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Abstract—This paper presents a novel method for calculating a
compact order singular value decomposition (SVD) of polynomial
matrices, building upon the recently proven existence of an
analytic SVD for analytic, non-multiplexed polynomial matrices.
The proposed method calculates a conventional SVD in sample
points on the unit circle, and then applies phase smoothing Algo-
rithms to establish phase-coherence between adjacent frequency
bins. This results in the extraction of compact order singular
values and their corresponding singular vectors. The method
is evaluated through experiments conducted on an ensemble
of randomised polynomial matrices, demonstrating its superior
performance in terms of higher decomposition accuracy and
lower polynomial order compared to state-of-the-art techniques.

I. INTRODUCTION

The singular value decomposition (SVD) is a widely used

technique in linear algebra that allows the diagonalisation

of any matrix A ∈ C
M×N into A = UΣV

H, where U

and V are complex unitary matrices, and Σ is diagonal and

real-valued [1, 2]. This decomposition has found extensive

utilisation in signal processing generally [3, 4]. The SVD

has been particularly attractive for the design of multiple-

input multiple-output (MIMO) narrowband communications

systems, where A is the channel matrix of complex gain

factors [5–14] . Here, the decomposition afforded by the SVD

has been shown to enable solutions for e.g. precoding and

equalisation that are optimal in a variety of criteria, such as

in the least squares and channel capacity sense.

In broadband systems, the focus shifts from complex-valued

gain factors to impulse responses between sources and sensors.

Consequently, a MIMO communications system with N trans-

mitters and M receivers can be represented as a matrix A[n],
where every matrix entry ai,j [n], i = 1, . . . ,M , j = 1, . . . , N ,

is an impulse response in the discrete time index n ∈ Z.

Therefore, its z-transform A(z) =
∑

n A[n]z−n is now a ma-

trix of transfer functions, or a polynomial matrix. This means

that the matrix decomposition achieved by the conventional

SVD can only diagonalize the matrix for a particular lag or

frequency if operating in the frequency domain. One possible

approach is to decompose the broadband problem into dis-

crete Fourier transform (DFT) bins and perform independent
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processing on each bin. However, this neglects the spectral

coherence and often leads to suboptimal solutions [15–17]. To

address the above limitations, the polynomial SVD (PSVD)

has gained recent attention for general polynomial matrices

A(z) : C → C
M×N .

The PSVD was often computed via two polynomial eigen-

value decompositions (PEVDs) which have been designed for

para-Hermitian matrices. These are supported by theory [18–

20] and two families of well-known PEVD algorithms: the

second order sequential best rotation (SBR2) [21] [22–24] and

sequential matrix diagonalisation (SMD) [25, 26] algorithms.

This method of PSVD computation is costly and only provides

approximate diagonalisation with low accuracy [27, 28]. For

a more accurate PSVD, a polynomial QR decomposition

(PQRD) [28] has been utilised but requires repeated appli-

cation of the PQRD algorithm which again is costly.

Algorithms specifically designed to directly address the

PSVD, rather than relying on two PEVDs and/or multiple

PQRDs, are the generalised SBR2 (GSBR) [29] and gener-

alised SMD (GSMD) methods. These methods expand upon

SBR2 and SMD, extending their applicability from para-

Hermitian matrices to general polynomial matrices. While

the GSBR2 and GSMD methods are faster compared to

previous algorithms, they still suffer from the limitation of

providing approximate diagonalisation and likely yield high-

order polynomial factors than strictly necessary [30].

In this document, we present a DFT-based PSVD approach

which offers accurate diagonalisation. In order to re-establish

spectral coherence across DFT bins, the proposed method

exploits the existence of an analytic SVD with infinitely

differentiable and therefore smooth factors, which exists for

almost all analytic matrices A(z) [30]. For this, we first

independently calculate conventional SVDs in each DFT bin.

To restore the phase-coherence between bin-wise SVD results,

phase smoothing is performed in order to obtain compact time-

domain support for both paraunitary matrices U(z) and V (z).

