
ar
X

iv
:1

61
0.

05
84

9v
1 

 [
cs

.O
H

] 
 1

9 
O

ct
 2

01
6

FINITE COMPUTATIONAL STRUCTURES AND

IMPLEMENTATIONS

ATTILA EGRI-NAGY

Abstract. What is computable with limited resources? How can we ver-
ify the correctness of computations? How to measure computational power
with precision? Despite the immense scientific and engineering progress in
computing, we still have only partial answers to these questions. In order to
make these problems more precise, we describe an abstract algebraic definition
of classical computation, generalizing traditional models to semigroups. The
mathematical abstraction also allows the investigation of different computing
paradigms (e.g. cellular automata, reversible computing) in the same frame-
work. Here we summarize the main questions and recent results of the research
of finite computation.

1. Introduction

The exponential growth of the computing power of hardware (colloquially known
as Moore’s Law) seems to be ended by reaching its physical and economical lim-
its. In order to keep up technological development, producing more mathematical
knowledge about digital computation is crucial for improving the efficiency of soft-
ware. Complementing research in computational complexity, where the emphasis is
on the asymptotic behaviour of algorithms, we need to refocus on small computing
devices, and study the possibilities of limited finite computations.

2. Computational structures

What is classical computation? Dictionary definitions are somewhat circular,
e.g. computation is what a computer does and a computer is a device that performs
computation. A quick look at actual computing devices reveals that computation
is

(1) a mapping from inputs to outputs;
(2) a sequence of state transitions;
(3) described by mathematical models;
(4) implemented by physical systems;
(5) a hierarchical structure;
(6) potentially universal.

The first two points seem to be opposites What to compute? versus How to com-

pute?, high versus low-level descriptions, declarative versus imperative program-
ming paradigms. However, as we will show, they are just the two extremes of the
same computation spectrum.

The final version of this paper will be presented at CANDAR’16, Fourth International Sym-
posium on Computing and Networking, Hiroshima, Japan, November 22-25, 2016, and it will be
published by the IEEE Computer Society.

1

http://arxiv.org/abs/1610.05849v1


2 ATTILA EGRI-NAGY

Our computers are physical devices and the theory of computation is abstracted
from physical processes. Mathematical models clearly define the notion of compu-
tation, but mapping the abstract computation back to the physical realm is often
considered problematic. We argue that structure-preserving maps between com-
putations work from one mathematical model to another just as well as from the
abstract to the concrete physical implementation, easily crossing any ontological
borderline one might assume between the two. The former needs mathematical
thinking, the latter engineering, but the underlying problem is the same: find re-
lations between computing structures that do not change the computed function.
Since abstract algebra provides the required tools, we suggest further abstractions
to the models of computations to reach the algebraic level safe for discussing imple-
mentations. It is also suitable for capturing the hierarchical structure of computers.
Finiteness and the abstract algebraic approach paint a picture where universal com-
putation becomes relative and the ‘mathematical versus physical’ distinction less
important.

First we attempt to define computations and implementations purely as abstract
functions, then the need for combining functions leads us to definition of computa-
tional structures.

2.1. Computation as a function: input-output mappings. Starting from the
human perspective, computation is a tool. We want a solution for some problem:
the input is the question, the output is the answer. Formally, the input-output pairs
are represented as a function f : X → Y , and computation is function evaluation
f(x) = y, x ∈ X, y ∈ Y . As an implementation of f , we need a dynamical system
whose behaviour can be modelled by another function g, which is essentially the
same as f .

