
Combining AiG Agents with Unicore grid for
improvement of user support

Kamil Łysik

Warsaw University Of Technology

Department of Mathematics and Information

Sciences, Warsaw, Poland

Katarzyna Wasielewska, Marcin Paprzycki,
Michał Drozdowicz

Systems Research Institute Polish

Academy of Sciences,

Warsaw, Poland

Email: marcin.paprzycki@ibspan.waw.pl

Maria Ganzha

Institute of Informatics, University of Gdansk

Gdansk, Poland

System Research Institute Polish Academy of

Sciences, Warsaw, Poland

Email: mganzha@inf.ug.edu.pl

John Brennan, Violetta Holmes,
Ibad Kureshi

University of Huddersfield, Huddersfield, UK

Email: V.Holmes@hud.ac.uk

Abstract—Grid computing has, in recent history, become an
invaluable tool for scientific research. As grid middleware has
matured, considerations have extended beyond the core func-
tionality, towards greater usability. The aim of this paper is to
consider how resources that are available to the users across the
Queensgate Grid (QGG) at the University of Huddersfield (UoH),
could be accessed with the help of an ontology-driven interface.
The interface is a part of the Agent in Grid (AiG) project under
development at the Systems Research Institute Polish Academy
of Sciences (SRIPAS). It is to be customized and integrated with
the UoH computing environment. The overarching goal is to help
users of the grid infrastructure. The secondary goals are: (i)
to improve the performance of the system, and (ii) to equalize
the distribution of work among resources. Results presented in
this paper include the new ontology that is being developed for
the grid at the UoH, and the description of issues encountered
during the development of a scenario when user searches for an
appropriate resource within the Unicore grid middleware and
submits job to be executed on such resource.

I. INTRODUCTION

A. Background

In many educational and scientific institutions, the grid

middleware of choice is the Globus Toolkit (GT; [1]), which is

used to unify disparate, or geographically displaced, systems.

While the Globus is a mature and efficient grid middleware

that is often applied for linking computing systems, it lacks

key utilities e.g. resource discovery for users, which makes

it a relatively user-unfriendly system. As a result, burden is

placed on system administrators to continually publish up to

date resource information so that users are able to submit jobs

to the systems. Another aspect of this problem is that the GT

is unaware of the underlying systems and, for example, it will

keep submitting jobs to a cluster even if there are problems

with that resource.

Automated resource allocation was of real interest to the

administrators of the University of Huddersfield’s (UoH)

Queensgate Grid (QGG). This grid consists of a number

of distinct resources both on-campus and through resource

sharing agreements with regional consortia [2], [3]. Note that,

most of these systems utilize different job schedulers and this

creates a steep learning curve for the average user. Using

the standard GT, users can submit their jobs using a single

scripting language. However, first they need to be aware of

the existing system(s) (to be able to connect to it(them)). This

arrangement does not allow for the best use of resources, as

users will often submit jobs to the systems they are “used to,”

possibly overlooking better alternatives.

The European Middleware Initiative (EMI; [4]) middleware

holds a solution to this situation by enabling the job sub-

mission system to communicate directly with the information

gathering systems, allowing up to date resource information

to be collected, including current system loads, thus allowing

for much more intelligent decisions to be made, as to which

resource will be best suited for a given job. This automated

resource discovery allows users to specify required computing

attributes, during the submission and, based upon these re-

quirements, the EMI system will automatically select the most

appropriate resource within the grid to complete the needed

processes. The system can then translate the job specification

into the required job description language for the batch system,

whether that is PBS, LSF or SGE, and directly submit to the

endpoint [5]. In theory, the EMI middleware enables better

use of available resources by removing the burden of allocation

from the user [6], while using dynamic information concerning

current system loads.

The design of the EMI system implemented at the UoH was

based around five local servers and two national level services

provided by the National e-Infrastructure Service (NES) [7],

[8]. The local servers comprised of a User Interface (UI),

Workload Management System (WMS), Site level Berkeley

Database Information Index (BDII), Top level BDII, and a

MyProxy server. The system makes use of the NES based

Virtual Organisation Management System (VOMS) server,

2013 First International Symposium on Computing and Networking

978-1-4799-2795-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CANDAR.2013.18

66

2013 First International Symposium on Computing and Networking

978-1-4799-2795-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CANDAR.2013.18

66

TABLE I
THREE SYSTEM USAGE IN THE LAST 6 MONTHS OF 2012.

Month Eridani Sol Condor Jobs

7 1 0 0 1

8 41 28 0 69

9 42 3068 0 3110

10 4216 11017 200 15433

11 3686 5831 5612 15129

12 447 1440 2050 3937

Total 8433 21384 7862 37679

Fig. 1. Job Volumes per Month.

responsible for giving Virtual Organization (VO) attributes to

user credentials. Currently all user credentials are supplied

through the NES Certificate Authority (CA), although there

are plans to create local implementations of these services to

allow for greater control over local users.