This paper is organised as follows: Sec. II explores the exis-

tence of the analytic SVD. Sec. III provides a brief overview

of existing polynomial SVD algorithms to approximate the

analytic SVD. In Sec. IV, the proposed method is presented in

detail. A comparison of the proposed method utilising some

designed metrics to perform a valid comparison with state-

of-the-art methods, is conducted in Sec. V. Finally, the paper

concludes with a summary and discussion in Sec. VI.
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II. ANALYTIC SINGULAR VALUE DECOMPOSITION

For a matrix A(z) : C → C
M×N that is analytic in z ∈ C

on some annulus including at least the unit circle, e.g. a matrix

containing transfer functions of stable, causal systems, there

exists an analytic SVD

A(z) = U(z)Σ(z)V P(z) , (1)

where Σ(z) contains the singular values σi(z), i = 1, . . . ,M
on its diagonal [30]. On the unit circle, we expect Σ(ejΩ) ∈
R, but for analytic singular values these must not be con-

strained to be non-negative [30–32]. The two paraunitary ma-

trices U(z) ∈ C
M×M and V (z) ∈ C

N×N i.e. U(z)U(z)P=
I, V (z)V P(z) = I carry the left- and right-singular vectors,

respectively, in their columns, where the parahermitian oper-

ator {·}P implies a Hermitian transposition and time reversal

such that UP(z) = {UH(1/z∗)}H. Regarding the dimensions

of A(z), we assume N ≥ M ; otherwise we can consider the

analytic SVD of AP(z).
While the singular values in Σ(z) are unique up to a

permutation, the singular vectors are ambiguous, such that

if ui(z) is a valid ith singular vector, then so is u′

i(z) =
ui(z)φi(z), where φi, i = 1, . . . ,M is an arbitrary allpass

function [30]. Note that for a finite order ui(z), u
′

i(z) will

have infinite order unless φi(z) is a simple delay; therefore,

the selection of φi(z) has a direct impact of the compactness

of the factors. The allpass function φi(z) is common to each

pair ui(z),vi(z), i = 1, . . . ,M ; if this coupling is violated,

then the corresponding σi(z) would likely no longer be real

on the unit circle [30].

The analyticity of the SVD factors guarantees that while

they may have infinite order, an arbitrarily good approximation

can be achieved using finite length polynomials, such that with

U(z), Σ(z), and V (z) now of finite order, the equal sign in

(1) is replaced with an approximation sign. This approxima-

tion by finite order terms is referred to as a polynomial SVD

(PSVD).

If A(z) is estimated, e.g. via system identification from fi-

nite data [33], then analogous to the case of the analytic EVD,

the singular values are likely to be spectrally majorised [34],

i.e. we have that

σi(e
jΩ) > σi+1(e

jΩ), i = 1, . . . , (M − 1), ∀ Ω . (2)

Therefore, in this paper, we assume that A(z) is positive semi-

definite and its singular values satisfy (2).

III. ITERATIVE PSVD ALGORITHMS

The Kogbetliantz based PSVD method [29] is an extension

of the SBR2 [21] algorithm from para-Hermitian to gen-

eral polynomial matrices, and therefore here referred to as

the GSBR2 algorithm. This extension applies Kogbetliantz

transformations [35], which is the extension of the Jacobi

transformation to non-symmetric matrices, to eliminate the

maximum off-diagonal element at every iteration. It works

in two steps: in the first step, the maximum off-diagonal

component is shifted to the time-zero component using delay

operations. In the second step, a Givens rotation transfers

the energy of this element onto the diagonal. These two

steps are repeated until the maximum off-diagonal element

satisfies a predefined threshold. This method has been proven

to converge [35], and demonstrates better diagonalisation than

using two PEVDs as suggested in [21].