X Y

A B

f

ϕ1 ϕ2

g

We have three ingredients, the function f (specification), the dynamical system g

(in the sense of initial conditions and laws of motions, whenever a ∈ A is present
then g will naturally take it to b = g(a)), and the pair of mappings ϕ1, ϕ2 establish-
ing the implementation relation. As in the abstract theory of functions (category
theory, see for instance [2]), the above diagram commutes: ϕ2 (f(x)) = g(ϕ1(x)).
This means that if the value of the abstract function is y = f(x) at x, then after
finding the ‘physical’ representation of x, namely ϕ1(x), the dynamics of g will
produce g(ϕ1(x)). This has to be the same as the physical representation of y,
namely ϕ2(f(x)). In order to make the implementation useful, we require ϕ1, ϕ2

to be one-to-one. This ensures, that f and g are the same, up to some relabelling.
Therefore, properties of the functions are also preserved. For instance, an invertible
function can only be implemented by another invertible function, and vice versa.
In the theory of computable functions we start from a set of primitive functions
and build composite functions by combining them [5]. Thus, function composition

is a fundamental way of constructing computations.
Getting closer to real computations, we need to fill the elements of the abstract

sets for input and output with some content. The content can be represented by



FINITE COMPUTATIONAL STRUCTURES AND IMPLEMENTATIONS 3

bitstrings. Thus, computation can be described by a mapping

f : {0, 1}m → {0, 1}n, m, n ∈ N.

According to the fundamental theorem of reversible computing, any finite function
can be computed by an invertible function [26]. This apparently contradicts the
idea of implementation, that important properties of functions have to be preserved.
There seems to be a way to sidestep function isomorphism.

Example 1. Embedding XOR

00 7→ 0 0

01 7→ 1 1

10 7→ 1 0

11 7→ 0 1

and FAN-OUT

0 0 7→ 00

0 1 7→ 11
10 7→ 10
11 7→ 01

into the same bijective function. By putting information into the abstract elements,
any function can ‘piggyback’ even on the identity function.

Another example of this sidestepping is generating pseudo-random numbers, pro-
ducing randomness from a non-random deterministic process. One method involves
multiplying big numbers and cutting some digits out from the middle. These ‘tricks’
work by composing the actual computations with special input and output func-
tions, that might have different properties. In reversible computing the readout
operation may not be a reversible function.

2.2. Computation as a process: state transitions. Focusing on the process
view, what is the most basic unit of computation? A state transition: an event
changes the current state of a system. A state is defined by a configuration of a
system’s components, or some other distinctive properties the system may have. In
classical computing, the assumption is that the states are well-defined and easily
distinguishable, discrete entities. In analog computing state varies along a contin-
uum, while in quantum computing states are in superposition.

Let’s say the current state is x, then event s happens changing the state to y.
We might write y = s(x) emphasizing that s is a function, but it is better to write

xs = y

meaning that s happens in state x yielding state y. Why? Because combining
events as they happen one after the other, e.g. xst = z, is easier to read following
our left to right convention.

Though it is more intuitive to distinguish between states and events, it is not a
fundamental distinction.

Principle 2 (State-event abstraction). We can identify an event with its resulting
state: state x is where we end up when event x happens.

According to the action interpretation, xs = y can be understood as event s changes
the current state x to the next state y. But xs = y can also be read as event x

combined with event s yields the composite event y, the event algebra interpretation.



4 ATTILA EGRI-NAGY

We can combine abstract events into longer sequences. These can also be consid-
ered as a sequence of instructions, i.e. an algorithm [11]. These sequences of events
should have the property of associativity

(xy)z = x(yz) for all abstract events x, y, z,

since a given sequence xyz should be a well-defined algorithm. This also shows that
we can reason about algorithms using equations.

We can put all event combinations into a table. These are the rules describing
how to combine any two events.

Definition 3 (Computational Structure). A finite set X and a rule for combining
elements of X that assigns a value x′ for each two-element sequence, written as
xy = x′, is a computational structure if (xy)z = x(yz) for all x, y, z ∈ X .

In mathematics, a set closed under an associative binary operation is an ab-
stract algebraic structure called semigroup. The somewhat derogative term is used
because of historical reasons. Group theory advanced first, so semigroups are con-
sidered as broken groups, and not the other way around, groups as (very important)
special cases of semigroups.

