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Abstract—Despite lots of literature has been dedicated to
researching the delay performance in two-hop relay (2HR) mobile
ad hoc networks (MANETs), however, they usually assume the
buffer size of each node is infinite, so these studies are not
applicable to and thus may not reflect the real delay performance
of a practical MANET with limited buffer. To address this issue,
in this paper we explore the packet end-to-end delay in a 2HR
MANET, where each node is equipped with a bounded and shared
relay-buffer for storing and forwarding packets of all other flows.
The transmission range of each node can be adjusted and a
group-based scheduling scheme is adopted to avoid interference
between simultaneous transmissions, meanwhile a handshake
mechanism is added to the 2HR routing algorithm to avoid
packet loss. With the help of Markov Chain Theory and Queuing
Theory, we develop a new framework to fully characterize the
packet delivery processes, and obtain the relay-buffer blocking
probability (RBP) under any given exogenous packet input rate.
Based on the RBP, we can compute the packet queuing delay in
its source node and delivery delay respectively, and further derive
the end-to-end delay in such a MANET with limited buffer.

Index Terms—delay; mobile ad hoc networks (MANETs);
limited buffer; queuing analysis

I. I NTRODUCTION

A mobile ad hoc network (MANET) can be defined as
a fully self-organizing system where mobile nodes freely
communicate with each other without any infrastructure or
centralized administration [1]. In such networks, the traditional
routing algorithms like AODV [2] and DSR [3] can not adapt
to the highly dynamic topology, while the routing algorithms
based on opportunistic transmission like two-hop relay routing
scheme [4] which is first proposed by Grossglauser and Tse,
and its variants [5]–[9] are widely applied due to their simplic-
ity and highly efficiency. Therefore, a critical issue of natural
interest is how to thoroughly understand the performance of
such networks [10], [11].

In our previous work [12], we investigated the throughput
and capacity of a buffer-limited MANET. So in this paper, we
further extend the network model to a more general scenario
and explore the end-to-end delay performance. By now, a
lot of work has been done to analyze the packet delay in a
class of 2HR MANETs. Neely and Modiano [5] studied the
end-to-end delay under several routing schemes such as 2HR
with or without redundancy, 2HR with feedback and multi-
hop relay. They developed a fundamental tradeoff between

delay and throughput asD/λ = O(n). Groeneveltet al. [13]
also derived expressions for message delivery delay in closed-
form. There also exist many scaling law results for the delay
performance in MANETs under various mobility models, like
under the random walk model in [14], under the restricted
mobility model in [15], under Brownian motion model in
[16], [17], and under hybrid random walk models in [18].
Recently, Liu et. al explored the packet delay underf -cast
relay algorithm [6], generalized two-hop relay algorithm [7],
and probing-based two-hop relay algorithm [9], respectively.

However, it is notable that all these works mentioned above
assumed the buffer size of each node is infinite to make their
analysis tractable. Actually, this assumption never holdsfor a
realistic MANET. Even in some scenarios, in order to save the
networking cost, or due to the scarce resource in a terminal
node (small size, low computing capability and so on), the
buffer space equipped for each node is very limited. Thus,
these studies are not applicable to and may not reflect the real
delay performance of a practical MANET with limited buffer.

As a first step towards this end, this paper explores the
packet end-to-end delay performance for a 2HR MANET,
where each node is equipped with a limited relay-buffer,
which is shared by all other traffic flows to temporarily
store the forward their packets [19]. In order to avoid the
interference between simultaneous transmissions, a group-
based transmission scheduling scheme is adopted. While in
order to avoid the packet loss when the relay-buffer of receiver
is blocked, a handshake mechanism is added in the 2HR
routing algorithm. The main contributions of this paper are
summarized as follows.

• A theoretical framework is developed to fully capture the
packet arrival and departure processes in both source node
and relay node, respectively. Based on this framework, we
obtain the packet occupancy distribution in a relay buffer,
and further derive the relay-buffer blocking probability
(RBP) under any given exogenous input rate.

