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Abstract—Generalized quadrature spatial modulation (GQSM)
schemes are known to achieve high energy- and spectral- efficien-
cies by modulating information both in transmitted symbols and
in coded combinatorial activations of subsets of multiple transmit
antennas. A challenge of the approach is, however, the decoding
complexity which scales with the efficiency of the scheme. In
order to circumvent this bottleneck and enable high-performance
and feasible GQSM in massive multiple-input multiple-output
(mMIMO) scenarios, we propose a novel decoding algorithm
which enjoys a complexity order that is independent of the
combinatorial factor. This remarkable feature of the proposed
decoder is a consequence of a novel vectorized Gaussian belief
propagation (GaBP) algorithm, here contributed, whose message
passing (MP) rules leverage both pilot symbols and the unit
vector decomposition (UVD) of the GQSM signal structure. The
effectiveness of the proposed UVD-GaBP method is illustrated via
computer simulations including numerical results for systems of a
size never before reported in related literature (up to 32 transmit
antennas), which demonstrates the potential of the approach in
paving the way towards high energy and spectral efficiency for
wireless systems in a truly mMIMO setting.

Index Terms—Generalized quadrature spatial modulation
(GQSM), massive multiple-input multiple-output (mMIMO),
message passing (MP), enabling technology, low-complexity.

I. INTRODUCTION

Spatial modulation (SM) techniques [1] have been widely
studied as a promising multiple-input multiple-output (MIMO)
transmission scheme, which exploits multiple-antenna re-
sources not only to gain spatial diversity, but also to encode
“energy-free” (spatially-modulated) information in the form
of a sparse activation of small subsets of the total available
transmit antennas. This unique feature of SM schemes allow
large data to be encoded with lower effective transmit energy.

Therefore, SM is an excellent candidate enabling technol-
ogy for beyond fifth generation (B5G) and sixth generation
(6G) wireless communication systems [2] because it offers
simultaneously: high gains in energy efficiency (EE) and
spectral efficiency (SE); a sparse utilization of radio frequency
(RF) chains, which are highly appealing to millimeter-wave
(mmWave) and Terahertz (THz) systems [3]; and great flexi-
bility, since the symbols actually transmitted are not directly
relevant to the antenna subset activation scheme itself.
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Motivated by the aforementioned advantages, a rapid devel-
opment of enhanced SM designs aiming to maximize energy-
and spectral-efficiencies, and minimize error rates and decod-
ing complexities can be found in recent literature [4]-[10].
An excellent example is the quadrature spatial modulation
(QSM) design [4], in which the SM technique is applied
independently to each in-phase and quadrature (IQ) component
of the transmit symbols, resulting not only a two-fold increase
in the rate of the spatially-modulated information, but also
in improved bit error rate (BER) performance compared to
the original SM scheme of [1]. Further examples in this
line of work are the improved generalized quadrature spatial
modulation (GQSM) designs incorporating space-time codings
(STCs) and other techniques to optimize the antenna activation
patterns, as proposed in [5], [6].

Since naive decoding of GQSM requires searching over a
combinatorial space of size (agT)Q-M P _ where Nr is the
number of transmit antennas, « is the codebook amplification
factor (¢ = 1 for the classic GQSM), P is the number
of symbols transmitted, and M is the size of the complex
symbol constellation — another line of work towards improving
GQSM is to lower decoding complexity. One example is the
compressive sensing (CS)-based method of [6], which can
achieve a significantly low complexity, but may suffer from
high spatial domain error since the elaborate GQSM codebook
structure cannot be incorporated in the estimation rules. On the
other hand, the sphere decoding (SD) approach of [7] and the
reduced-search methods of [8], [9] were shown to approach
maximum likelihood (ML) performance, but can only reduce
the squared-combinatorial complexity order by a linear factor.