Example 4 (Flip-flop, 1-bit memory semigroup).

r 0 1
r r 0 1
0 0 0 1
1 1 0 1

The read-operation is r. Events 0 and 1 correspond to destructive storage of bit
values. Algebraically these are right zero elements, or simply resets.

Computation is a process in time – an obvious assumption, since most of en-
gineering and complexity studies are about doing computation in shorter time.
Combining two events yield a third one (which can be the same), and we can con-
tinue with combining them to have an ordered sequence of events. This ordering
may be referred as time. However, at the abstraction level of the state transition
table time is not essential. The table implicitly describes all possible sequences
of events, it defines the rules how to combine any two events, but it is a timeless
entity. This is similar to some controversial ideas in theoretical physics [3].

2.3. The computation spectrum. How are the function and the process view of
computation related? They are actually the same. Given a computable function,
we can construct a computational structure capable of computing the function. An
algorithm (a sequence of state transition events) takes an initial state (encoded
input) into a final state (encoded output). The simplest way to achieve this is by
a lookup table.

Definition 5 (Lookup table semigroup). Let f : X → Y be a function, where
X ∩ Y = ∅. Then the semigroup S = X ∪ Y ∪ {ℓ} consists of resets X ∪ Y and the
lookup operation ℓ defined by xℓ = y if f(x) = y for all x ∈ X and uℓ = u for all
u ∈ S \X .

Is it associative? Let v ∈ X ∪ Y be an arbitrary reset element, and s, t ∈ S any
element. Since the rightmost event is a reset, we have (st)v = v and s(tv) = sv = v.
For (sv)ℓ = vℓ = s(vℓ) since vℓ is also a reset. For (vℓ)ℓ = vℓ, since ℓ does
not change anything in S \ X and v(ℓℓ) = vℓ since ℓ is an idempotent (ℓℓ = ℓ).
Separating the domain and the codomain of f is crucial, for functions X → X we



FINITE COMPUTATIONAL STRUCTURES AND IMPLEMENTATIONS 5

can simply have a separate copy of elements of X . When trying to make it more
economical associativity may not be easy to achieve [19].

Turning a computational structure into a function is also easy. Pick any algo-
rithm (a composite event), and that is also a function from states to states.

Why do we have different approaches then? Different computations can realize
the same function. In software engineering, for optimization purposes we often
use pre-calculated data, and just look the value up in a table when it is needed,
thus saving time. Another technique computes the value on demand, but stores it
for later queries (caching, memoization). This observation motivates the following
questions. How much processing is done in a computation? How many state transi-

tions? Based on this we have a whole spectrum of computation, from mere storage
and retrieval to computations producing data from little input. Information storage
and retrieval are forms of computation. By the same token computation can be
considered as a general form of information storage and retrieval, where looking up
the required piece of data may need many steps. We can say that if computation is
information processing, then information is frozen computation. For instance, when
calculating logarithms were slow and difficult, one had to use tabulated values in
a printed book. Combinatorial (stateless) circuits are another example of lookup
table computations. Arithmetic calculations (by humans) are somewhere in the
middle of the spectrum. We add and multiply single digit numbers with lookup ta-
ble method, but using a cascade algorithm for longer numbers. The other extreme
consists of computations that do not rely on any input data, though they may fill the
memory up for later usage. For instance, busy beaver Turing-machines [4], or the
hypothetical shortest program that generates the sequence of bitstrings describing
the consecutive states in the evolution of our observable universe [24].

2.4. Traditional mathematical models of computation. This algebraic ap-
proach may look different from the more mainstream models of computation [22],
algebraic automata theory [16] being a sub-field of theoretical computer science.
However, considering computational structures as semigroups is a stronger abstrac-
tion, therefore the algebraic treatment of computations is actually more general
and thus more fundamental.

From finite state automata, we abstract away the initial and accepting states.
Those special states are needed only for the important application of recognizing
languages. Input symbols of a finite state automaton are fully defined transforma-
tions (total functions) of its state set.