• The service rate of a source node can be computed by
utilizing the RBP. Based this service rate and Queuing
theory, we derive the queuing delay of a packet in its
source node.

• With the help of RBP and the absorbing Markov Chain
theory, we further derive the packet delivery delay. Fi-
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(a) A cell-partitioned network with a
general transmission range.
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(b) Illustration of group-based
scheduling.

Fig. 1. Cell partitioned MANET and group-based scheduling.

nally, the packet end-to-end delay can be obtained by
incorporating the queuing delay with the delivery delay.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system models, transmission scheduling,
routing algorithm and some basic definitions. Section III pro-
vides the theoretical framework to analyze the packet deliver
processes and obtain the RBP. Based on the computation of
RBP, the packet queuing delay and delivery delay are derived
in Section IV. Finally, Section V provides the numerical results
and Section VI concludes this paper.

II. PRELIMINARIES

This section introduces the system models, transmission
scheduling, routing algorithm and some basic definitions in-
volved in this paper.

A. System Models

Network model: As previous works [5], [7], we consider
a time-slotted and cell-partitioned network model, where the
network is partitioned intom × m nonoverlapping cells of
equal size andn mobile nodes roam from cell to cell according
to the independent and identically distributed (i.i.d) mobility
model [4]. The time-slot has a fixed length and is uniformed
to exact one packet transmission. The transmission range of
each node is same and can cover a set of cells which have a
horizontal and vertical distance of no more thanν − 1 cells
away from its own cell, as illustrated in Fig. 1(a).

Traffic model: The popular permutation traffic model [20]
is adopted. There are in totaln distinct unicast traffic flows,
each node is the source of a traffic flow and meanwhile the
destination of another traffic flow. Without loss of generality,
as shown in [5], we assumen is even and the source-
destination pairs are composed as follows:1 ↔ 2, 3 ↔ 4,
· · · , (n− 1) ↔ n. The exogenous packet arrival at each node
is a Bernoulli process with rateλ packets/slot.

Interference model: We adopt the famous protocol model
[21] to account for the interference between simultaneous
transmissions. By applying the protocol model, when node
i transmits packets to nodej, this transmission is successful
if and only if:

1) Nodej is within the transmission range of nodei.

2) dk,j ≥ (1 + ∆)di,j , for any other concurrent transmitter
k, wheredi,j denotes the distance betweeni andj, ∆ is
a guard factor determined by the protocol model.

Buffer Constraint: As the available study on buffer-limited
wireless networks [19], we consider a practical buffer con-
straint. Each node in the MANET has two queues, one local
queue with unlimited buffer size for storing the self-generated
packets, and one relay queue with fixed sizeB for storing the
packets coming from all othern − 2 traffic flows. We adopt
this buffer constraint here mainly due to the following reasons.
First, in a practical network, each node usually reserves a much
larger buffer space for storing its own packets rather than the
relay packets. Second, even though the local buffer space isnot
enough when bursty traffic comes, the upper layer can execute
congestion control to avoid the loss of local packets. Thus,our
network model can be served as a well approximation for a
realistic MANET.

B. Group-Based Transmission Scheduling

As a inherent feature of wireless networks, the interference
between simultaneous transmissions is a critical issue that
should be carefully considered. We adopt here the group-based
transmission scheduling which has been extensively applied in
previous studies [7], [20]. As illustrated in Fig. 1(b), allcells
are divided into distinct groups, where any two cells in the
same group have a horizontal and vertical distance of some
multiple of ǫ cells. Thus, the MANET hasǫ2 groups and each
group containsK = ⌊m2/ǫ2⌋ cells. Each group becomes
active everyǫ2 time slots and each cell of an active group
allows one node to conduct packet transmission. By applying
our interference model,ǫ should be satisfied that

(ǫ − ν) · 1

m
≥ (1 + ∆)

√
2ν · 1

m
.

