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An asynchronous message-passing distributed

algorithm for the global critical section problem∗

Sayaka Kamei† Hirotsugu Kakugawa‡

Abstract

This paper considers the global (l, k)-CS problem which is the problem
of controlling the system in such a way that, at least l and at most k

processes must be in the CS at a time in the network. In this paper,
a distributed solution is proposed in the asynchronous message-passing
model. Our solution is a versatile composition method of algorithms for
l-mutual inclusion and k-mutual exclusion. Its message complexity is
O(|Q|), where |Q| is the maximum size for the quorum of a coterie used
by the algorithm, which is typically |Q| = √

n.

1 Introduction

The mutual exclusion problem is a fundamental process synchronization prob-
lem in concurrent systems [1],[2],[3]. It is the problem of controlling the system
in such a way that no two processes execute their critical sections (abbrevi-
ated to CSs) at a time. Various generalized versions of mutual exclusion have
been studied extensively, e.g., k-mutual exclusion, mutual inclusion, l-mutual
inclusion. They are unified to a framework the critical section problem in [4].

This paper discusses the global (l, k)-CS problem defined as follows. In
the entire network, the global (l, k)-CS problem has at least l and at most k
processes in the CSs where 0 ≤ l < k ≤ n. This problem is interesting not only
theoretically but also practically. It is a formulation of the dynamic invocation
of servers for load balancing. The minimum number of servers which are always
invoked for quick response to requests or for fault-tolerance is l. The number of
servers is dynamically changed by system load. However, the total number of
servers is limited by k to control costs.

This paper is organized as follows. Section 2 reviews related works. Section
3 provides several definitions and problem statements. Section 4 provides the
first solution to the global (l, k)-CS problem. This solution uses a solution for
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the global l-mutual inclusion provided in Section 5 as a gadget. In section 6,
we discuss our concrete algorithm for the global (l, k)-CS problem. In section
7, we give a conclusion and discuss future works.

2 Related Work

The k-mutual exclusion problem is controlling the system in such a way that
at most k processes can execute their CSs at a time. The k-mutual exclusion
has been studied actively, and algorithms for this problem are proposed in, for
example, [5],[6],[7],[8],[9],[10]. However, most of them use a specialized quorum
system for k-mutual exclusion, like k-coterie.

The mutual inclusion problem is the complement of the mutual exclusion
problem; unlike mutual exclusion, where at most one process is in the CS,
mutual inclusion places at least one process in the CS. Algorithms for this
problem are proposed in [11] and [12].

The l-mutual inclusion problem is the complement of the k-mutual exclusion
problem; l-mutual inclusion places at least l processes in the CSs. For this
problem, to the best of our knowledge, there is no algorithm. However, the
following complementary theorem is shown in [4].

Theorem 1 (Complementary Theorem) Let AG
(l,k) be an algorithm for the

global (l, k)-CS problem, Co-AG
(l,k) be a complement algorithm of AG

(l,k), which
is obtained by swapping the process states, in the CS and out of the CS. Then,
Co-AG

(l,k) is an algorithm for the global (n− k, n− l)-CS problem.

By this theorem, if we have an algorithm for (n− l)-mutual exclusion, then we
can transform it to an algorithm for l-mutual inclusion. Then, Exit() (resp.
Entry()) method of l-mutual inclusion can make from Entry() (resp. Exit())
method of (n− l)-mutual exclusion by swapping the process states.

In [13], an algorithm is proposed for the local version of (l, k)-CS problem.
The global CS problem is a special case of the local CS problem when the
network topology is complete. Thus, we can use the algorithm in [13] as the
algorithm for the global CS problem. However, the message complexity of [13]
is O(∆), where ∆ is the maximum degree, as the algorithm for the local CS
problem. That is, because the maximum degree is n for the global CS prob-
lem, the message complexity of [13] is O(n) as the algorithm for the global CS
problem.

