm 1, P̂ = P, i.e. the
clustering is applied to the true Markov matrix; (iii) {Ω̂1, . . . , Ω̂r} is a (1 + ε1) solution to the k-means
problem in Algorithm 1. Then, if

‖∆‖ ≤ σr(P̄)

8
√

(2 + ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1, (67)

we have

MR(Ω̂1, Ω̂2, . . . , Ω̂r) ≤ 64(2 + ε)r
‖∆‖2

σr(P̄)2
. (68)

Proof. From conditions in Lemma 15, we see rank(P̄) = r. Let P̄ = ŪrΣ̄rV̄
ᵀ
r be the SVD of P̄,

which only preserves the first r singular value components, so Ūr ∈ Rnxr, Σ̄r ∈ Rrxr, V̄r ∈ Rnxr.
Recall Ur defined in the algorithm contains the first r left singular vectors of P. We define Q =
arg minO∈O(r) ‖Ur − ŪrO‖2F , where O(r) denotes the orthogonal group with dimension r. Then, we
have

‖Ur − ŪrQ‖F
(i)

≤
√

2‖sin Θ(Ur, Ūr)‖F
≤
√

2r‖sin Θ(Ur, Ūr)‖
(ii)

≤ 2
√

2r‖P̄−P‖
σr(P̄)

=
2
√

2r‖∆‖
σr(P̄)

,

(69)

where (i) follows from Lemma 8; (ii) follows from Lemma 7.
Also note that since Q is orthogonal, for all i ∈ Ωk, j ∈ Ωl we have

‖(ŪrQ)(i, :)− (ŪrQ)(j, :)‖
=‖[Ūr(i, :)− Ūr(j, :)]Q‖
=‖Ūr(i, :)− Ūr(j, :)‖

=

{
0 if k = l√

1
|Ωk| + 1

|Ωl| if k 6= l
,

(70)
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where the last line follows from Lemma 9. Recall {Ω1, . . . ,Ωr} is the partition of rows of P̄ such
that rows within the same cluster are the same. We can see in matrix ŪrQ, rows are the same if
corresponding rows in P̄ are in the same cluster, while different if corresponding rows in P̄ are in
different clusters. So, we can claim that the matrix ŪrQ carries the same aggregation information as
P̄. Because of this, together with the fact that we apply k-means to Ur, we can apply Lemma 10 by
replacing {Ū,U} in Lemma 10 with {ŪrQ,Ur}.

To make condition (37) in Lemma 10 hold, based on (70), we can pick

δk =

√
1

|Ωk|
+

1

|Ω(1)|
∀k ∈ [r]. (71)

To make condition (39) in Lemma 10 hold, with this choice of δk, it suffices to guarantee for all
k ∈ [r]

|Ωk|
|Ω(1)|

> 8(2 + ε)‖ŪrQ−Ur‖2F − 1 (72)

which, by applying (69), can be guaranteed by the following condition:

‖∆‖ ≤ σr(P̄)

8
√

(2 + ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1. (73)

Therefore, with (73), and according to Lemma 10, we can claim states in set G defined in Lemma
10 can be correctly aggregated under relabeling invariance. Moreover,

MR(Ω̂1, . . . , Ω̂r) ≤
r∑

k=1

|Sk|
|Ωk|

≤
r∑

k=1

|Sk|δ2
k

(i)

≤8(2 + ε)‖ŪrQ−Ur‖2F
(ii)

≤ 64(2 + ε)r‖∆‖2

σr(P̄)2
,

(74)

where Sk is defined in Lemma 10, (i) follows from (38) and (ii) follows from (69).
Now, with the analyses under the assumption that no estimation error in P̂ exists, we go back to

the proof for the general case, i.e. Theorem 3.
Proof for Theorem 3. Let ∆̂ = ∆ + (P̂−P), then we can see P̂ = P̄ + ∆̂. By applying Lemma
15 to P̂ and ∆̂, we can see when

‖∆̂‖2 ≤ σr(P̄)2

64(2 + ε1)r

( |Ω(r)|
|Ω(1)|

+ 1

)
, (75)

we have

MR(Ω̂1, Ω̂2, . . . , Ω̂r) ≤ 64(2 + ε1)r
‖∆̂‖2

σr(P̄)2
. (76)

To guarantee (75), by triangle inequality, it suffices to ensure

‖P̂−P‖ ≤ σr(P̄)

8
√

(2 + ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1− ‖∆‖. (77)
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Now, for all ε2 > 0, let ε̃2 = min

{
ε2,

πmin
2 − η, πmin

4(σ1(P̄)+‖∆‖)

(
σr(P̄)

8
√

(2+ε1)r

√
|Ω(r)|
|Ω(1)|

+ 1− ‖∆‖
)}

. By

Lemma 14, we can see when N ≥ 200τ∗πmax log(ε̃−1
2 )ε̃−2

2 [log(24nτ∗) + log(log(ε̃2
−1))], with probability

no less than

1− exp

(
− N

200τ∗πmax log(ε̃−1
2 )ε̃−2

2

)
, (78)

we have
‖P̂−P‖ ≤ 4π−1

min‖P‖(ε2 + 1.5η). (79)

By the choice of ε̃2, we also can see (78) gives the probability lower bound on the occurrence of (77),
which further lower bounds the occurrence probability of (75).

Finally, plugging (79) into (76), we have

MR(Ω̂1, Ω̂2, . . . , Ω̂r) ≤ 64(2 + ε1)r

(
‖∆̂‖
σr(P̄)

)2

≤ 64(2 + ε1)r

(
‖∆‖+ ‖P̂−P‖

σr(P̄)

)2

≤ 64(2 + ε1)r

(
‖∆‖+ 4π−1

min‖P‖(ε2 + 1.5η)

σr(P̄)

)2

≤ 64(2 + ε1)r

(
‖∆‖
σr(P̄)

+
4(ε2 + 1.5η)(‖∆‖+ ‖P̄‖)

πminσr(P̄)

)2

,

(80)

which concludes the proof.

B.4 Proof for Theorem 4

Proof. By triangle inequality, we see

‖P− P̃‖∞ ≤ ‖P− P̂‖∞ + ‖P̂− P̃‖∞. (81)

Assume i ∈ Ω̂s, from Line 9 in Algorithm 1, we can see P̃(i, :) is a convex combination of P̂(j, :),∀j ∈ Ωs.
Therefore,

‖P̂(i, :)
ᵀ − P̃(i, :)

ᵀ‖1
≤ max
k,j∈Ω̂s

‖P̂(k, :)
ᵀ − P̂(j, :)

ᵀ‖1

≤ max
k,j∈Ω̂s

‖P̂(k, :)
ᵀ −P(k, :)

ᵀ‖1 + ‖P̂(j, :)
ᵀ −P(j, :)

ᵀ‖1 + ‖P(k, :)
ᵀ −P(j, :)

ᵀ‖1

≤2‖P̂−P‖∞ + max
k,j∈Ω̂s

‖P̄(k, :)
ᵀ −P(k, :)

ᵀ‖1 + ‖P̄(j, :)
ᵀ −P(j, :)

ᵀ‖1 + ‖P̄(k, :)
ᵀ − P̄(j, :)

ᵀ‖1

≤2‖P̂−P‖∞ + 2‖∆‖∞,

(82)

which gives
‖P− P̃‖∞ ≤ 3‖P̂−P‖∞ + 2‖∆‖∞. (83)

Plugging in ‖P̂−P‖ ≤ 4π−1
min‖P‖(ε2 + 1.5η) derived in the proof of Theorem 3, we conclude the

proof.
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