Recently, we proposed a near-ML message passing (MP)
method for GQSM decoding [10], which was shown to
eliminate the quadratic exponent in the combinatorial factor
by employing a novel decomposition of the GQSM signal
into two independent vectors. Following the latter work, we
propose in this article a novel MP-based GQSM decoder based
on a further decomposition of the GQSM signal model into
independent unit vectors, which results in a complexity that
is completely independent of the combinatorial space, while
still incorporating the information of the structured GQSM
codebook patterns.

The contributions of this article can be summarized as:

« A novel pilotted GQSM decoding algorithm is proposed,
which achieves a combinatorial-free complexity order,



o Tailored MP rules are derived based on a unit vector
decomposition (UVD) of the GQSM signal model,

o Simulation results are provided at unprecedented GQSM
mMIMO scales, including system sizes up to Np=32.

II. GQSM SYSTEM MODEL

A. Transmit Signal Model

Given a MIMO transmitter equipped with Nr antenna
elements, the GQSM transmit signal is described by

x =x" 4 jx' e CNY, (1)
where x® € CN7*! and x' € CN7*! are respectively the
real and imaginary parts of the GQSM transmit signal vector,
respectively defined as
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which contain the real and imaginary parts of the P transmit
symbols' s, £ sl + jsl € C, with p € {1,---, P}, selected
from a discrete constellation S of cardinality M, where the
positions of the symbol components are respectively described

by the index vectors k? £ [k} ... ,k:II}, -+ kB] and k! £
[k{v 7k;n 7k}3]

It is important to note that the positions of the symbols
between x™ and x! are independent, and that the position
of a symbol component in the vector corresponds directly to
the activated antenna element at the transmitter. By exploiting
the possible combinatorial patterns of the symbol component
positions, the GQSM scheme conveys information not only
from the encoding of P symbols from S, but also from
the selection of P positions out of Ny possible positions,
respectively for both x® and x'.

In light of the above, the total information conveyed by the
GQSM signal x is given by

Baqsm = 2Bsp, + Bpg = 2[logy ()] + Plogy (M), (3)

where Bg,, is the number of bits spatially encoded by the
antenna position selection of P symbol parts, and Bp, is the
number of bits digitally encoded by the transmit symbols.

B. Received Signal Model

The received signal vector y € CNeX! at the MIMO
receiver equipped with N antennas, is described by

y = Hx + w € CVr*1 4)

where H € CNVrXNT jg the wireless channel matrix between
the receiver and transmitter antennas, and w € CNrx!
is the additive white Gaussian noise (AWGN) vector with
independent and identically distributed (i.i.d.) elements w,, ~
CN (0, Ny) forn € {1,---, Ng} where Ny is the noise power.
The complex-valued system model in eq. (4) can be trans-
formed into an equivalent system in the real domain as

INote that the classic QSM [4] is the basic case of the GQSM with P=1.
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= Hx +w € R2Vrx1 (5b)

where y € R2VeX1 H ¢ R2VrX2N1 4 ¢ R2NTX1 and w €
R2NrX1 respectively denote the IQ-decoupled counterparts of
y, H, x, and w; H 2 [H® H'] with H} € R2VrXN7; and
H' ¢ R?NrXN7 i introduced to denote the effective channel
components for x® and x!, respectively.

The IQ-decoupled system in eq. (5) is the basis of most
state-of-the-art (SotA) QSM decoders, which estimates the
effective transmit signal «, in knowledge of y and H. While
the linear recovery problem appears trivial, the challenge lies
in the infeasible size of the discrete domain X’ of & € R2N7*1
with cardinality Q£( L(AILT)J 2)2~MP, where ||y £ 2l0820)] jg
the flooring operation to the nearest power of 2.

As can been seen from the cardinality of &', the codebook
size () scales at a geometric rate on P, and at a squared-
factorial rate on N, such that complexity becomes prohibitive
even for moderately large MIMO scenarios, which is why
simulation results in the literature exist only up to Np < 10,
P < 3, even with lowest-complexity methods [6], [9], [10].