However, as it will be argued in Section I-B, even instal-

lation of the EMI middleware did not result in the expected

improvement of effectiveness of grid use. Therefore, a differ-

ent approach to facilitating job submission is being considered.

In this paper we summarize initial considerations concerning

use of ontologies and semantic data processing to facilitate

user support in the UoH grid. Applied semantic technologies

originate from the Agents in Grid (AiG) project pursued by the

researchers of the Systems Research Institute Polish Academy

of Sciences (SRIPAS). In this paper we discuss how the

AiG infrastructure can be combined with the Unicore grid

moddleware, which is one of the middlewares used within the

UoH grid infrastructure.

B. Motivation

The context for this paper is provided by the issues en-

countered at the Univerisity of Huddersfield. Researchers at

the UoH have access to multiple systems on campus including

clusters, a Condor pool, Windows and Linux storage resources,

along with many resources available off campus such as the

enCore [9], [10] (a collaboration between the STFC, the

University of Huddersfield and the OCF), along with resources

hosted by the NGS and members of the North West Grid (NW-

Grid) [11]. With so many systems available in the grid, in the

case when there is no grid wide resource discovery it can be

difficult to effectively use and manage these systems. Observe

that in this situation, grid users can only connect/submit jobs

to the systems that they are aware of (e.g. they heard off during

a training that took place some time in the past). Therefore, a

heavy burden is placed upon the administrators to supply the

information about available systems, and developing a model

for systematic delivery of updated information. Even with this

in place, in order to complete their research, users tend to stay

with one system/submission method that they have learned in

the past, unless something goes wrong with that method. This

can lead to lengthy queues on some systems, or even exceeding

contractual monthly hours at some remote sites, while other

systems (available in the grid) stay underutilized. This fact

can be illustrated in the following data, collected at the UoH.

Consider tables Table I and Fig. 1. There it can be seen that

the number of jobs on the QGG hardly changed through the

October and November of 2012. However, looking at the data

in Fig. 2 it can be seen that the job distribution in November

shifted towards a much more balanced one. The only, known

to us, reason for this shift was that in November the QGG

administrators personally informed users that some of their

software was available on the HTCondor system and supplied

users with sample job scripts. As a result some users decided

to migrate their work (primarily from the Sol node) to the

Condor pool.

This being the case, a decision was made to create a “single

view” system that would link all available, geographically

distributed, HPC resources. Currently many open source grid

middleware solutions are available; such as EMI, Unicore,

or Globus Toolkit, among others. For instance, Unicore is a

mature grid middleware which, like the EMI, can interoperate

with other middlewares allowing it to be placed above the GT

in a software stack, or be deployed as a complete (“stand-

alone”) solution. However, these middlewares still lack the

“single point of contact” offered by the EMI and the job

submission needs to be targeted to specific systems, instead

of having a WMS-type service to do that. Therefore, the EMI

was chosen as the middleware that can be implemented on top

of the current software stack with minor modifications to the

Compute Element(s) (CE). As a result, installation of the EMI,

would have no impact on the standard submission procedures,

thus allowing the new system to be brought online and tested

without impacting ongoing workflows and also be compatible

with the existing NGS and the European e-infrastructure. As

a result, the decision was made to implement the EMI on the

QGG and, in this context, a base configuration needed to be

determined. Through the research carried out for the project it

was found that five local servers would be sufficient to produce

a working system. Fig. 3 shows the required base configuration

to setup an EMI based grid to serve all functions, apart from

those that were to be handled by the external VOMS server

and the CA.

6767

Fig. 2. Job Distribution Across Three Systems.

Fig. 3. EMI Deployment within the QGG.

The aims of this project were to unify the resources available

to the users of the QGG, while simultaneously reducing the,

above mentioned, burdens placed on the administrators, for

publishing up to date resource information and training users

how to use multiple submission systems. Furthermore, it was

considered to be highly beneficial for the system to integrate it

as seamlessly as possible with the national level infrastructure,

to simplify resource sharing for any future collaborative work.

Ideally users would need only a single point of access to

the QGG, from where the information about the current state

of all available resources would be available, and could be

matched against job requirements, with users only being aware

of a single job description language. In this way, using of the

EMI should also simplify the training requirements for staff,

students and post graduate researchers, as there would be only

a single job description language to teach the vast majority of

users.

However, with time it was realized that even this approach

would not be enough to satisfy the real-life user require-

ments. As stated above, experiences gathered at the UoH, and

prevalent across all computing centers that the authors of this

paper contacted, are as follows. Users can be divided into two

categories: (1) small group of “active users” who are ready and

willing to explore possibilities and expand their “toolbox” of

known methods of completing their computational jobs, and

(2) majority of users who are interested only in solving their

problems; are not interested in spending time and energy to

learn new things related to available computing infrastructures;

may have minimal knowledge of computer programming / use

(e.g. art professors who use 3D rendering programs). Taking

this into account, there arose a need to develop an even more

user-friendly and easy to manage interface that would support

users in finding a resource with specified configuration and

help them to submit a job (without knowledge of any job

description language). Furthermore, job submission process

should be the same regardless of the grid middleware installed

on a given resource. To achieve this goal it was proposed to

integrate the Agents in Grid (AiG [12]–[14]) middleware with

the EMI based grid available at the UoH, to provide dynamic

ontology-driven user interface (see, [15] for more details).