3 Preliminary

Let G = (V,E) be a graph, where V = {P1, P2, ..., Pn} is a set of processes
and E ⊆ V × V is a set of bidirectional communication links between a pair
of processes. We assume that (Pi, Pj) ∈ E if and only if (Pj , Pi) ∈ E. Each
communication link is FIFO. We consider that G is a distributed system. The
number of processes in G = (V,E) is denoted by n(= |V |). We assume that

2



the distributed system is asynchronous, i.e., there is no global clock. A message
is delivered eventually but there is no upper bound on the delay time and the
running speed of a process may vary.

Below we present the critical section class which defines a common interface
for algorithms that solves a CS problem, including (l, k)-CS problem, mutual
exclusion, mutual inclusion, k-mutual exclusion and l-mutual inclusion.

Definition 1 A critical section object, say o, is a distributed object (algorithm)
shared by processes for coordination of accessing the critical section. Each pro-
cess has a local variable which is a reference to the object. A class of critical
section objects is called the critical section class. The critical section class has
the following member variable and methods.

• o.statei ∈ {InCS,OutCS} : the state of Pi.
• o.Exit() : a method to change its state from InCS to OutCS.
• o.Entry() : a method to change its state from OutCS to InCS.

Each critical section object guarantees safety and liveness for accessing the crit-
ical section if critical section method invocation convention (CSMIC), which is
defined below, for object o is confirmed globally.

Definition 2 For any given process Pi, we say that critical section method
invocation convention (CSMIC) for object o at Pi is confirmed if and only if the
following two conditions are satisfied at Pi.

• o.Exit() is invoked only when o.statei = InCS holds.
• o.Entry() is invoked only when o.statei = OutCS holds.

Definition 3 We say that critical section method invocation convention (CSMIC)
for object o is confirmed globally if and only if critical section method invocation
convention (CSMIC) for object o at Pi is confirmed for each Pi ∈ V .

For each critical section object o, the vector of local states (o.state1, o.state2,
. . . , o.staten) of all processes forms a configuration (global state) of a distributed
system. For each configuration C for object o, let CSo(C) be the set of processes
Pi with o.statei = InCS in C. Under each object o, the behaviour of each process
Pi is as follows, where we assume that, when o.statei is OutCS (resp. InCS), Pi

eventually invokes o.Entry() (resp. o.Exit()) and changes its state into InCS

(resp. OutCS).

/* o.statei = (Initial state of Pi in the initial configuration) ∗ /
while true {
if (o.statei = OutCS) {
o.Entry();
/* o.statei = InCS */

}
if (o.statei = InCS) {
o.Exit();
/* o.statei = OutCS */

}
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}

Definition 4 (The global critical section problem). Assume that a pair of num-
bers l and k (0 ≤ l < k ≤ n) is given on network G = (V,E). Then, an object
(l, k)-GCS solves the global critical section problem on G if and only if the
following two conditions hold in each configuration C.

• Safety: l ≤ |CS(l,k)-GCS(C)| ≤ k at any time.
• Liveness: Each process Pi ∈ V changes OutCS and InCS states alternately

infinitely often.

For given l and k, we call the global CS problem as the global (l, k)-CS problem.
We assume that, for object (l, k)-GCS which is for the global (l, k)-CS prob-

lem, the initial configurationC0 is safe, that is, C0 satisfies l ≤ |CS(l,k)-GCS(C0)| ≤
k. Note that, existing works for CS problems assume that their initial configura-
tions are safe. For example, for the mutual exclusion problem, most algorithms
assume that each process is in OutCS state initially, and some algorithms (e.g.,
token based algorithms) assume that exactly one process is in InCS state and
other processes are in OutCS state initially. Hence our assumption for the initial
configuration is a natural generalization of existing algorithms.

The typical performance measures applied to algorithms for the CS problem
are as follows.

• Message complexity: the number of message exchanges triggered by a pair
of invocations of Exit() and Entry().

• Waiting time1 for exit (resp. entry): the time period between the invoca-
tion of the Exit() (resp. Entry()) and completion of the exit from (resp.
entry to) the CS.