III. PROPOSED DECOUPLED VECTOR GABP DECODER

In light of the above, this article provides a solution to
the combinatorial spatial domain search challenge, by first
considering the piloted GQSM scenario, where all symbol
component values are known at the receiver’. The pilot
symbols are assumed to be arbitrary and can be utilized for
other functionalities such as authentication, radar, channel
estimation, etc. However, even with the known pilot symbols,
the challenge remains in estimating the unknown indices of
the symbols in the combinatorial space, as seen in eq. (2).

A. Signal Reformulation - Unit Vector Decomposition (UVD)

First, noticing that each symbol component sg and SL
occupies only a single position in the transmit vector (i.e.,
only transmitted from a single antenna element), the GQSM
transmit signal described by eq. (1) and eq. (2) can be
more intuitively rewritten as a superposition of the symbol

components multiplied by activation vectors, i.e.,

_ P R . P I Nrx1
X = Zp:lsp ek? +J Zp:lspek; eC 5 (6)
S xR L xI

where an activation vector e; is the ¢t-th column of a Np X N
identity matrix, which therefore, is a unit vector.

In light of the reformulation in eq. (6), the 1Q-decoupled
received signal vector in eq. (5) becomes

P R
21):1 Sp ek;}
S e

p:l j4 kp

where the linear recovery of  has been transformed into the
joint estimation problem of 2P activation (unit) vectors.

y:H[ +w e RPVrx1 (7)

2The natural subsequent extension to the full GQSM with unknown
transmit symbols will be addressed in an upcoming journal article.
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(a) Non-decoupled univariate model in eq. (5b) as the SotA [6]-[9].
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(b) Proposed fully-decoupled 2 P-multivariate UVD model in eq. (9).
Fig. 1: Different FG representations of the GQSM system.

In light of the above, the random vector variable a is
introduced to model the unit vectors, where the discrete
uniform prior probability mass function (PMF) is given by

P,(a) £ o > dles —a), (8)

NT><1

where a denotes an instance of a, A £ {e,}% € [0,1]
is the event set of a, and J(-) denotes the unit impulse function
where §(x) = 1 if |x|p = 0, and 6(x) = 0 otherwise.

Since the 2P vector variables are instances of the variable
a, the estimation problem is rewritten into the UVD form as

TP sRalk
y=H |50 | e RPVRX )
Ep 1 5p3p
where the random variables alt,---  alt respectively model

the unit vectors eyr,--- e r and likewise for al,... al,

which has been illustrated as a factor graph (FG) in Fig. 1b.
B. Vector-valued Gaussian Belief Propagation (GaBP)

In light of the above, this section provides the derivation of
the purpose-fit vector-valued MP rules operating on the factor
graph of Fig. 1b, based on the Gaussian belief propagation
(GaBP) framework [10], [11], assuming perfect channel state
information (CSI) at the receiver. This enables the joint
estimation of the 2P activation vector variables (unit vectors)
only within their respective signal domains of size N each.

First, the soft-replica vectors for the activation vector vari-

ables al* and al, for p € {1,---, P} are defined as al,
and é%m respectively for the n-th factor node with n €
{1,---,2Ng}. The corresponding expected error covariance
matrix of the soft- replica éffn is defined as

L= Eal(a—ay,)(a—a5,)'] (10)

Remark: Due to page limitations, the derivations are provided
only for the real components (i.e., for ag” ), as the expressions
for the respective imaginary components are identical, except
for the change of superscripts (-)® to (-)! and vice-versa.