In the remainder of this paper we discuss how it should be

possible to combine the AiG semantic-agent system with the

UoH available grid middleware. To provide the context of

the discussion, while simplifying somewhat the situation, we

assume that all resources have Unicore middleware that is also

accessible from within the EMI.

C. Agents in Grid project

Let us start from a brief description of the basic features

of the Agents in Grid system, which aims at the development

of an agent-based infrastructure for intelligent resource man-

agement in the grid. One of the main assumptions of the AiG
is to use ontologies and semantic data processing to represent

all knowledge in the system, as well as the content of mes-

sages exchanged by system components. Therefore, we have

developed an ontology of the grid combined with ontologies

needed for contract negotiations (for details, see [16]). This

ontology modifies and extends the ontology developed during

the CoreGrid project. Originally, in the AiG system has been

developed for the open grid (e.g. the Internet). Therefore, it

was suggested that, to overcome certain possible problems),

agents work in teams. This resulted in the need to consider

two main scenarios: (i) user wants to execute a job using

a resource available in the grid (and this resource becomes

available through one of the existing team), (ii) worker wants

to join a team to make its resource(s) available. Overall, system

is based on the following tenets (in what follows, we will

discuss changes needed to adapt the AiG system to work with

grid middleware in a controlled environment of the UoH):

• users are represented by their “personal agents” (LA-
gents),

• agents work in teams (groups of agents representing

resources) and in this way they avoid problems caused

by resource disappearance,

• each team has a single leader – LMaster agent,
• each LMaster has a mirror LMirror agent that can take

over its job in the case when the LMaster agent crashes,

• incoming workers (worker agents – instances of LAgents)

– join teams based on user-defined criteria,

6868

• teams (represented by LMasters) accept workers based

on criteria internal to the team,

• each LAgent can (if needed) play role of the LMirror, or

of the LMaster,

• matchmaking (between the agent seeking resources to

execute a job, or wanting to sell its resources and teams

existing in the system that can execute a job or seek

workers) is facilitated by the CIC component (in the

system represented by the CIC agent),
• terms of collaboration (Service Level Agreement) between

the LAgent (trying to execute a job, or representing the

resource) and a team represented by LMaster result from

negotiations.

Further discussion concerning the rationale behind the above

listed assumptions, and elaboration of their practical realiza-

tion, can be found in [12]–[14], [16] and papers referenced

there.

It is easy to observe that the full functionality provided

by the AiG system is much more extensive than what is

needed to provide ontology-based user support in the scenario

/ environment described above. This is caused, among others,

by the fact that the AiG system is prepared to work in an

uncontrolled “open grid” environment, while at the UoH we

deal with closed grid, controlled by appointed administrators.

Therefore, the AiG has to be customized to support a scenario

shown in Fig. 4. Here, let us note that, instead of teams

Fig. 4. Sequence diagram with a simplified job execution scenario from the
AiG system.

represented by their LMasters, we could have (among others):

1) an AiG interface communicating with a single grid

middleware (e.g. the Unicore – the example here) rep-

resented by a single grid agent – counterpart to the

LMaster – here, the primary reason for the use of the

AiG software would be to apply the ontology-driven

front-end;
2) an AiG interface communicating with a multiple grid

middlewares, each represented by a single grid agent –

counterpart to the LMaster – here, in addition to the

ontology-driven front-end the system could negotiate

which grid middleware would have the needed resource

and be available at the time-frame requested by the user.

Here, further discussion is in order. In what follows we

discuss how the AiG middleware can be combined with the

Unicore. However, in Section I-B we have specified that the

ultimate goal for the UoH would be to provide an ontology-

driven front-end for the EMI middleware. There is a number

of reasons for proceedings the way we do. First, the EMI

middleware is quite complex, as it is actually a meta-level

grid middleware that “contains” the Unicore as one of its

components. Therefore, our current work is a stepping-stone

toward the full EMI integration. Second, there exist sites that,

for a variety of reasons, to not plan to deploy the EMI (e.g.

while running the Unicore). This being the case, the AiG

infrastructure should be able to interact with any actual grid

middleware, and this paper illustrates that this is feasible.

Finally, it is possible to use only the AiG ontological front-end

(see, below) and interface it with the EMI infrastructure (and

this may be the ultimate solution for the UoH). However, in

this case only an EMI-specific solution would be tried, without

possibility of providing a single point of contact infrastructure,

consisting of any combination of grid middlewares and (pos-

sibly) not-gridified resources. Therefore, material presented in

this paper should be seen as an exploratory work towards, on

the one had, a solution to be installed at the UoH, and a general

approach for fusion of AiG components with any existing grid

middleware, on the other.