On the other hand, in order to allow as many simultaneous
transmissions as possible,ǫ is determined as

ǫ = min{⌈(1 + ∆)
√
2ν + ν⌉,m}. (1)

C. Handshake-Based Two Hop Relay Routing Algorithm

Notice that in a buffer-limited MANET with 2HR for packet
delivery, when a source node want to send a packet to a relay
whose relay queue is full, then this transmission fails, and
leads to packet loss and energy waste. To solve this problem,
a handshake mechanism is introduced into the traditional
2HR algorithm, termed as H2HR. With H2HR, before each
source-to-relay (s-r) transmission, the source node initiates
a handshake with the relay node to confirm its relay-buffer
occupancy state, once the relay queue is full, the source node
cancels this transmission. At any time slot, for an active cell
c, it executes the H2HR algorithm as shown in Algorithm 1.

D. Basic Definitions

Relay-buffer Blocking Probability (RBP) : For the con-
cerned MANET with a given exogenous packet arrival rateλ
to each node, the relay-buffer blocking probabilitypb(λ) of a



Algorithm 1 H2HR algorithm
1: if There exist source-destination pairs, which one node

of this pair is within c, another node is within the
transmission range ofc then

2: With equal probability, randomly select such a pair to
do source-to-destination (s-d) transmission.

3: else ifThere exist some nodes inc, and some other nodes
in the transmission range ofc then

4: With equal probability, randomly select one node inc
as the transmitter.

5: With equal probability, randomly select another node
within the transmission range ofc as the receiver.

6: Flips an unbiased coin.
7: if It appears the headthen
8: The transmitter initiates a handshake with the

receiver to check whether the relay queue is full.
9: if The relay queue of receiver is not full then

10: The transmitter conducts a s-r transmission.
11: else
12: The transmitter remains idle.
13: end if
14: else
15: The transmitter conducts a relay-to-destination (r-d)

transmission.
16: end if
17: else
18: c remains idle.
19: end if

node is defined as the probability that the relay queue of this
node is full.

Queuing Delay: The queuing delay of a packet is defined as
the interval between the time this packet arrives at its source
node and the time it takes to arrive at the head of local queue.

Delivery Delay: The delivery delay of a packet is defined
as the interval between the time this packet arrives at the head
of its local queue and the time it takes to be delivered to the
destination node.

End-to-end Delay: The end-to-end delay of a packet is
defined as the interval between the time this packet arrives
at its source node and the time it takes to be delivered to its
destination node. Obviously, the end-to-end delay of a packet
is the sum of its queuing delay and delivery delay.

III. A NALYSIS FOR PACKET DELIVERY PROCESSES

In this section, we present the theoretical framework which
help us fully characterize the complicated packet delivery
processes and further compute the PBP.

A. Some Basic Probabilities

Considering a given time slot and a given active cellc, we
denote byp the probability that there are at least one node
within c and another node within the transmission range of
c, and denote byq the probability that there are at least one
source-destination pair, one node of this pair is withinc and

source node

exogenous

input packets
local queue

destination
s-d transmission

relay queue

s-r transmission

r-d transmission

handshake

B packets

relay queue

( )s

sdp

(1 p ( ))sr bp

Fig. 2. Illustration for packet delivery processes under H2HR algorithm.

another one is within the transmission range ofc. Based on
the results of [22],p andq are determined as

p =
1

m2n
[m2n − (m2 − 1)n − n(m2 − l)n−1], (2)

q =
1

m2n
[m2n − (m4 − 2l+ 1)n/2], (3)

where l = (2ν − 1)2. We denote bypsd, psr and prd the
probabilities that in a time slot a node obtains the opportunity
to conduct s-d, s-r and r-d transmission, respectively. Similar
to [12], we have

psd =
K

n
q, (4)

psr = prd =
K

2n
(p− q). (5)

B. Delivery Processes in Local Queue and Relay Queue

The packet delivery processes under H2HR algorithm is
illustrated in Fig. 2. The local queue can be represented as
a Bernoulli/Bernoulli queue, where in every time slot a new
packet will arrive with probabilityλ, and a corresponding
service rateµs(λ) which is determined as

µs(λ) = psd + psr · (1− pb(λ)). (6)

Due to the reversibility of Bernoulli/Bernoulli queue [23], its
output process is also a Bernoulli flow with rateλ.