In hand of the soft-replicas, the factor nodes perform soft-
interference cancellation (IC) on the received signals Yn as
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where h? € R1XNT and hl'e R1XNT respectively denote the
n-th rows of the channel components H® ¢ R2N7xN7 apd
H' € R2N7XN7 which are defined from H = [H®, HY).
The sum of the latter error terms and AWGN term w,,
excluding the true symbol part, is approximated as a Gaussian
scalar via the central limit theorem (CLT), which yield the
conditional probability density functions (PDFs) of the soft-

IC symbols with respect to a given activation vector all:” as

T
_ 5, — st
P(yﬁn\ag‘) o exp< P R P , (12)

Vpin
is obtained by

where the conditional variance Vp '
l/ffn = E[|ypn - sRhR R| ]
=Vn - Wi (Jsi|? - )(hR) oo 13)
with v, 2hR' (Z|SR|2 TR )hR*+hIT(Z| 2T, )hL"
Then, each \farlable node aggregates the conditional PDFs
from the connected factor nodes to compute the extrinsic belief

bR.n with self-interference cancellation, following
R 2Ne ( RT aR_1 R,TAR
B, ) = T o) o 73~ AEE) 14
n'#n
where n%, and AN~ are the information vector and the
. . . . . R .
precision matrix of the extrinsic belief b,,.,,, given by
2Nr gR 2Ng hR hRT
npn—sRZ P hy and A, =|sp P =2 (15)
n'#n p n’ n'#n p n’

In turn, the posterior Bayes-optimal soft-replicas are com-
puted from the extrinsic beliefs via

r _ Eala-P(b Rn|a)l Zév:Ti ag - IP)(bf}:n|aq) P(ay)

Apin = = ;(16)
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while the corresponding error covariance matrix is given by
an = Eai(a é?n)(ap - éR )Hi (17)
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Equations (11)-(17) describe the steps of one MP iteration to
estimate the 2P activation vectors of the GQSM reformulated
as eq. (9), which yields the refined posterior soft-replica
vectors and the corresponding error covariance matrices. In
addition, at the end of such 7-th MP iteration, the soft-replica
vectors and the error covariance matrices are updated with
damping [12] to prevent an early convergence to a local optima
[13], [14], following z["+1 < pal™ 4 (1 — p)a["+1] where
p € [0, 1] is the damping factor, and 7 is the iteration number.

Next, to obtain the hard-decisions on the 2P activation
vectors, a the information is aggregated between all 2Np
factor nodes to compute the consensus beliefs (i.e., eq. (14)
without the self-interference cancellation), which yields the
extrinsic consensus PDFs of the belief bf}.

Finally, the optimal activation vector estimate is selected by
evaluating the PDFs for the Ny valid states of a € A i.e,

al = argmax P(bg\a). (18)
acA

P

The proposed UVD-GaBP decoder for pilotted GQSM,
described by eq. (10)-(18), is summarized in Algorithm 1.



Algorithm 1: Proposed UVD-GaBP GQSM Decoder

BER Performance of GQSM with the Proposed UVD-GaBP Decoder
Np =16, Np =16 Np =32, Np =32

Inputs: Received signal y, effective channels H® and H',
R sI Vp, and noise variance Nj.

pilot symbols s, s,
Outputs: Estimated activation vectors a; and aj, Vp.

Initialization: Vn and Vp,

1: Initialize é;{:n, é;,m;
2: Compute I'}%, T, via eq. (10);

pino
MP iterations for 7 = 1,--- , T2y, Vn and Vp,

For both real and imaginary components:

3: Perform soft-IC via eq. (11);

4: Compute V}}n, I/II):n via eq. (13);

5: Compute ngm flm and A, , A}, via eq. (15);
6: Compute a,,,,,a,., via eq. (16);

7: Compute TR T via eq. (17);

8: Update &3 a7, via a damped update [12], [13];

end for
. s 2Rzl .
9: Obtain a,, a, via eq. (18);

IV. PERFORMANCE EVALUATION
A. Simulation Results

In Fig. 2, GQSM simulation results are provided for
mMIMO systems with Ny = 16 and 32, and varying values
of P, where the performance is evaluated in terms of the BER
against the E,/Ny (signal-to-noise ratio (SNR) per bit).

