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Abstract—In this paper we introduce a task-oriented commu-
nication design for split learning (SL) over a communication
channel. Our approach involves the Expressive Neural Network
(ENN), a novel neural network featuring adaptive activation
functions (AAF) based on the Discrete Cosine Transform (DCT).
This architecture does not only provide better learning capabili-
ties, but also facilitates data transmission using the Long Range
(LoRa) modulation. The frequency nature of LoRa is adequate
for the communication side of the problem, while allowing to
construct the AAFs at the receiver. Additionally, we propose
orthogonal chirp division multiplexing (OCDM) for multiple
access and a modified modulation aimed at preserving com-
munication bandwidth. Our experimental results demonstrate
the effectiveness of this scheme, achieving high accuracy in
challenging scenarios, including low signal to noise Ratio (SNR)
and absence of channel state information (CSI) for both additive
white Gaussian noise (AWGN) and Rayleigh fading channels.

I. INTRODUCTION

Split learning (SL) is a distributed machine learning tech-
nique that is suited for devices with limited computation
capabilities [1], [2]. The sequential learning model, usually
a neural network, is split between two (or more) devices.
Although there are many approaches to split the model [3],
the most relevant trade-off in SL is at which location the split
takes place: allocating less computations to one device, leaves
most of the computational burden to the other one.

Splitting the network between several devices requires the
implementation of a communication protocol between them,
both during training and inference. In [4] the authors study
the communication efficiency in terms of the number of
trainable parameters and the number of clients. For resource-
constrained devices, in [5] an alternative architecture is pro-
posed to reduce the communication and computing cost during
training, while in [6] the number of updates is limited and
the data quantized. Focusing on the resource allocation, the
devices in [7] are clustered to speed up convergence and
reduce the communication cost. Despite the notorious interest
in distributed learning frameworks, particularly in federated
learning, SL has not received that much attention in the
context of task-oriented communications [8], [9]. In [10] a
deep joint source-channel code is proposed for wireless image
transmission. The neural network is split and trained to map
the image pixel values to the complex-valued channel input
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symbols. However, there is no literature devoted to the design
of the physical layer for SL, this is, specific waveforms and
multiple access schemes to deploy a neural network over
wireless communications.

In this work we first propose a neural network termed
Expressive Neural Network (ENN) that is suitable for SL. The
model features adaptive activation functions (AAF) shaped
with the Discrete Cosine Transform (DCT) and whose co-
efficients are learnt during backpropagation. Secondly, we
suggest a novel design for task-oriented communications. With
an appropriate split of ENN, the transmitter can send the
information using the Long Range (LoRa) modulation. This
is because the DCT characterization to generate the AAFs
at the receiver match the frequency nature of LoRa. Both
the splitting model and the modulation are suited for energy-
constrained devices. While in our previous works [11], [12]
we show the benefits of this modulation for communication,
in the present work we demonstrate that it also assists the
computing side of the problem Thus, the DCT is used to
characterize the non-linearities, but also to propagate the infor-
mation throughout the communication channel. An extensive
description and analysis of ENN can be found in [13], where
we show the generalization capabilities of the model and the
expressiveness that the DCT provides.

Furthermore, we also provide an orthogonal chirp division
multiplexing (OCDM) for multiple access. This relies on a
chirp spread spectrum (CSS) technique, which is also imple-
mented in LoRa. We provide extensive results for different
communication channels, demonstrating that LoRa in SL
provides high accuracy even at low signal to noise ratio (SNR)
and requires no channel state information (CSI). Finally, we
also propose a modified version of the modulation that allows
to reduce the transmission bandwidth.

II. EXPRESSIVE NEURAL NETWORK (ENN)

Consider the 2-layer neural network shown in Fig. 1,
consisting of a two-input vector x = [x1, x2] and a hidden
layer of M neurons (or perceptrons). A neuron is a non-linear
processor involving a weighted sum and a non-linear function.
The following expressions show the perceptron signals at the
l-th layer (l = 1, 2):

zl = AT
l [1 sTl−1]

T (1)
sl = σl,m(zl) (2)
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Fig. 1: A 2-layer perceptron with M neurons in the hidden
layer.