• Waiting time: the maximum one of the waiting times for exit or entry.
Our proposed algorithm uses a coterie [14] for information exchange between

processes.

Definition 5 (Coterie [14]) A coterie C under a set V is a set of subsets
of V , i.e., C = {Q1, Q2, ...}, where Qi ⊆ V and it satisfies the following two
conditions.

1. Intersection property: For any Qi, Qj ∈ C, Qi ∩Qj 6= ∅ holds.

2. Minimality: For any distinct Qi, Qj ∈ C, Qi 6⊆ Qj holds.

Each member Qi ∈ C is called a quorum.

We assume that, for each Pi, Qi is defined as a constant and is a quorum used
by Pi.

The algorithm proposed by [15] is a distributed mutual exclusion algorithms
that uses a coterie and it achieves a message complexity of O(|Q|), where |Q| is
the maximum size of the quorums in a coterie. For example, the finite projective
plane coterie and the grid coterie achieve |Q| = O(

√
n), where n is the total

number of processes [15].

1 The name of this performance measure differs among previous studies and some (e.g.,
[2]) refer to this performance measure as the synchronization delay.

4



Algorithm 1 (l, k)-GCS

Local Variables:
lmin : critical section object for l-mutual inclusion;
kmex : critical section object for k-mutual exclusion;

Exit():
/* statei = InCS */

lmin.Exit(); /* Request */
/* statei = OutCS */

kmex.Exit(); /* Release */

Entry():
/* statei = OutCS */

kmex.Entry(); /* Request */
/* statei = InCS */

lmin.Entry(); /* Release */

4 Proposed Algorithm

In this section, we propose a distributed algorithm for (l, k)-CS problem based
on algorithms for l-mutual inclusion and k-mutual exclusion. Our algorithm
(l, k)-GCS is a composition of two objects, lmin and kmex. lmin is an algorithm
for l-mutual inclusion, and kmex is an algorithm for k-mutual exclusion. The
algorithm (l, k)-GCS for each process Pi ∈ V is presented in Algorithm 1. In
(l, k)-GCS, we regards that each process state changes into OutCS (resp. InCS)
immediately in (l, k)-GCS.Exit() (resp. (l, k)-GCS.Entry()), just after execu-
tion of lmin.Exit() (resp. kmex.Entry()), before execution of kmex.Exit() (resp.
lmin.Entry()). We assume that, for each Pi, (l, k)-GCS.statei = lmin.statei =
kmex.statei holds in the initial configuration.

In (l, k)-GCS, safety is maintained by lmin.Exit() and kmex.Entry() because
objects lmin and kmex guarantee each of their safety properties by these meth-
ods. That is, lmin.Exit() blocks if l processes are InCS, and kmex.Entry() blocks
if k processes are InCS.

4.1 Proof of correctness of algorithm (l, k)-GCS

For each Pi, let #Gi (resp. #Li,#Ki) be 1 if (l, k)-GCS.statei = InCS (resp.
lmin.statei = InCS, kmex.statei = InCS) holds, otherwise 0. Additionally, let
#G (resp. #L,#K) be

∑
Pi

#Gi (resp.
∑

Pi
#Li,

∑
Pi

#Ki). That is, #G =
CS(l,k)-GCS(C) (resp. #L = CS lmin(C),#K = CSkmex (C)) in a configuration
C. Then, l ≤ #L ≤ n holds by the safety of lmin, and 0 ≤ #K ≤ k holds by
the safety of kmex. Because we assume that the initial configuration C0 is safe,
l ≤ #G ≤ k holds in C0.
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Lemma 2 In the initial configuration C0, lmin and kmex satisfy their safety
properties.

Proof. In C0, because (l, k)-GCS.statei = lmin.statei = kmex.statei holds for
each Pi, #Gi = #Li = #Ki holds. Hence,

∑
Pi

#Gi =
∑

Pi
#Li =

∑
Pi

#Ki

holds. Thus, #G = #L = #K holds. Because l ≤ #G ≤ k holds in C0,
l ≤ #L ≤ k and l ≤ #K ≤ k holds in C0. Thus, lmin and kmex satisfy their
safety in C0. ✷

Lemma 3 In any execution of (l, k)-GCS, CSMIC for lmin and kmex are con-
firmed globally.