Returning back to the main line of reasoning, we note that

since there are no agent teams, the team joining functionality

can be eliminated from further considerations. Furthermore,

negotiation of terms of collaboration between the LAgent
representing the user and the grid agents can be simplified

to verifying: (i) if there is(are) a needed resource(s) in the

given grid; and (ii) if the job can be executed within given

time frame (here, for instance, the LAgent could select the

grid that would execute its job earlier). Therefore, there will

be no need to negotiate economic trends of job execution: e.g.

price, deadline penalty etc. Use case diagram of the simplified

system in shown in Fig. 5.

II. INTEGRATION OF AIG WITH UNICORE GRID

As proposed above, for integrating the AiG infrastructure

with the Unicore grid a special grid agent was created. Its

purpose is to serve as a proxy between the Unicore grid

and the AiG system and to manage / oversee the state of

the job execution. Obviously, the implementation of the grid
agent depends on the supported grid middleware. Each system

requires its own grid agent implementation. However, thanks

to the agent-based approach, it is possible to easily extend the

AiG to support multiple grid middlewares, without changing

the implementation of the other agents. The only addition to

6969

Fig. 5. Simplified use case diagram of AiG system.

the AiG system would be the grid agent corresponding to a

given (new) grid. Thus, the integration of the AiG with the EMI

grid would require creation of a single EMI grid agent. Here,

it should be observed that this method of initial integration

of the AiG with the EMI may be simpler that fusing the AiG
ontological front-end with it. This is because the agent-level

integration could proceed without the need to directly interact

with the EMI code (only meta-level information would be

exchanged, in a similar way that in the case of the Unicore grid
agent described below). However, this issue requires further

investigation.
Here, note that the scalability of the proposed approach,

while not experimentally tested, should not be a big problem.

First, in [17], [18] it was shown that the JADE agents (which

are used in the AiG system) are highly scalable. Second, in

the newest version of JADE agent platform, a new mechanism

of “agent aliases” was added. It allows to instantiate multiple

agents that are known to the system under the same name. In

this way, if needed, multiple copies of the grid agent can be

instantiated to handle the workload.
Concluding this section let us observe that the scenario

that has to be implemented is as follows. User specifies the

job execution requirements (interacting with the ontology-

driven front-end; described in the next two sections). These

requirements are received (from the interface) by the LAgent
(representing the user). Depending on the situation (see above),

the LAgent may or may not need to negotiate, which grid is

going to be used to execute the job. Next, it forwards the job

information to the appropriate grid agent. The job submission

contains also all required parameters and input data. At this

stage, the job “leaves” the AiG system, as it is submitted

(by the grid agent) to “its” grid middleware. However, the

grid agent monitors the state of the job execution (using

mechanisms available in the grid). If needed, the grid agent
can send information about the job state to the appropriate
LAgent. When the job execution is finished the LAgent agent

is informed about the results. If the job failed, the LAgent is

informed about the failure (with the error message included).

In case of successful execution, the grid agent retrieves the

results from the grid and sends them to the LAgent. Let us

now look into this process in more detail.

A. Implementing Ontologies

The first issue that we have to address is the question of

ontologies used in the system. As stated above, in the AiG
project we have modified and considerably extended the Core

Grid Ontology. This was to be able to apply semantic data

processing across the system. When considering integration

of the AiG system with any other software artifact we have to

make sure that the ontologies used in the system will be able

to properly capture “features” of the new software. Therefore,

one of the most crucial steps in integrating the AiG agents with

the UoH QGG grid is to implement dedicated ontologies. In

the AiG system, three main ontologies are used: (i) AiG Grid
Ontology – to describe resources and structure of the grid,

(ii) AiG Conditions Ontology – to describe contracts (terms

of collaboration) between grid users and resource providers,

(iii) AiG Messaging Ontology – to describe content of mes-

sages exchanged in the system. These ontologies provide the

conceptual model that is later used to prepare the deployment-

specific ontologies with instances and assertions about them

(for more information about the AiG ontologies, see [16]).

¿From the ontological perspective, the integration requires

preparation of a new (dedicated) ontology with instances de-

scribing the QGG grid structure, verification that the Unicore

grid specific parameters exist within the AiG Grid Ontology,

and inclusion of application specific parameters to describe the

job before its submission. Here, to test the AiG in the rendering

job (which is one of typical applications ran in the UoH

grid) we used the POV-RAY raytracing engine (instead of the

Mental Ray that is actually used in the UoH). The POV-RAY

7070

requires that the input file contains the input data. Additionally,

rendering parameters can be passed as application options,

like output image size, or output file format. For instance, the

POV-RAY execution command could have the form: povray
image.pov +W1024 +H1024, where +W is the width,

and +H is the height of the rendered image. Since the POV-

RAY was used only in our initial prototype, we will not list

the application-specific ontology, as it will have to be adjusted

when, in the next step of the project (we will create and use

the “Mental Ray ontology”).
To illustrate how the UoH grid-available hardware was mod-

eled in the dedicated UoH ontology, the following code snippet

shows a fragment of the ontolgical description of the UoH

grid infrastructure. Here, we see the individuals that represent

the grid middleware (Globus 4, Globus 5 and Unicore 6)

and computing elements (equivalent to grid systems) actually

available in the UoH grid, named TAUCETI, CONDOR POOL

and UNICORE. For each computing element, a common

configuration can be specified e.g. Meta scheduling service

for the UNICORE. Moreover, each computing element has

a set of worker nodes (units within the given grid system

represented with dedicated LAgents that can execute a job) e.g.

the UNICORE ComputeNode 1 is a worker node within the

UNICORE grid system that has the indicated CPU, memory

and storage space. Finally, we present only a part of the

configuration of the selected computing elements and worker

nodes.