The first input corresponds to s0 = x, while the last output
is the predicted class or regression value, namely sL = ŷ.
The matrix of linear weights is Al = [a

(1)
l . . . a

(M)
l ]. The

first entry of sl−1 is sl−1[0] = 1, associated to the bias term
a
(m)
l [0].
The operation in (2) is performed element-wise, and the

AAF σ(·) is approximated by the DCT with Q/2 coefficients,
this is, the m-th element of (2) is computed as

sl[m] =

Q/2∑
q=1

F
(m)
q,l cosq(zl[m]), (3)

with

cosi(x) = cos
( π

2N
(2i− 1) (N(x+ 1) + 1)

)
, (4)

where F (m)
q,l corresponds to the q-th coefficient of the m-th

perceptron at the l-th layer. As explicitly shown in (2) and
(3), the activation function is not necessarily the same at each
neuron, although the number of DCT coefficients Q is kept
constant for the whole network. In (3) we assume the AAF
to have odd symmetry, so that only the odd coefficients are
retained. Nevertheless, this does not prevent the network from
learning only odd activation function.

There are numerous advantages in using this DCT represen-
tation: A small number of coefficients is required; a gradient-
based adaptive algorithm can be implemented because the
coefficients are real and ordered in decreasing magnitude;
since the basis functions (i.e., cosines) are orthogonal, the
approximation error can be easily controlled by the magnitude
of the disregarded coefficients, which also simplifies the con-
vergence of the learning procedure; furthermore, see that the
index appears in the phase of (3), so the approximation is real
and bounded, even when the input exceeds the dynamic range.
All these features make the DCT an appropriate function
approximation. Besides, the number of parameters in ENN
only increases by Q/2 with respect to a standard perceptron
with fixed activation functions, while the expressiveness of the

neural network increases dramatically and is general enough
to be trained for both classification and regression problems.
See [13] for a detailed description of ENN, the corresponding
learning rules and an exhaustive list of experiments demon-
strating its learning capabilities.

III. COMMUNICATION DESIGN FOR SL

While there are many ways to split the network between
a transmitter and a receiver, in the following we propose
a scheme that is suited for both the communication and
computing sides of the problem. Consider the split shown in
Fig. 2, where the linear combinations of the first layer are left
at the transmitter and the rest of the network is deployed at
the receiver. Regarding the communication blocks, the output
at the m-th neuron of the transmitter, z1[m], is modulated into
x
(m)
T . This signal is sent through a channel and the discrete-

time received signal is

y
(m)
R [n] = hmx

(m)
T [n] + w[n], n = 0, . . . , N − 1, (5)

where hm is the flat fading channel and w[n] are the cor-
responding additive white Gaussian noise (AWGN) samples.
The demodulator estimates ẑ1[m] over y(m)

R and proceeds with
the following blocks of the ENN.

A. Frequency modulation for SL

Motivated by our previous work [12], we choose to modu-
late z1[m] in frequency as

x
(m)
T [n] = Ac

√
2

N
cos

(
π(N(z1[m] + 1) + 1)

2N
n

)
(6)

for n = 0, . . . , N − 1, where Ac is the amplitude of the
carrier and z1[m] is a quantized version of z1[m] to the nearest
integer. The

√
2/N term is used to normalize the transmitted

power. Notice that the waveform in (6) corresponds to the
cosine in (4) for i = 1 and with a discrete time index
n. Therefore, this modulation is an M -ary Frequency Shift
Keying (M -FSK), the one used in LoRa, but implementing
the DCT and not the Discrete Fourier Transform (DFT) basis.
LoRa is widely deployed in current wireless sensor networks
[14]. From a computing perspective, this waveform already
provides the cosine nature that the receiver will use to imple-
ment the non-linearities in (3). Nonetheless, the modulation
is also advantageous from the communication side. Since the
waveforms in (6) correspond to the DCT, the demodulator
computes the inverse DCT, and recovers a peak located at the
corresponding frequency. The quantization at the transmitter
allows to recover exactly one peak in the demodulation phase,
with an associated error probability of

Pe ≈ (N − 1)Q

√
A2

c |hm|2
No

 (7)

As the amplitude does not carry information, the system is
blind and no CSI is needed. On the other hand, the quantiza-
tion noise is easily controlled by the number of samples N and



Fig. 2: Splitting of the ENN between a transmitter (TX) and a receiver (RX) with a communication channel in-between.

allows to implement a digital demodulation, which simplifies
the demodulation phase with respect to a full analog scheme.