In contrast, the GSMD algorithm transfers more energy

to the diagonal in each iteration [27]. It accomplishes this by

selecting the column with the maximum ℓ2 or ℓ∞ norm and

shifting it to the zero-lag component, followed by perform-

ing a complete SVD of this time-zero matrix. As a result,

GSMD can achieve faster convergence and yields lower-order

paraunitary matrices compared to GSBR2 [27]. Nevertheless,

it is important to note that the obtained order tends to remain

relatively high when compared to any known ground-truth

order of the factors in (1).

Both GSBR2 and GSMD represent time domain approaches

that exhibit a propensity to increase the order of the poly-

nomial SVD factors with every iteration step. This tendency

becomes more pronounced when striving for complete diag-

onalisation. For this reason, in the next section we adopt a

fundamentally different DFT-domain approach.

IV. PROPOSED METHOD

In this section we adopt a DFT-based method that operates

similarly to recent analytic eigenvalue decomposition algo-

rithms [36–39]. We first characterise the general approach

before in turn extracting the singular values and thereafter

the left- and right-singular vectors.

A. Overview of Approach

Because of its analyticity, it suffices to investigate A(z)
on the unit circle for z = ejΩ. There, applying a K-point

DFT to A[n], we evaluate an SVD in every frequency bin

Ωk = 2πk/K, with k = 0, . . . , (K − 1), such that

A(ejΩk) = UkΣkV
H
k = UkΨkΣkΨ

H
k V

H
k , (3)

where the diagonal unitary matrix Ψk =
diag

{

ejψ1,k , . . . , ejψM,k
}

can commute with Σk and therefore

expresses the phase ambiguity of the singular vectors [2].

With the restriction of A(z) to possess non-negative and

strictly majorised singular values, motivated by [34], the

sample points of the analytic SVD in (1) can be related to

(3) as [39]

Σ(ejΩk) = Σk (4)

U(ejΩk) = UkΨk (5)

V (ejΩk) = VkΨk . (6)

We now need to exploit the right hand sides of (4)-(6) to

determine the sample points of the analytic SVD.

The extraction of the singular values from (4) is straight-

forward, as long as a sufficient DFT size K is known.

Determining K, and therefore extracting sufficiently accurate

singular values, will be addressed in Sec. IV-B. We thereafter

target the singular vectors, and phase smoothing via the term

Ψk in (5) and (6), in Sec. IV-C.
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B. Singular Value Extraction

With (4), we only need to determine a sufficient DFT

size that results in low enough time-domain aliasing when

obtaining Σ̂[n] via an inverse DFT from Σk. This time domain

aliasing can be measured as [38]

ζσm
=

∑

τ

|σ̂(K)
m [τ ]− σ̂

(K/2)
m [τ ]|2

|σ̂(K)
m [τ ]|2

, for m = 1, . . . ,M , (7)

where σ̂
(K)
m [τ ] represents the time-domain equivalent of

[σm,1, . . . , σm,K ] obtained via the K−point IDFT. The DFT

size is doubled until ζσm
in (7) falls below some threshold ǫ.

C. Singular Vector Extraction

In order to extract analytic and hence infinitely differen-

tiable singular vectors, we need to determine the phase values

ψm,k, k = 0, . . . , (K − 1), m = 1, . . . ,M , such that we

achieve phase coherence across frequency bins. Note that the

phase ambiguity of left- and right-singular values is coupled;

we therefore only focus on Uk.

In order to perform phase smoothing over the ith component

of the mth singular vector across all K bins, we define

ri,m = [ui,m,1, . . . , ui,m,K ]T . (8)

This can be related to phase adjustments as

si,m = diag{am} ri,m , (9)

where si,m = [si,m,1, . . . , si,m,K ]T with si,m,k =
ejψm,kui,m,k and am = [ejψm,1 , . . . , ejψm,K ]T.