Definition 6. A transformation is a function f : X → X from a set to itself, and
a transformation semigroup (X,S) of degree n is a collection S of transformations
of an n-element set closed under function composition.

If we focus on the possible state transitions of a finite state automaton only, we get a
transformation semigroup with a generator set corresponding to the input symbols.
These semigroups are very special representations of abstract semigroups, where
state transition is realized by composing functions.

A Turing-machine without the infinite tape is also a finite state automaton. A
finite length tape can always be incorporated into the state set of the automaton. In
general, if we take those models of computation that describe the detailed dynamics
of computation, and remove all the model specific decorations, we get a semigroup.



6 ATTILA EGRI-NAGY

2.5. Computers: physical realizations of computation. Intuitively, a com-
puter is a physical system whose dynamics at some level can be described as a
computational structure. For any equation xy = z in the computational structure,
we should be able to induce in the physical system an event corresponding to x

and another one corresponding to y such that their overall effect corresponds to z.
Algebraically, this special correspondence is a structure-preserving map, a homo-

morphism. If we want exact realizations, not just approximations, then we need
stricter one-to-one mappings, isomorphisms. However, for computational structures
we need to use relations instead of functions.

Definition 7 (Isomorphic relations of computational structures). Let S and T be
computational structures (semigroups). A relation ϕ : S → T is an isomorphic

relation if it is

(1) homomorphic: ϕ(s)ϕ(t) ⊆ ϕ(st),
(2) fully defined: ϕ(s) 6= ∅ for all s ∈ S,
(3) lossless: ϕ(s) ∩ ϕ(t) 6= ∅ =⇒ s = t

for all s, t ∈ S. We also say that T emulates, or implements S.

Homomorphic is the key property, it ensures that similar computation is done
in T by matching individual state transitions. Here ϕ(s) and ϕ(t) are subsets of
T (not just single elements), and ϕ(s)ϕ(t) denotes all possible state transitions
induced by these subsets (element-wise product of two sets). Fully defined means
that we assign some state(s) of T for all elements of S, so we account for everything
that can happen in S. In general, homomorphic maps are structure-forgetting,
since we can map several states to a single one. Being lossless excludes loosing
information about state transitions. In semigroup theory, isomorphic relations are
called divisions, a special type of relational morphisms [21].

What happens if we turn an implementation around? It becomes a computa-
tional model.

Definition 8 (Modelling of computational structures). Let S and T be computa-
tional structures (semigroups). A function µ : T → S is a modelling if it is

(1) homomorphism: µ(u)µ(v) = µ(uv) for all u, v ∈ T ,
(2) onto: for all s ∈ S there exists a u ∈ T such that µ(u) = s.

We also say that S is a computational model of T . In algebra, functions of this kind
are called surjective homomorphisms.

A modelling is a function, so it is fully defined. A modelling µ turned around µ−1

is an implementation, and an implementation ϕ turned around is a modelling ϕ−1.
This is an asymmetric relation, naturally we assume that a model of any system is
smaller in some sense than the system itself. Also, to implement a computational
structure completely we need another structure at least as big.

According to the mathematical universe hypothesis [25], we have nothing more
to do, since we covered mappings from one mathematical structure to another
one. In practice, we do seem to have a distinction between mathematical models
of computations and actual computers, since abstract models by definition are
abstracted away from reality, they do not have any inherent dynamical force to
carry out state transitions. Even pen and paper calculations require a driving
force, the human hand and the pattern matching capabilities of the brain. But
we can apply a simple strategy: we treat a physical system as a mathematical



FINITE COMPUTATIONAL STRUCTURES AND IMPLEMENTATIONS 7

structure, regardless its ontological status. Building a computer then becomes the
task of constructing an isomorphic relation.

Definition 9 (Computer). An implementation of a computational structure by a
physical system is a computer.