Note the extremely low Ej, /Ny ranges of the GQSM, which
benefits from the fact that most information is encoded with-
out using any transmission power, corroborating the original
motivation of enabling energy- and spectral-efficient mMIMO.

Since the computational complexity of the brute-force ML
and SotA decoders are prohibitive in the considered system
scales, a Genie-aided matched filter bound (MFB) [15] is
introduced instead as an absolute performance bound, which
is obtained by providing the UVD-GaBP method with perfect
prior knowledge of the activation vectors and pilot symbols.

Fig. 2 demonstrates the efficient demodulation capability
of the proposed UVD-GaBP decoder for high-rate GQSM
signals in 16 x 16 and 32 x 32 mMIMO?® setups*, even with
the affordable computational power of an average personal
computer. It can be observed that optimal performance is
achieved by the UVD-GaBP for P = 1 in both scenarios,
and a slight performance loss of about 1~2dB and an error-
floor is exhibited at high E}/Ny, for increasing P > 1.
However, notice that the negative effect in both the BER
performance and the error-floor is reduced in the larger system
with Nr = 32, which benefits from the increased sparsity in
the system and the consequently increased orthogonality in the
unit vector random variables.

Further improvements including the elimination of error-
floors can be expected if the joint distributions of the
activation vectors and their non-uniform prior distributions
are introduced in the MP design, and a non-piloted variation
of the method is also under investigation, which will be
addressed in an upcoming journal article.

3Unbalanced MIMO scenarios will be investigated in future works.
4Fixed MP parametrization have been used for all scenarios, with damp-
ing factor p = 0.5 and number of MP iterations 7 = 100.
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Fig. 2: BER performance of the proposed (Prop.) UVD-GaBP
decoder and its Genie-aided matched filter bound (MFB).

-18 -15

5}

B. Complexity Analysis

Table I compares the decoding complexity of the proposed
UVD-GaBP method against few SotA algorithms®, where it
can be seen that the SotA methods have reduced the squared-
combinatorial term appearing in the brute-force ML search.

Namely, the relaxed orthogonal matching pursuit-based or-
dered successive IC (ROMP-OSIC) decoder proposed in [9]
relaxes the upper index of the binomial coefficient by a factor
N, with P < N, < Np, whereas the 1Q-decoupled GaBP
decoder proposed in [10] eliminates the quadratic factor on the
binomial coefficient, and 7.« is the number of MP iterations.
However, the SotA methods still retain the binomial coefficient
which is not scalable to mMIMO system of consideration.

On the other hand, the proposed UVD-GaBP decoder enjoys
a significantly reduced complexity® which is completely inde-
pendent of the binomial coefficient, enabling the decodability
of GQSM schemes in significantly larger mMIMO systems,
as verified in the performance evaluation results.

TABLE I: Complexity orders of various GQSM decoders.
[ GQSM Decoding Algorithm | Decoding Complexity Order |
Brute-force ML Search [4] O[(J\ITDT)QPNR]
ROMP-OSIC [9] O[("F)?No2PNrNR]
1Q-decoupled GaBP [10] O[ Tmax: () Np2Ng]
Proposed UVD-GaBP O[ Tmax- PN72NEg]

V. CONCLUSION

We paved the way towards feasible energy- and spectral-
efficient mMIMO systems with high-performance GQSM, by
proposing a novel GaBP-based decoder exploiting a UVD of
the GQSM signal model and pilots, which is shown to achieve
a complexity order that is independent of combinatorial fac-
tors. Simulation results verify the effectiveness of the method.

In addition, the multi-user scenario should also be consid-
ered to support the BSG mMIMO access expectations.

SFor fairness, the complexity of the symbol-level detection have been
disregarded for the SotA methods, since a fully pilotted scenario is considered.
6Since the variables a,, are unit vectors, the corresponding soft-replicas
and covariance matrices reach high sparsity at convergence, such that the
practical computational complexity is further reduced with each MP iteration.
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