Overall, the proposed split keeps a low computational
load at the transmitter because only linear combinations are
performed, and a low communication burden as this requires
simple hardware (an analog-to-digital converter and a fre-
quency modulator) and no CSI.

B. Multiple access scheme

As displayed in Fig. 2, the transmission of M data streams
requires the use of M different channel uses. Alternatively,
there are techniques that prevent from using orthogonal re-
sources, ranging from marking each stream with a different
power to MIMO procedures. Motivated by our previous work
[11], we propose to implement OCDM [15]. It has been
extensively shown the benefits of implementing CSS over
LoRa signals [16]. In here we also use the M orthogonal
chirps to design the multiple access scheme. Specifically, the
following digital chirp,

ψm[n] = e−j π
N (n−m)2 , n = 0, . . . , N − 1, (8)

allows to generate M orthogonal chirps for m = 0, . . . ,M−1
and for N even. The resulting waveform is

x
(m)
T,CSS [n] = x

(m)
T [n]e−j π

N (n−m)2 , n = 0, . . . , N − 1 (9)

These signals can be generated using a bank of filters,
and in a similar fashion at the receiver side to recover each
individual signal. The OCDM scheme increases the bandwidth
proportional to the number of orthogonal chirps M .

C. Gradient propagation

While in Fig. 2 we show the architecture for propagating
the data forward, the communication architecture also needs
to be defined to propagate the gradient backwards and adapt

the weights at the transmitter side. The gradient information
used to update the k-th linear weight at the m-th neuron is

G(a
(k)
1 [m]) =

π2

4

s0[m]

|s0[m]|2
εa2[k]

Q/2∑
p=1

Fp,2(2p− 1) sinp(z2)

Q/2∑
q=1

F
(k)
q,1 (2q − 1) sinq(z1[k]), (10)

where ε is the error of the learning task (see [13] for a
full description of the gradient expressions). Notice that this
information is different for each k and m, meaning that it
also requires independent channel uses. Thus, we propose to
use the same modulation and multiple access scheme from
the forward pass in the backward pass: the information in G
(despite s0[m]) is quantized and transmitted using the same
LoRa modulation and OCDM.

D. Constrained bandwidth

The dynamic range of the modulated data is controlled
in practice. At convergence, the linear weights of neural
networks are distributed around zero and of small magnitude.
However, there are no theoretical guarantees that this always
happens and it is less certain during training. Furthermore,
as shown in [13], the dynamic range of z1[m] exceeds
[0, N−1], which provides expressiveness to the architecture by
exploiting the different periods of the DCT. Using the M -FSK
modulation in (6), this translates in having no bounds on the
maximum transmitted frequency and, consequently, no control
on the occupied bandwidth. While this generally may not
represent an issue, in the following we propose an extension
of the modulation that constraints z1[m] in the [0, N−1] range
and limits the maximum bandwidth.



Due to the periodic extension of the DCT, it is easy to see
the following relationship:

σ(z) = (−1)⌊z/N⌋σ(modN (|z|)), (11)

where ⌊·⌋ is the floor operator and modN (·) is the modulo
N operator. For a given z ∈ [kN, (k+1)(N−1)], the function
value is the same as in the [0, N − 1] range when k is even,
whereas the sign is reversed for odd k. Thus, any point in the
periodic extension of the function can be transposed to the
original range. The corresponding modulation is

x
(m)
T [n] =

Ac

√
2

N
cos

(
π(2 mod N (|z1[m]|) + 1)

2N
n+

⌊
z1[m]