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
Globus4 ”>

< r d f : t y p e r d f : r e s o u r c e =”&AiGGridOntology ; Globus4 ” />
<cgo:hasComponent r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

CondorPool ” />
<A i G G r i d O n t o l o g y : h a s G r i d S e r v i c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Schedu le r Troque Maui ” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
Globus5 ”>

< r d f : t y p e r d f : r e s o u r c e =”&AiGGridOntology ; Globus5 ” />
<cgo:hasComponent r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

TAUCETI” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
Un ico re6 ”>

< r d f : t y p e r d f : r e s o u r c e =”&AiGGridOntology ; Unico re6 ” /
>

<cgo:hasComponent r d f : r e s o u r c e =”&UoHGr id Ins t ances ;
UNICORE” />

<A i G G r i d O n t o l o g y : h a s G r i d S e r v i c e r d f : r e s o u r c e =”&
UoHGr id Ins t ances ; M e t a S c h e d u l i n g S e r v i c e ” />

< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
TAUCETI”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; Comput ingElement ” />
< r d f s : l a b e l xml: lang =” en ”>TAUCETI< / r d f s : l a b e l>
<A i G G r i d O n t o l o g y : h a s O p e r a t i n g S y s t e m r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; CentosOS6 ” />
<A i G G r i d O n t o l o g y : h a s G r i d S e r v i c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Schedu le r Troque Maui ” />
<cgo:hasWN r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

TAUCETI ComputeNode 1” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;

TAUCETI ComputeNode 1”>
< r d f : t y p e r d f : r e s o u r c e =”&cgo ; WorkerNode ” />
< r d f s : l a b e l xml: lang =” en ”>TAUCETI Compute Node #1< /

r d f s : l a b e l>
<cgo:hasCPU r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

CPU 2DualCoreAMDOpteron275 ” />
<A i G G r i d O n t o l o g y : h a s O p e r a t i n g S y s t e m r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; CentosOS6 ” />
<AiGGridOntology:hasMemory r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Memory 3GB RAM” />
<A i G G r i d O n t o l o g y : h a s S t o r a g e S p a c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Storage 65GB HDD ” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
CondorPool ”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; Comput ingElement ” />
< r d f s : l a b e l xml: lang =” en ”>CONDOR POOL< / r d f s : l a b e l>
<A i G G r i d O n t o l o g y : h a s G r i d S e r v i c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Condor 7 . 6 . 7 ” />
<A i G G r i d O n t o l o g y : h a s O p e r a t i n g S y s t e m r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Windows” />
<cgo:hasWN r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

CONDOR POOL ComputeNode 1” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
CONDOR POOL ComputeNode 1”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; WorkerNode ” />
< r d f s : l a b e l xml: lang =” en ”>CONDOR POOL Compute Node

#1< / r d f s : l a b e l>
<cgo:hasCPU r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

CPU In te lCore i52320 ” />
<AiGGridOntology:hasMemory r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Memory 4GB RAM” />
<A i G G r i d O n t o l o g y : h a s S t o r a g e S p a c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Storage 500GB SATA3 ” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
UNICORE”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; Comput ingElement ” />
< r d f s : l a b e l xml: lang =” en ”>UNICORE< / r d f s : l a b e l>
<A i G G r i d O n t o l o g y : h a s O p e r a t i n g S y s t e m r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; S c i e n t i f i c L i n u x ” />
<A i G G r i d O n t o l o g y : h a s G r i d S e r v i c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; M e t a S c h e d u l i n g S e r v i c e ” />
<cgo:hasWN r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

UNICORE ComputeNode 1” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
UNICORE ComputeNode 1”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; WorkerNode ” />
< r d f s : l a b e l xml: lang =” en ”>UNICORE Compute Node #1< /

r d f s : l a b e l>
<A i G G r i d O n t o l o g y : h a s O p e r a t i n g S y s t e m r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; S c i e n t i f i c L i n u x ” />
<cgo:hasCPU r d f : r e s o u r c e =”&UoHGr id Ins t ances ;

CPU In te lCore i52320 ” />
<AiGGridOntology:hasMemory r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Memory 1GB RAM” />
<A i G G r i d O n t o l o g y : h a s S t o r a g e S p a c e r d f : r e s o u r c e =”&

UoHGr id Ins t ances ; Storage 10GB HDD ” />
< / o w l : N a m e d I n d i v i d u a l>