1) Maximally Smooth Interpolation: The primary objective

is to achieve a smooth interpolations across the sample points

in si,m by optimising am. To ensure maximum smoothness

in terms of the shortest possible support in the time domain,

the interpolations, denoted as Û
(K)
i,m (ejΩ) with K the number

of sample points, can be obtained through Dirichlet interpo-

lation [39]:

Û
(K)
i,m (ejΩ) =

1

K

k−1
∑

k=0

si,m,k

k−1
∑

n=0

e−j(Ω−2πk/K)n

=
1√
K

e
H
K(ejΩ) ·WH

K · si,m ,

where e
H
K(ejΩ) = [1, e−jΩ, ..., e−jΩ(K−1)]T, and WK is a K-

point unitary DFT matrix.

2) Measuring Smoothness of the Interpolation: To mea-

sure smoothness of the interpolation Û
(K)
i,m (ejΩ), we can use

the power of its pth derivative, denoted as ξmp , as a suitable

metric. This metric therefore quantifies the smoothness of any

extracted singular vector. By minimizing ξmp , we thus optimize

the phase values in am in (9) for all m. For ξmp , we have

ξmp =

M
∑

i=1

1

2π

∫ 2π

0

∣

∣

∣

∣

∣

∂pÛ
(K)
i,m (ejΩ)

∂Ωp

∣

∣

∣

∣

∣

2

dΩ , (10)

where the derivative is given as

∂pÛ
(K)
i,m (ejΩ)

∂Ωp
=

1√
K

e
H
K(ejΩ) ·Dp

k ·WH
K .u′

i,m

with D
p
k = diag{0,−j,−2j, . . . ,−(K − 1)j}p. Using Parse-

val’s theorem [40], for any vector x ∈ C
K , we have

1

2π

∫ 2π

0

∣

∣e
H
K(ejΩ)x

∣

∣

2
dΩ = x

H
x .

Therefore, ξmp can be written as

ξmp =
1

K

M
∑

i=1

‖Dp
k ·WH

K · si,m‖22 , (11)

which can be further modified as

ξmp = a
H
mCm,K,pam , (12)

where Cm,K,p is a matrix defined as

Cm,K,p =
M
∑

i=1

diag
{

r
H
i,m

}

·WK ·D2p
k ·WH

K · diag{ri,m} .

3) Optimization of the Objective Function: The objective

function can be minimized through the Newton Raphson

technique. The iterative update for the phase vector ψm =
[ψm,1, . . . , ψm,K ]T at the ℓth iteration is

ψm[ℓ+ 1] = ψm[ℓ]− ρH−1
∂ξmp (ψm[ℓ])

∂ψm
. (13)

where

∂ξmp
∂ψm

= 2Im{diag{a∗m}Cm,K,pam} .

The Hessian matrix H, after dropping subscripts m for ease,

is

2Re{diag{a∗}CK,pdiag{a} − diag{diag{a∗}CK,pa}}

and can be made positive definite by dropping the second,

generally negligible component [41], thus guaranteeing con-

vergence of (14).

4) Stopping Criterion: At the end of the ℓth iteration, we

have ψm[ℓ + 1], which in turn gives us values for am in (9)

and for Ψk in (5), thus obtaining a phase-adjusted left-singular

matrics Ûk, with Û
(K)[n] its K-point IDFT. With this matrix,

we define a combined error in terms of time domain aliasing

and lack of orthonormality as

ζu =
∑

τ∈Z

‖Û(K)H[−τ ] ∗ Û(K)[τ ]− δ[τ ]I‖2F , (14)

where ‖ · ‖F is the Frobenius norm and {∗} denotes the

convolution operator. If the above metric is below a low

threshold ε, the optimization process can be terminated. Then

Û(z) is close to paraunitary, and satisfies this property for all

frequencies on the unit circle, and no longer just at the K
sample points.
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5) Right-Singular Vectors and Reduced SVD: Once the

phase is adjusted for the left-singular vectors, for a square

matrix A(z) the phase ambiguity and phase smoothing are

also settled for its right-singular vectors via (6). For a rectan-

gular matrix A(z) with N ≥ M , the right-singular vectors

vi(z), i = M + 1, . . . , N can form an arbitrary orthonormal

basis in the nullspace of A(z). For these columns therefore,

across bins we have to first create smooth 1-d subspaces for

each of the singular vectors before performing phase smooth-

ing. We are not aware of any algorithm capable of performing

this yet. The proposed method therefore only computes a

reduced PSVD, where instead of V̂ (z) : C → C
N×N , we

return V̂
′

(z) : C → C
N×M , with V̂

′P
(z)V̂

′

(z) = I.