Finding such a relation to a physical system is highly non-trivial. Charles Bab-
bage failed to establish the correspondence between arithmetical operations and the
mechanisms of cogwheels. However, the key point is to see that it is just another
mapping. Maybe more difficult for a physical implementation, but it is not different
from establishing emulation relation between abstract computational models.

Anything that is capable of state transitions can be used for some computation.
The question is how useful that computation is? We can always map the target
system’s mathematical model onto itself. In this sense the cosmos can be considered
as a giant computer computing itself. However, this statement is a bit hollow
since we do not have a complete mathematical model of the universe. Every
physical system computes, at least its future states, but not everything does useful
calculation. Much like entropy is heat not available for useful work. The same way
as steam and combustion engines exploit physical processes to process materials and
move things around, computers exploit physical processes to transfer and transform
information.

2.6. Hierarchical structure. Huge state transition tables are not particularly
useful to look at; they are like quark-level descriptions for trying to understand
living organisms. Identifying substructures and their interactions is needed. Hier-
archical levels of organizations provide an important way to understand comput-
ers. Information flow is limited to one-way only along a partial order, thus enabling
functional abstraction. According to Krohn-Rhodes theory [17], any computational
structure can be built by using destructive memory storage and the reversible com-
putational structures in a hierarchical manner (Fig. 2). The way the components
are put together is the cascade product [13], which is a substructure of the alge-
braic wreath product. The distinction between reversible and irreversible is sharp:
there is no way to embed state collapsing into a permutation structure. Reversible
computing [26] seems to contradict this. The trick there is to put information into
states and then selectively read off partial information from the resulting states.
This selection of required information can be done by another computational struc-
ture. We can have a reversible computational structure on the top, and one at the
bottom that implements the readout. We can have many state transitions in the
reversible part without a readout (Fig. 1). Reversible implementations may prove
to be decisive in terms of power efficiency of computers, but it does not erase the
difference between reversible and irreversible computations.

Important to note that hierarchical decompositions are even possible when the
computational structure is not hierarchical itself. One of the research directions is
the study of how it is possible to understand loopback systems in a hierarchical
manner. Fortunately, now we have computer algebra tools available for generating
these decompositions [12].

2.7. Universal computers. What is the difference between a piece of rock and a

silicon chip? They are made of the same material, but they have different com-
putational power. The rock only computes its next state (its temperature, all the
wiggling of its atoms), so the only computation we can map to it homomorphically



8 ATTILA EGRI-NAGY

00 11 01 10

r0

0

r1

1

t t

t

t

Figure 1. Hierarchical, transformation semigroup construction of
reversible XOR function (see Example 1). We combine two trans-
formation semigroups into a composite one. The independent com-
ponent (4 states at the top) is a reversible permutation group with
state transition t defining the dynamics, while the dependent com-
ponent (2 states at the bottom, the readout part) has reset opera-
tions r0, r1. State transitions in the bottom component are chosen
based on the state of the top component. These are indicated by
the dashed line. If the top level component is in state 00 or 11, then
the bottom component resets to 0 by state transition r0. Other-
wise, r1 is carried out. The input is set in the top level component
(by choosing a state), and the output is the resulting state in the
bottom component.

Natural Numbers Computational Structures

Building Blocks Primes 1-bit memory
reversible computations

Composition Multiplication Cascade Product
Precision Equality Emulation

Uniqueness Unique Non-unique

Figure 2. A comparison of the prime decomposition of integers
and computational structures. Cascade decompositions are ways
of understanding systems modeled by finite state automata. This
type of modeling is used increasingly for biological systems
(e.g. [18]).

is its own mathematical description. While the silicon chip admits other computa-
tional structures. General purpose processors are homomorphic images of universal
computers.