<o w l : N a m e d I n d i v i d u a l r d f : a b o u t =”&UoHGr id Ins t ances ;
Storage 500GB SATA3 ”>

< r d f : t y p e r d f : r e s o u r c e =”&cgo ; S t o r a g e S p a c e ” />
< r d f s : l a b e l xml: lang =” en ”>500 GB wi th SATA3 Disk< /

r d f s : l a b e l>
<A i G G r i d O n t o l o g y : h a s A v a i l a b l e S i z e r d f : d a t a t y p e =”&

xsd ; i n t ”>512000< /
A i G G r i d O n t o l o g y : h a s A v a i l a b l e S i z e>

7171

<A i G G r i d O n t o l o g y : h a s S t o r a g e I n t e r f a c e r d f : r e s o u r c e =”
&UoHGr id Ins t ances ; SATA3” />

< / o w l : N a m e d I n d i v i d u a l>

B. AiG ontology-driven user interface

One of the key features of the AiG system is the ontology-

driven dynamic user interface that enables user without ontol-

ogy knowledge to select a class or an individual on the basis

of the ontology of the system. The challenge was to design a

user-friendly mechanism to create OWL class expressions and

individuals. This was achieved through the development of

the condition builder that enables one to define conditions on

multiple (different) properties of the root class. The user can

select the property she wishes to restrict, choose an appropriate

operator and type in, or select, the value for that property. The

main advantage of such approach is that the system benefits

directly from the semantic data processing and features of data

representation within the OWL 2.0, while the semantic data

processing is being hidden from the user. Furthermore, the

flexible and adaptable interface allows for ontology modifica-

tion without the need for modification of the underlying code

of the system (front end) that utilizes it. Specifically, changes

made to the ontology are immediately “loaded” and become

visible to the user. This feature can greatly simplify work of

grid administrators, who can make new hardware / software

visible to the users by simply modifying the ontology. All

interactions with the user actor in Fig. 4 utilize just described

interface. Therefore, all input data specified by the user in

“non-ontological interactions” with the interface, are translated

into ontologically demarcated data that is processed within the

system.

To illustrate the way that the interface operates, let us

consider the first step of job execution. Here, the user specifies

the requirements for the configuration of resources that shall

be used to execute a job. After logging into the system, the

user works with an interface similar the one shown in Fig. 6;

to restrict the properties of the computing element. Note that,

for the time being, this interface has not been developed with

usability in mind. Therefore, Fig. 6 depicts what should be

see as a rough representation (focused on the available data)

of what can be shown to the user. Here, the underlying system

Fig. 6. Selection of resource configuration in the interface.

ontologies are the AiG conceptual ontologies and the dedicated

UoH ontology, with the QGG grid structure and resource

specification. Let us stress, that the presented information

corresponds to the actual structure and node configuration of

the UoH grid. Therefore, classes and properties are consistent

with what would be specified for the Unicore grid config-

uration, and the user can specify configuration that should

match one of the resources that are available (e.g. one of

multiple computing nodes with the Unicore). Moreover, users

can explicitly indicate the QGG computing node; if they know

that it has the optimal configuration for their job (see, Fig. 7).

Fig. 7. Selection of a specific resource in the interface.

C. Interaction of JADE AiG agents with the Unicore grid
middleware

Let us now consider the implementation of the Unicore
grid agent that represents the Unicore grid in the AiG system.

Specifically, the Unicore grid agent accepts job submissions

provided by the LAgent (representing the user) and sends them

to the Unicore grid. Next, it is monitoring the job execution

status and taking care of the job execution results. Here, let

us stress again, that the Unicore grid agent is an instance of

a general concept of a grid agent. Specifically, to support a

different grid middleware (e.g. to create a gLite grid agent)
all that would be required is to create a new grid agent with a

logic allowing a job to be submitted to the gLite grid; status of

which should be monitored and results of which to be returned

to the appropriate AiG LAgent. In this way, the grid agent is an

interface to a selected grid middleware (it can be also regarded

as a type of the LMaster agent with a limited / dedicated

functionality).

The Unicore grid agent can communicate with other agents

in the AiG system (i.e. LAgents representing users) to receive

job submissions. It is assumed that the grid agent, representing

the grid middleware to execute the job, is selected during a

negotiation process. Henceforth, grid agents communicate also

with “their own” grid installation.

In the current implementation of the Unicore grid agent only

the Unicore 6 is supported. To execute the job the Unicore
grid agent must receive a job submission document and a

list of input files (uploaded to the grid). The job submission

document is described in the Job Submission Description
Language (JSDL) that is supported by many grid systems. The

mandatory element of the submission document is the name of

7272

Fig. 8. AiG job execution interfaces

the application, i.e. the name of the software that is available in

the grid and is requested to be executed (e.g. the POV-RAY).

Without it the grid cannot determine what software should

be used. Additionally, the JSDL provides many parameters

to describe jobs, e.g. the command to execute, the resource

requirements, or the job execution limits. As soon as the grid
agent retrieves the required elements it can start arranging job

execution.