V. SIMULATIONS AND RESULTS

A. Ensemble Test Settings

In this section, the proposed compact order PSVD method

is compared to the state-of-the-art algorithms GSBR2 [29]

and GSMD [27] through an ensemble of randomised, an-

alytic and non-multiplexed polynomial matrices. The en-

semble is constructed of 100 instantiations of A(z) =
U(z)Σ(z)V P(z) : C → C

3×5 and the test is repeated at

various orders of ground-truth singular values and singular

vectors, i.e. Ord{U(z)} = Ord{V (z)} ∈ {2, 4, . . . , 14}
with Ord{Σ(z)} ∈ {4, 8, . . . , 28} that is spectrally majorised

on the unit circle. The proposed method is executed with

ǫ = 10−8. The phase smoothing procedure will continue until

either ε = 10−5 is satisfied or maximum of 200 iterations are

reached . For the benchmark algorithms GSRB2 and GSMD a

maximum of 500 iterations is permitted, unless the magnitude

of the maximum off-diagonal element falls below 10−6. More-

over, during the execution, the intermediate paraunitary and

diagonalised matrices are order-limited through a truncation

threshold of 10−5 [42–45].

B. Performance Metrics

For just comparison, apart form considering execution time,

the resulting orders of the paraunitary Û(z) and V̂ (z) is also

defined as a performance metric. Additionally, for gauging

the accuracy of every decomposition method, we define a

reconstruction error metric as

ξR =

∑

n ||A[n]− Â[n]||2F
∑

n ||A[n]||2F
, (15)

where Â[n] = Û[n] ∗ ¯̂
Σ[n] ∗ V̂H[−n]. The matrix of singular

values,
¯̂
Σ[n] is identical to Σ̂[n] with its off-diagonal entries

set to zero in case of the GSBR2 and GSMD algorithms; in

case of the proposed method, Σ̂[n] is diagonal by design.

C. Ensemble Results

The ensemble results for all performance metrics are il-

lustrated in Fig. 1. Especially the order of the resulting

paraunitary matrix Û(z) shown in Fig. 1(a), when estimated

by the proposed method, is orders of magnitude lower than

the state-of-the-art algorithms. Regarding the computational

expense, the proposed method outperforms GSBR2, but its

Fig. 1. Ensemble results showing (a) order of the resulting Û(z), (b)
execution time and (c) reconstruction error.

performance is nearly comparable or slightly worse than

GSMD, as demonstrated in Fig. 1(b); the cost for the proposed

approach in this figure increases in steps — this occurs where

ever the DFT length needs to be increased by another factor of

two. Finally, Fig.1(c) demonstrates that the proposed method

achieves the least reconstruction error compared to GSBR2

and GSMD which implies that the proposed method attains a

greater degree of diagonalisation with a more compact order

for Û(z).

VI. CONCLUSIONS

Motivated by the analytic SVD, we have proposed an al-

gorithms that can extract analytic singular values and singular

vectors for the case of a general, but spectrally majorised poly-

nomial matrix. This algorithm operates in the DFT domain.

Under the restriction of spectral majorisation, the extraction

of singular vectors with compact support is straightforward.

Determining the singular vectors involved a phase smoothing

operation in order to find, within their range of ambiguity,

a compact solution. For non-square polynomial matrices, the

approach has been restricted to returning a reduced SVD

result.

The proposed method has demonstrated substantial advan-

tages over the state-of-the-art GSBR2 and GSMD methods,

and in simulations has outperformed the benchmark methods

in terms of compact order, improved reconstruction accuracy,

and execution time, making it a compelling choice for various

practical applications.
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