As shown in Fig. 2, the ratio of packets transmitted to a
relay node ispsr(1−pb(λ))

µs(λ)
. Due to the i.i.d mobility model,

each of then−2 relay nodes will receive this packet with equal
probability. On the other hand, for a specific node, the packets
from all othern−2 flows will arrive its relay queue. Then the
packet arrival rate at a relay queueλr can be determined as

λr · (1− pb(λ)) + 0 · pb(λ) = (n−2)λ·psr(1−pb(λ))
µs(λ)(n−2) ,

⇒ λr = λpsr

µs(λ)
. (7)

We denote byµr(k) that the service rate of relay queue
when it containsk packets,0 ≤ i ≤ B. According to the
results in [12], we have

µr(k) =

k
∑

i=1

{
(

n−2
i

)

·
(

k−1
i−1

)

(

n−3+k
k

) · iprd
n− 2

}

=
k

n− 3 + k
· prd. (8)



Since the relay queue cannot forward and receive a packet
at the same time slot, then it can be modeled as a discrete
Markov chain. We useΠ = (π0, π1, · · · , πB) to denote the
limit occupancy distribution on relay queue, then we have [12]

π0 =
1

∑B
i=0 Ci · ρs(λ)i

, (9)

πk =
Ck · ρs(λ)k

∑B
i=0 Ci · ρs(λ)i

, 0 < k ≤ B (10)

whereCi =
(

n−3+i
i

)

andρs(λ) = λ
µs(λ)

.
When a relay queue containsB packets, this queue is full.

Thus we have

pb(λ) = πB =
CB · ρs(λ)B

∑B
i=0 Ci · ρs(λ)i

(11)

Notice that given a exogenous input rateλ, equation (11)
contains only one unknown quantitypb(λ). By solving equa-
tion (11), we can then obtain the RBPpb(λ) under any
exogenous input rateλ.

IV. D ELAY PERFORMANCE

With the help of RBP, in this section we further analyze
the packet delay performance in a buffer-limited MANET. We
denote byD, W andT the packet end-to-end delay, queuing
delay and delivery delay, respectively. Then we haveD =
W +T.

A. Queuing Delay

Given the exogenous input rateλ, the RBPpb(λ) can be
obtained by equation (11), further the service rate of local
queueµs(λ) (in the rest of this paper,pb(λ) andµs(λ) are
abbreviated aspb and µs if there is no ambiguous) can be
determined by formula (6). Then, the average queue length of
the local queue (Bernoulli/Bernoulli queue)E{Ls} is given
by [23]

E{Ls} =
λ− λ2

µs − λ
. (12)

According to the Little’s Theorem, the average delay of a
packet in its local queueE{Ds} is

E{Ds} =
1− λ

µs − λ
. (13)

Then, the queuing delayW is determined as

E{W} = E{Ds} −
1

µs
=

λ(1 − µs)

µs(µs − λ)
. (14)

B. Delivery Delay

Without loss of generality, we focus on a packety which
is in the head of a local queue. As illustrated in Fig. 3, in the
next time slot, packety will be transmitted to its destination
node with probabilitypsd, to a relay node with probability
psr · (1 − pb), and stays in the local queue with probability
1−µs, which forms an Absorbing Markov Chain. We denote
by XS andXR the average transition time from the transient

S R

D

(1 )sr bp p-

sdp

Fig. 3. The absorbing Markov chain for a focused packet delivery.

statesS andR to the absorbing stateD, respectively. Then
we have

XS = 1 +XS · (1− µs) +XR · psr(1− pb), (15)

and

E{T} = XS =
1 +XR · psr(1− pb)

µs
. (16)

We denote byP = (p0, p1, · · · , pB−1) the probability that
there arei packets destined for the same node asy is in front
of y, wheny is transmitted into a relay queue. Notice that in a
time slot, a node executes the r-d transmission with probability
prd which is shared by all then− 2 traffic flows equally, then
we have

XR = p0 ·
n− 2

psd
+ 2p1 ·

n− 2

psd
+ · · ·BpB−1 ·

n− 2

psd

=
n− 2

psd
(p0 + 2p1 + · · ·+BpB−1)

=
n− 2

psd
(1 + p1 + 2p2 + · · ·+ (B − 1)pB−1)

=
n− 2

psd
(1 + E{L(1)

r|nf}), (17)

whereE{L(1)
r|nf} denotes the average number of packets in a

relay queue which are destined for a same node, under the
condition that this relay is not full.