Job execution is performed by the grid middleware repre-

sented by respective grid agent. When the job finishes, the grid
agent knows about that fact and can access information about

the execution status. In case of success, the grid agent accesses

the job submission log and output files, and returns the results

to the appropriate LAgent. Otherwise the grid agent reports to

the LAgent that the job execution failed (and returns the error

message). Here, note that, for the Unicore grid middleware, the

returned results contain also the output of the standard streams

(stdout, stderr) that are send as text strings. Obviously, it could

be possible to return only information that the job has been

completed and information about location of the output files.

This approach, due to restrictions on file access and sharing,

is rather inappropriate for the “open grid.” However it will be

considered for the UoH grid infrastructure, where the limiting

factors are absent.

To make the AiG independent of the specific grid middle-

ware, a new module was created. It contains all logic that

is required to submit a job to the Unicore grid (and, in the

future, other grid middlewares) and retrieve the results. It is

based on the code shipped with the EMI grid middleware

and specific parts of the Unicore system. Thanks to the EMI

code, it was possible to reuse some Java classes for interaction

with other grid systems / middlewares. Obviously, the main

purpose for the creation of a separate module was to extract

the grid execution logic as separate project and to integrate

the execution services with the AiG project (or other systems,

if necessary).

The new module provides methods to configure the Unicore
grid agent and to submit job to the Unicore middleware.Yhe

job submission code is as generic as possible, due to extraction

of the class interfaces (see Fig. 8).
The first step of job execution is establishing connection

to the configured grid, using the getConnection() method.
When the connection is acquired and the job description object
is filled, the job can be submitted. First, the job is created to
get the GridJob object. Next, to execute the job the following
command is used:

GridJob job = connection.
createJob(description);

job.submit();
job.uploadFiles(inputPath, inputFileNames);
job.startJob();

Here, the Unicore job submission mechanism creates a job in
the grid, but does not start it. The file upload is possible only
after the job is submitted and should be done before the job
starts. To finish the job and to download the files, the following
commands are issued:

job.waitUntilDone();
String[] outFileNames =

job.getOutputFileList();
job.getOutputFiles(outputPath, outFileNames);

Note that the outF ileNames can be filtered here. For exam-

ple, it is possible to get only the image files filtered from

among all other file types (e.g. to omit the text files). By

default, the library lists all files that are in the grid working

directory.

Finally, the cleanup is required. For the Unicore grid mid-

dleware there will be a list of jobs that aren’t deleted and will

wait until the administrator deletes them manually. However,

this should not happen if the Unicore grid agent has direct

connection to the grid. Then it would take care of the problem

by issuing the commands:

job.destroy();
connection.close();

Here, note that, to configure the connection to the Unicore

grid middleware, it is required to set the connection URL and

use credentials with certificates. To get the certificate and the

URL it is necessary to contact the grid administrator. However,

the Unicore grid agent configuration is performed only once

for every grid installation and has to take place during each

Unicore grid agent startup.

III. CONCLUDING REMARKS

The aim of the paper was to outline the motivation and

actions undertaken to integrate the AiG agent-semantic system

for management of grid resources, with the EMI grid mid-

dleware that is being installed and tried at the University of

Huddersfield (UoH). We have started by outlining the reasons

behind the need for application of an ontology driven interface

to support users of the UoH grid resources. Next, we have

presented the main features of the AiG system and discussed

the way it has to be modified to match the requirements of

the integration with the UoH grid. Here, we have considered

different ways of integrating a semantic interface with the EMI

7373

(and possibly other) grid middleware(s). Furthermore, we have

used the Unicore grid middleware as the use case example to

discuss how to combine the AiG system with any other grid

middleware. While the integration has been completed and we

have successfully run the POV-RAY application instantiated in

a local grid at the SRIPAS, we have decided not to present

this application as it does not bring any additional information

other than that the integration was successful. In the next

step we plan to fuse the AiG system with the EMI grid

middleware used at the University of Huddersfield. Here, the

above noticed research questions, e.g. if we should resign from

the agents and use only the semantic interface module, or how

to handle the results – to leave to be picked up, or to transfer to

the LAgent, will be considered. Separately, integration of the

AiG infrastructure with other popular grid middlewares (e.g.

Globus Toolkit, gLite, CONDOR, etc.) will also be tried.

IV. ACKNOWLEDGEMENT

The author(s) would like to acknowledge the use of the

University of Huddersfield Queensgate Grid in carrying out

this work. The authors would like to acknowledge the use of

the UK National e-Infrastructure Service in carrying out this

work and for the support provided by the NES helpdesk.