Universality is a fact of everyday computing (programs run other programs,
computers emulate other type of computers). It is also a central concept in com-
putability theory [20,27]. The universal Turing machine U takes a program P , i.e. a



FINITE COMPUTATIONAL STRUCTURES AND IMPLEMENTATIONS 9

dedicated computer, and the input x of the program. Then by recreating each step
of P it computes the result of P on x. Formally, U(P, x) = P (x). Unfortunately,
this only makes sense for Turing machines with infinite tape. With finite resources
universal becomes relative, i.e. universal relative to some kind of representation
and size. A universal semigroup for size n abstract semigroups would be the semi-
group that can implement all size n semigroups. There is a trivial construction,
a huge direct product of everything of size maximum n. What are the minimal
examples of these? – that is indeed an interesting mathematical question. For a
concrete representation it is easier to find relatively universal structures. For in-
stance, the full transformation semigroup of degree n (denoted by Tn) consists of
all nn transformations of an n-element set [15].

3. Open problems

We use computers more and more for extending our knowledge in many scientific
fields. Therefore we need to learn more about the tools as well. The main topics
where further research needs to be done are

(1) exploring the space of possible computations;
(2) measuring finite computational power;
(3) computational correctness.

3.1. What are the possible computational structures and implementa-

tions? Cataloguing, stocktaking are basic human activities for answering the ques-
tion What do we have exactly? For the classification of computational structures
and implementations, we need to explore the space of all computational struc-
tures and their implementations, starting from the small examples. Looking at
those is the same as asking the questions What can we compute with limited re-

sources? What is computable with n states? This is a complementary approach
to computational complexity, where the emphasis is on the growth rate of resource
requirements.

Due to the effect of combinatorial explosion, an exhaustive enumeration of com-
putational structures is doomed to fail eventually. But we need to produce raw
data to think about, so we have to push the boundaries of exploration in order to
formulate and prove general mathematical results. Strategy is the following: take a
relatively universal structure and enumerate all of its substructures. For example,
finding all transformation semigroups on n states is the same as finding all subsemi-
groups of Tn. This strategy lead to the successful enumeration of all 132 069 776
transformation semigroups with 4 states [7] (Fig. 3). This method can be applied
to a wider class of semigroups, called diagram semigroups [8]. These can be con-
sidered as ‘unconventional’ mathematical models of computations (e.g. computing
with binary relations or partitions instead of functions).

3.2. How to measure the amount of computational power? Given an ab-

stract or physical computer, what computations can it perform? The algebraic
description gives a clear definition of emulation, when one computer can do the job
of some other computer. This is a crude form of measuring computational power,
in the sense of the ‘at least as much as’ relation. This way computational power
can be measured on a partial order (the lattice of all finite semigroups).

The remaining problem is to bring some computation into the common denom-
inator semigroup form. For example, if we have a finite piece of cellular automata



10 ATTILA EGRI-NAGY

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140

fr
eq
u
en
cy

(m
il
li
o
n
s)

size of semigroup

SubS4
(T4)

Figure 3. The main bulk of the size distribution of transforma-
tion semigroups of degree 4. Currently we have no explanation for
the six peaks of the distribution, or any information about the as-
ymptotic behaviour of the distribution when the number of states
increases.

(CA) grid, what can we calculate with it? If the CA is universal and big enough
we might be able to fit in a universal Turing machine that would do the required
computation. However, we might be able to run my computation directly on the
CA instead of a bulky construct. Like given a desktop computer, there is a choice
between a high-level interpreted and slow programming language, and the machine-
code level. Here, we are interested in native computation. For cellular automata it
is not obvious how to measure the computation. There are different ways to think
about it.

(1) Fixed initial conditions: We start the CA from a fixed configuration. The
only event is the clock-tick. Algebraically this structure is way too sim-
ple. This also resonates with constructor theory, which says that initial
conditions and laws of motion have restricted explanatory power [6].

(2) I/O mappings: Take all runs from initial configurations and record the
(class of) final configurations. Lookup table style computation.

(3) Interaction, perturbation: The events of the modelling automaton are small
changes in the grid, acting on stable states or cycles.

(4) Piggybacking: Similar to the piggybacking trick of reversible computation,
we can use some patch of the CA for input and another (possibly) over-
lapping patch for the output. Physical universality [23] is also defined this
way.