Proof. Let Pi be any process. Because (l, k)-GCS.statei alternates by in-
vocations of (l, k)-GCS.Exit() and (l, k)-GCS.Entry(), CSMIC for (l, k)-GCS is
confirmed at Pi. We show that CSMIC for lmin and kmex are also confirmed at
Pi. Below we show only the case of lmin; we omit the case for kmex because it
is shown similarly.

First, we show that an invariant (l, k)-GCS.statei = lmin.statei holds when-
ever (l, k)-GCS.Exit() and (l, k)-GCS.Entry() are just invoked.

In C0, it is assumed that (l, k)-GCS.statei = lmin.statei holds. Hence the
invariant holds.

We assume that (l, k)-GCS.statei = lmin.statei holds when (l, k)-GCS.Exit()
and (l, k)-GCS.Entry() are invoked.

• When (l, k)-GCS.Exit() is invoked, we have (l, k)-GCS.statei = lmin.statei =
InCS at the beginning of invocation. Then, Pi invokes lmin.Exit() with
lmin.statei = InCS. When this invocation finishes, we have (l, k)-GCS.statei =
lmin.statei = OutCS.

• When (l, k)-GCS.Entry() is invoked, we have (l, k)-GCS.statei = lmin.statei =
OutCS at the beginning of invocation. Then, Pi invokes lmin.Entry() with
lmin.statei = OutCS. When this invocation finishes, we have (l, k)-GCS.statei =
lmin.statei = InCS.

Hence, any invocation of (l, k)-GCS.Exit() and (l, k)-GCS.Entry() maintains the
invariant.

Now, we show that CSMIC for lmin is confirmed at Pi. Because CSMIC
for (l, k)-GCS is confirmed at Pi, (l, k)-GCS.Exit() is invoked only when (l, k)-
GCS.statei = InCS holds, and (l, k)-GCS.Entry() is invoked only when (l, k)-
GCS.statei = OutCS holds. Because of the invariant, lmin.Exit() is invoked
only when lmin.statei = InCS holds, and lmin.Entry() is invoked only when
lmin.statei = OutCS holds. Hence CSMIC for lmin is confirmed at Pi.

Because CSMIC for lmin is confirmed at Pi for each Pi, CSMIC for lmin is
confirmed globally. ✷

Lemma 4 In any execution of (l, k)-GCS, lmin and kmex satisfy safety and
liveness properties.

Proof. By lemma 2, in C0, lmin and kmex satisfy their safety properties
because (l, k)-GCS.statei = lmin.statei = kmex.statei holds for each Pi. By
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lemma 3, CSMIC for lmin and kmex are confirmed globally. Because they are
preconditions for the safety and liveness of lmin and kmex, the lemma holds.✷

Lemma 5 (Safety) The number of processes in InCS state is at least l and at
most k at any time.

Proof. By the definition of (l, k)-GCS, CSMIC for (l, k)-GCS is confirmed
globally, and (l, k)-GCS.statei = lmin.statei = kmex.statei in C0, we have
#Gi = #Li = #Ki in C0. Thus, each value of #Gi, #Li and #Ki in each
point of the execution is as follows.

(l, k)-GCS.Exit():
// (#Gi,#Li,#Ki) = (1, 1, 1)

lmin.Exit();
// (#Gi,#Li,#Ki) = (0, 0, 1)

kmex.Exit();
// (#Gi,#Li,#Ki) = (0, 0, 0)

(l, k)-GCS.Entry():
// (#Gi,#Li,#Ki) = (0, 0, 0)

kmex.Entry();
// (#Gi,#Li,#Ki) = (1, 0, 1)

lmin.Entry();
// (#Gi,#Li,#Ki) = (1, 1, 1)

Therefore, the following invariant #Gi ≥ #Li ∧#Gi ≤ #Ki is satisfied.
Because #G =

∑
Pi

#Gi ≥ ∑
Pi

#Li = #L and #G =
∑

Pi
#Gi ≤∑

Pi
#Ki = #K hold, we have invariants #G ≥ #L and #G ≤ #K. Be-

cause #G ≥ #L ≥ l and #G ≤ #K ≤ k holds by the safety of lmin and kmex,
l ≤ #G ≤ k holds. ✷

Lemma 6 (Liveness) Each process Pi ∈ V alternates its state infinitely often.