REFERENCES

[1] Ian Foster, Carl Kesselman, Steven Tuecke, “The anatomy of the grid –
enabling scalable virtual organizations,” mar 2001. [Online]. Available:
http://arxiv.org/abs/cs/0103025

[2] I. Kureshi, “Establishing a university grid for HPC applications –
university of huddersfield repository,” Thesis (Masters), University of
Huddersfield, Huddersfield, 2010. [Online]. Available: http://eprints.
hud.ac.uk/10169/

[3] V. Holmes and I. Kureshi, “Huddersfield university campus grid:
QGG of OSCAR clusters,” Journal of Physics, vol. 256, no. 1, 2010.
[Online]. Available: http://iopscience.iop.org/1742-6596/256/1/012022/

[4] EMI Collaboration, “Emi, mna3.2 open source software initiative,”
jan 2013. [Online]. Available: http://cds.cern.ch/record/1450878/files/
EMI-MNA3.2-1450878-OS Initiative Charter v1.0.pdf?version=1

[5] Cristina Aiftimiei, Alberto Aimar, Andrea Ceccanti, Marco Cecchi,
Alberto Di Meglio, Florida Estrella, Patrick Fuhrmann, Emidio Giorgio,
Balazs Konya, Laurence Field, Jon Kerr Nilsen, Morris Riedel, and
Morris Riedel, “Towards next generations of software for distributed
infrastructures: the european middleware initiative.” [Online]. Available:
http://www.pd.infn.it/∼aiftim/papers/emi.pdf

[6] S. Campana and D. Rebatto and A. Sciaba, “Experience with the
gLite workload management system in ATLAS monte carlo production
on LCG,” Journal of Physics, vol. Volume 119, no. 5, 2008.
[Online]. Available: http://iopscience.iop.org/1742-6596/119/5/052009/
pdf/1742-6596 119 5 052009.pdf

[7] D. Wallom, P. Oliver, A. Richards, and S. Young, “NGS site level
services,” Sep. 2009. [Online]. Available: http://www.ngs.ac.uk/sites/
default/files/NGS Software Stack-3-2.pdf

[8] J. Jensen, G. A. Stewart, M. Viljoen, D. Wallom, and S. Young,
“Practical grid interoperability: GridPP and the national grid service,”
in UK e-Science All Hands Conference, 2007. [Online]. Available:
http://install.gridpp.ac.uk/papers/GridInteoperability-AHM07.pdf

[9] J. Dixon, “enCORE on-demand HPC,” http://www.ocf.co.uk/, 2010.
[Online]. Available: http://www.ocf.co.uk/

[10] “IBM – enCORE HPC on-demand service,” http://www-304.ibm.
com/partnerworld/gsd/scsolutiondetails.do?cd=BPAS&sbcd=&solution=
44954&lc=en.

[11] T. J. M. H., T. R. P., A. R. J., D. M. T., A. K. F., W. A. M., B. R.
P., P. L., and D. M. C., “Science carried out as part of the NW-GRID
project using the eMinerals infrastructure,” 2007, pp. 220–227. [Online].
Available: http://www.allhands.org.uk/2007/proceedings/papers/892.pdf

[12] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, and
M. Paprzycki, “Utilizing agent teams in Grid resource management—
preliminary considerations,” in Proc. of the IEEE John Vincent Atanasoff
Conference. Los Alamitos, CA: IEEE CS Press, 2006, pp. 46–51.

[13] W. Kuranowski, M. Ganzha, M. Gawinecki, M. Paprzycki, I. Lirkov, and
S. Margenov, “Forming and managing agent teams acting as resource
brokers in the grid—preliminary considerations,” International Journal
of Computational Intelligence Research, vol. 4, no. 1, pp. 9–16, 2008.

[14] K. Wasielewska, M. Drozdowicz, M. Ganzha, M. Paprzycki, N. Attaui,
D. Petcu, C. Badica, R. Olejnik, and I. Lirkov, “Trends in Parallel,
Distributed, Grid and Cloud Computing for engineering,” P. Ivanyi and
B. Topping, Eds. Stirlingshire, UK: Saxe-Coburg Publications, 2011,
ch. Negotiations in an Agent-based Grid Resource Brokering Systems.

[15] M. Drozdowicz, M. Ganzha, K. Wasielewska, M. Paprzycki, and
P. Szmeja, “Using ontologies to manage resources in grid computing:
Practical aspects,” in Agreement Technologies, ser. Law, Governance and
Technology Series, S. Ossowski, Ed. Springer Netherlands, 2013, vol. 8,
pp. 149–168.

[16] M. Drozdowicz, K. Wasielewska, M. Ganzha, M. Paprzycki, N. Attaui,
I. Lirkov, R. Olejnik, D. Petcu, and C. Badica, Ontology for Contract
Negotiations in Agent-based Grid Resource Management System. Stir-
lingshire, UK: Saxe-Coburg Publications, 2011.

[17] K. Chmiel, D. Tomiak, M. Gawinecki, P. Kaczmarek, M. Szymczak,
and M. Paprzycki, “Testing the efficiency of jade agent platform,” in
ISPDC/HeteroPar, 2004, pp. 49–56.

[18] K. Chmiel, M. Gawinecki, P. Kaczmarek, M. Szymczak, and M. Pa-
przycki, “Efficiency of jade agent platform,” Scientific Programming,
vol. 13, no. 2, pp. 159–172, 2005.

7474