N

⌋
π

)
,

(12)

for n = 0, . . . , N − 1 and where the phase carries the range
parity. This results in a joint frequency and phase modulation,
where the latter corresponds to a Binary Phase Shift Keying
(BSPK), i.e., the phase is either 0 or π. After estimating both
parameters at the receiver, the non-linearity is implemented as

σ1,m = (−1)⌊ẑ1[m]/N⌋
Q/2∑
q=1

F
(m)
q,l cosq(ẑ1[m]), (13)

To find the bandwidth, we will use the continuous-time sig-
nal evaluated at the maximum frequency (i.e., z1[m] = N−1).
Considering a sampling frequency of fs = N/T , where T is
the symbol period, this results in

x
(m)
T (t) = Ac cos

(
π(2N − 1)

2T
t

)
≈ Ac cos

(
2π

N

2T
t

)
(14)

The bandwidth occupied by this modulation is B = N/2T .
The price to pay for a reduced bandwidth is having a larger
error probability in demodulation. Since the frequency and
phase are independent, the total error corresponds to the
demodulation error of M -FSK and BPSK:

Pe ≈ (N−1)Q

√
A2

c |hm|2
No

+Q

√
2A2

c |hm|2
No

 , (15)

in which the first term dominates. While implementing this
joint frequency and phase modulation does not really increase
the error probability, the modulation now requires CSI, at least
to compensate the phase introduced by the channel. Thus, an
intrinsic trade-off appears: reducing the transmission band-
width requires implementing CSI. This may be implemented
at the receiver, which does not increase the complexity at the
transmitters.

IV. EXPERIMENTAL RESULTS

The ENN is built with M = 6 neurons in the hidden
layer and with Q/2 = 6 parameters in all the AAFs. The
ENN is trained with the Least Mean Squares (LMS) algorithm
and the mean squared error (MSE) loss, following the same
configuration as in [13]. The ENN is trained for the binary
classification problem shown in Fig. 3a. All samples come

(a) Ideal. (b) ENN.

Fig. 3: Decision map for the binary classification problem: (a)
ideal case and (b) learnt with ENN (accuracy: 97.8%).

SNR (dB) 0 -5 -10 -12.5 -15 -17.5

AWGN

97.5% 97.4% 96.9% 95.0% 82.0% 71.9%

Rayleigh

96.2% 91.5% 86.8% 84.4% 79.5% 75.5%

TABLE I: Accuracy and decision map for AWGN and
Rayleigh channels at different SNR.

from independent uniform distributions in the [−1, 1] range
for each input variable. The train and test sets contain 800.000
and 50.000 samples, respectively.

We test the SL architecture in the ENN for different channel
models, while the benchmark is the centralized ENN, in
which there is no communication. Fig. 3b shows the decision
boundary achieved by the benchmark, providing an accuracy
of 97.8%. In all the scenarios we assume that the receiver has
enough transmission power to work above an SNR of -10 dB,
providing almost no errors in backpropagation.

Table I shows accuracy and decision maps for the AWGN
and Rayleigh channels at different SNR levels. In the AWGN
case, above −10 dB there are no errors in demodulation,
and the accuracy is almost as in the centralized ENN. Thus,
the only source of errors is due to quantization, which is
negligible. High accuracy is achieved above -15 dB in the
AWGN channel and above -12.5 dB in the presence of
Rayleigh fading.

V. CONCLUSIONS

In this paper we focus on task-oriented communications for
SL over a communication channel. We have proposed a neural
network model and a corresponding physical layer design.
Specifically, ENN is an architecture with DCT-based adaptive
activation functions. Besides improving its learning capabili-
ties, the DCT representation allows to split the network and
use the LoRa modulation to transmit the information between
the splits. In this respect, the frequency nature of LoRa is
suitable from a communication side, and also provides the
characterization needed to construct the activation functions at
the receiver. Furthermore, we propose an OCDM for multiple
access and a variant of the modulation to preserve bandwidth.
Our results show that the scheme provides high accuracy even
for low SNR and without CSI for both AWGN and Rayleigh
fading channels.
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