Proof. By contrast, suppose that some processes do not change OutCS and
InCS states alternately infinitely often. Let X be the set of such processes. In
kmex.Exit() (resp. lmin.Entry()) method, because Pi just releases the right to
be in InCS (resp. OutCS), the method does not block any process Pi forever.
Thus, in (l, k)-GCS, Pi is blocked only in lmin.Exit() of (l, k)-GCS.Exit() and
kmex.Entry() of (l, k)-GCS.Entry().

Consider the case that a process Pi ∈ X is blocked in (l, k)-GCS.Exit()
forever. Note that, we omit the proof of the case in which Pi is blocked in
(l, k)-GCS.Entry() forever because it is symmetry to the following proof.

If other processes invoke (l, k)-GCS.Exit() and (l, k)-GCS.Entry() alternately
and complete their execution of these methods infinitely often, they complete
the execution of lmin.Exit() and lmin.Entry() infinitely often. However, because
lmin satisfies its liveness, Pi is not blocked forever. Therefore, for the assump-
tion, not only Pi but also all processes must be blocked in (l, k)-GCS.Exit() or
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(l, k)-GCS.Entry() forever. That is, X = V and all processes are blocked in
lmin.Exit() or kmex.Entry() forever.

Recall that it is assumed that l ≤ #L ≤ n holds by the safety of lmin, and
0 ≤ #K ≤ k holds by the safety of kmex. By lemma 5, l ≤ #G ≤ k holds.
If a process Pj is blocked in lmin.Exit(), (l, k)-GCS.statej = lmin.statej =
kmex.statej = InCS holds, and if Pj is blocked in kmex.Entry(), (l, k)-GCS.statej =
lmin.statej = kmex.statej = OutCS holds. Therefore, #G = #L = #K holds.

• Consider the case that all processes are blocked in lmin.Exit(). Then,
#L = n holds. However, by the assumption that lmin satisfies its safety,
l = n holds. This is a contradiction because l < k ≤ n must hold by
assumption.

• Consider the case that there exists a process which is blocked in kmex.Entry().
By the assumption that lmin satisfies its safety, #L ≥ l holds.

– Consider the case that #L = l holds. Because it is assumed that
l < k holds, #L < k holds, that is, #L = #K < k holds. Because
kmex satisfies its liveness, a process which is blocked in kmex.Entry()
is eventually unblocked. This is a contradiction by the assumption
that all processes are blocked forever.

– Consider the case that #L > l holds. Because lmin satisfies its
liveness, a process which is blocked in lmin.Exit() is eventually un-
blocked. This contradicts the assumption that all processes are blocked
forever. ✷

By lemmas 5 and 6, we derived the following theorem.

Theorem 7 (l, k)-GCS solves the global (l, k)-CS problem. ✷

5 An Example of the l-Mutual Inclusion

Now, to show a concrete algorithm (l, k)-GCS based on the discussion in sec-
tion 4, we propose a class MUTIN (l) for l-mutual inclusion. A formal descrip-
tion of the class MUTIN (l) for each process Pi ∈ V is provided in Algorithm
2.