Extending the slogan, “Numbers measure size, groups measure symmetry.” [1],
we can say that semigroups measure computation.



FINITE COMPUTATIONAL STRUCTURES AND IMPLEMENTATIONS 11

3.3. How can we trust computers? Even in mathematics, we increasingly rely
on creating knowledge by computers. It is impractical to fully check the isomor-
phic relation between the computational structure and the implementing physical
system. We do not actually have the complete computational structure, only a set
of generators. In a way computation can be viewed as generating computational
structures from a partial description. But how can we be sure that the relation
works for combined operations? A physical system does more, not just the mapped
computation. How can we make sure that nothing leaks into the abstract computa-
tion from the underlying physics? The actual paths of computation, the sequences
of events may interact more than what is described in the abstract state transitions.

What can we do? In practice, we do test hardware and software, but not all pos-
sible computations. We build up confidence by solving the same problem repeatedly
by using several different methods and many different computers. Compare for in-
stance SgpDec [14] and Kigen [10]. This practical approach raises theoretical
questions. When are two solutions really different? Computations can differ by

(1) having different intermediate results,
(2) applying different operations,
(3) having different modular structure,

and by any combination of these.
The first two are in accord with the problem of enumeration and classification of

computational structures and implementations: find all distinct, minimal compu-
tational processes realizing the same function. In other words, within a universal
computational structure, what are the different ways of realizing the same com-
putational structure? Current research attacks this problem by finding efficient
algorithms for constructing implementations (embeddings) of arbitrary abstract
computational structures [9].

4. Conclusion

We suggest that generalizing existing models of computation to semigroup theory
will help in solving open problems in software and hardware engineering. In turn,
the mathematical investigation relies on the tools of high-performance computing,
forming a positive feedback loop. Therefore, despite the current gap between the
practical computing problems and the scale of the exact mathematical results, the
systematic study of finite computation is bound to produce groundbreaking results.

References

[1] M.A. Armstrong. Groups and Symmetry. Springer Undergraduate Texts in Mathematics and
Technology. Springer, 1988.

[2] Steve Awodey. Category Theory. Oxford Logic Guides. Oxford University Press, 2006.
[3] J. Barbour. The End of Time: The Next Revolution in Physics. Oxford University Press,

USA, 2001.
[4] Allen H. Brady. The busy beaver game and the meaning of life. In Rolf Herken, editor,

The Universal Turing Machine (2nd Ed.), pages 237–254. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1995.

[5] N. Cutland. Computability: An Introduction to Recursive Function Theory. Cambridge Uni-

versity Press, 1980.
[6] David Deutsch. Constructor theory. Synthese, 190(18):4331–4359, 2013.
[7] James East, Attila Egri-Nagy, and James D. Mitchell. On enumerating transformation

semigroups. arXiv:1403.0274 [math.GR], 2014.

http://arxiv.org/abs/1403.0274


12 ATTILA EGRI-NAGY

[8] James East, Attila Egri-Nagy, Andrew R. Francis, and James D. Mitchell. Finite diagram
semigroups: Extending the computational horizon. arXiv:1502.07150 [math.GR], 2015.

[9] James East, Attila Egri-Nagy, Andrew R. Francis, and James D. Mitchell. Constructing
embeddings and isomorphisms of finite abstract semigroups. arXiv:1603.06204 [math.GR],
2016.

[10] Attila Egri-Nagy. kigen General implementation of diagram semigroups based on partitioned
binary relations. Version 0.1, 2015. https://github.com/egri-nagy/kigen .

[11] Attila Egri-Nagy, Paolo Dini, Chrystopher L. Nehaniv, and Maria J. Schilstra. Transforma-
tion Semigroups as Constructive Dynamical Spaces, pages 245–265. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[12] Attila Egri-Nagy, James D. Mitchell, and Chrystopher L. Nehaniv. Sgpdec: Cascade
(de)compositions of finite transformation semigroups and permutation groups. In Mathe-
matical Software ICMS 2014, volume 8592 of Lecture Notes in Computer Science, pages
75–82. Springer Berlin Heidelberg, 2014.