We denote byΠ′ = (π′
0, π

′
1, · · · , π′

B−1) the occupancy
distribution on relay queue given that this relay queue is not
full. Then we have

π′
k =

πk

1− πB
=

Ckρ
k
s

∑B−1
i=0 Ci · ρis

. (18)

Thus, the average queue length of a relay queue given that it
is not full E{Lr|nf} is determined as

E{Lr|nf} =
B−1
∑

k=0

i · π′
k =

∑B−1
i=0 iCi · ρis

∑B−1
i=0 Ci · ρis

. (19)

Then,E{L(1)
r|nf} is determined as

E{L(1)
r|nf} =

E{Lr|nf}
n− 2

. (20)

Substituting the results of (17), (19) and (20) into (16), the
average packet deliver delayE{T} is further determined.

Finally, the expectation of packet end-to-end delay in the
concerned buffer-limited MANET is determined as

E{D} = E{W}+ E{T} (21)
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V. NUMERICAL RESULTS

We conduct a C++ simulator to simulate the behaviors of
MANETs considered in this paper. In our simulations, we set
ν = 1, ∆ = 1 [24] and choose two network scenarios of (case
1: n = 100,m = 8, B = 8) and (case 2:n = 400,m =
16, B = 8). The theoretical RBP results are computed by the
equation (11). While, to obtain the simulated RBP results, we
focus on a specific node and count the number of time slots
that its relay-buffer is full over a period of2× 108 time slots,
and then calculate the ratio. Fig. 4 compares the theoretical
curves with the simulated results under a variable system load
ρ, whereρ = λ

µs(λ0)
, µs(λ0) satisfies thatµs(λ0) = λ0 and

thus is the maximal throughput the MANET can support [12].
We can see that for both the two cases, the simulated RBP
can match the theoretical curves nicely, indicating that our
theoretical framework is highly efficient to capture the packet
delivery processes in a buffer-limited MANET with H2HR
algorithm.

Based on the RBP, we then show the packet delay per-

formance with the system loadρ under the network setting
of (n = 50,m = 5, B = 8, ν = 1,∆ = 1). The results
of packet queuing delay, delivery delay and end-to-end delay
are summarized in Fig. 5. We can see that whenρ is small,
the packet queuing delayE{W} is small; asρ increases,
E{W} monotonically increases; whenρ approaches1, E{W}
tends to infinity leading that the packet end-to-end delay is
infinite. While, the packet delivery delay performance under
the limited-buffer scenario is interesting, which increases first,
then decreases. This is mainly due to the reason that the effects
of the exogenous input rate on delivery delay are two folds. On
one hand, a largerρ will lead to a longer relay queue length
which further leads to a larger delay in a relay queue; on the
other hand, a largerρ will lead to a higher RBP, which means
a lower ratio of packets conducted by s-r transmission, packets
in the head of local queue are more likely to wait a direct s-d
transmission opportunity, thus the delivery delay decreases.

VI. CONCLUSION

In this paper, we focus on the packet delay performance
of a MANET under finite buffer scenario. A group-based
transmission scheduling is adopted for channel access, while a
handshake-based two hop relay algorithm is adopted for packet
delivery. For the concerned MANET, a theoretical framework
has been developed to fully characterize the queuing processes
of a packet and obtain the relay-buffer blocking probability.
Based on this, we has derived the packet queuing delay
and delivery delay, respectively. The results show that the
packet end-to-end delay performance curve first rises and then
declines as the exogenous rate grows, finally rises again and
tends to infinity as the exogenous rate approaches the network
throughput capacity.
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