[13] Attila Egri-Nagy and Chrystopher L. Nehaniv. Cascade Product of Permutation Groups.
arXiv:1303.0091v3 [math.GR], 2013.

[14] Attila Egri-Nagy, Chrystopher L. Nehaniv, and James D. Mitchell. SgpDec – software pack-
age for Hierarchical Composition and Decomposition of Permutation Groups and Transfor-
mation Semigroups, Version 0.8+, 2015. https://github.com/gap-system/sgpdec.

[15] Olexandr Ganyushkin and Volodymyr Mazorchuk. Classical Transformation Semigroups. Al-
gebra and Applications. Springer, 2009.

[16] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge University Press, 1982.
[17] Kenneth Krohn, John L. Rhodes, and Bret R. Tilson. The prime decomposition theorem of

the algebraic theory of machines. In Michael A. Arbib, editor, Algebraic Theory of Machines,
Languages, and Semigroups, chapter 5, pages 81–125. Academic Press, 1968.

[18] Chrystopher L. Nehaniv, John Rhodes, Attila Egri-Nagy, Paolo Dini, Eric Rothstein Mor-
ris, Gábor Horváth, Fariba Karimi, Daniel Schreckling, and Maria J. Schilstra. Symmetry
structure in discrete models of biochemical systems: natural subsystems and the weak control
hierarchy in a new model of computation driven by interactions. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373(2046),
2015.

[19] Dov Tamari Paul W. Bunting, Jan van Leeuwen. Deciding associativity for partial multipli-
cation tables of order 3. Mathematics of Computation, 32(142):593–605, 1978.

[20] Charles Petzold. The Annotated Turing: A Guided Tour Through Alan Turing’s Historic
Paper on Computability and the Turing Machine. Wiley Publishing, 2008.

[21] John Rhodes and Benjamin Steinberg. The q-theory of Finite Semigroups. Springer, 2008.
[22] J.E. Savage. Models of Computation: Exploring the Power of Computing. Addison Wesley,

1998.
[23] Luke Schaeffer. A physically universal cellular automaton. Technical Re-

port TR14-084, Electronic Colloquium on Computational Complexity, 2014.
http://eccc.hpi-web.de/report/2014/084/.

[24] Jürgen Schmidhuber. A computer scientist’s view of life, the universe, and everything. In
Foundations of Computer Science, volume 1337 of Lecture Notes in Computer Science, pages
201–208. Springer, 1997.

[25] Max Tegmark. The mathematical universe. Foundations of Physics, 38(2):101–150, 2008.
[26] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on Automata,

Languages and Programming, pages 632–644, London, UK, 1980. Springer-Verlag.
[27] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society. Second Series, 42:230–265, 1936.

Akita International University, Japan

E-mail address: egri-nagy@aiu.ac.jp

URL: www.egri-nagy.hu

http://arxiv.org/abs/1502.07150
http://arxiv.org/abs/1603.06204
https://github.com/egri-nagy/kigen
https://github.com/egri-nagy/kigen
http://arxiv.org/abs/1303.0091
https://github.com/gap-system/sgpdec
https://github.com/gap-system/sgpdec
http://eccc.hpi-web.de/report/2014/084/
egri-nagy@aiu.ac.jp

	1. Introduction
	2. Computational structures
	2.1. Computation as a function: input-output mappings
	2.2. Computation as a process: state transitions
	2.3. The computation spectrum
	2.4. Traditional mathematical models of computation
	2.5. Computers: physical realizations of computation
	2.6. Hierarchical structure
	2.7. Universal computers

	3. Open problems
	3.1. What are the possible computational structures and implementations?
	3.2. How to measure the amount of computational power?
	3.3. How can we trust computers?

	4. Conclusion
	References