First, we present an outline how each process know the set of processes in
InCS state in a distributed manner with quorums. When Pi changes its state,
Pi notifies each process in a quorum Qi its state. When Pi wants to know the
set of processes in InCS, Pi contacts with each process in Qi. For each process
Pk ∈ V , because of the intersection property of quorums, there exists at least
one process Pj ∈ Qk ∩Qi 6= ∅. Hence, Pk notifies its state to Pj , and Pj sends
the state of Pk to Pi. For this reason, when Pi contacts each process in Qi, Pi

obtains information about all the processes.
In the proposed algorithm, each Pi maintains a local variable procsInCSi

that keeps track of a set of processes in InCS state in Ri, where Ri = {Pk | Pk ∈
V ∧Pi ∈ Qk} is the set of processes which inform about the states of processes to
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Algorithm 2 A class description MUTIN (l) for l-mutual inclusion

Constants:
Qi : set of processIDs;
Ri : {Pk | Pk ∈ V ∧ Pi ∈ Qk}, set of processIDs;

Local Variables:
mx : critical section object for mutual exclusion;
reqCnti : integer, initially 0;
procsInCSi : set of processIDs,
initially {Pj ∈ Ri | statej = InCS} in a safe initial configuration;

currentInCSi : set of processIDs, initially ∅;
ackFromi : set of processIDs, initially ∅;
responseAgainToi : processID, initially nil;
respAgainReqCnti : integer, initially 0;

Exit():
/* statei = InCS */

mx.Entry();
reqCnti := reqCnti + 1;
currentInCSi := ∅;
for-each Pj ∈ Qi

send 〈Query, reqCnti, Pi〉 to Pj ;
wait until (|currentInCSi| ≥ l + 1);
ackFromi := ∅;
for-each Pj ∈ Qi

send 〈Acquire, Pi〉 to Pj ;
wait until (ackFromi = Qi);
mx.Exit();

/* statei = OutCS */

Entry():
/* statei = InCS */

for-each Pj ∈ Qi

send 〈Release, Pi〉 to Pj ;
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Algorithm 2 A class description MUTIN (l) for l-mutual inclusion (continued)

On receipt of a 〈Query, reqCnt, Pj〉 message:
send 〈Response1, procsInCSi, reqCnt, Pi〉 to Pj ;
responseAgainToi := Pj ;
respAgainReqCnti := reqCnt;

On receipt of a 〈Response1, procsInCS, reqCnt, Pj〉 message:
if (reqCnti = reqCnt)
currentInCSi := currentInCSi ∪ procsInCS;

On receipt of a 〈Acquire, Pj〉 message:
procsInCSi := procsInCSi\{Pj};
send 〈Ack, Pi〉 to Pj ;
responseAgainToi := nil;
respAgainReqCnti := 0;

On receipt of a 〈Ack, Pj〉 message:
ackFromi := ackFromi ∪ {Pj};

On receipt of a 〈Release, Pj〉 message:
procsInCSi := procsInCSi ∪ {Pj};
if (responseAgainToi 6= nil) {
send 〈Response2, procsInCSi, respAgainReqCnti, Pi〉 to responseAgainToi;
responseAgainToi := nil;
respAgainReqCnti := 0;

}

On receipt of a 〈Response2, procsInCS, reqCnt, Pj〉 message:
if (reqCnti = reqCnt)
currentInCSi := currentInCSi ∪ procsInCS;

10



Pi. Note that, Pk ∈ Ri ⇔ Pi ∈ Qk holds. The value of procsInCSi is maintained
by the following way.

• When Pi is in InCS state and wishes to change its state into OutCS in
Exit(), Pi sends an Acquire message to each Pj ∈ Qi.

• When Pi changes its state into InCS in Entry(), Pi sends a Releasemessage
to each Pj ∈ Qi.

• When Pi receives an Acquire message from Pj , Pi adds Pj to procsInCSi.
• When Pi receives a Releasemessage from Pj , Pi deletes Pj from procsInCSi.

We assume that the initial value of procsInCSi is the set of processes Pj ∈ Ri

in InCS state in the initial configuration.
Next, we explain the idea to guarantee safety. When Pi changes its state

into InCS by Entry(), Pi immediately sends a Release message to each Pj ∈ Qi.
By Entry(), the number of processes in InCS increases by 1. Thus, the safety is
trivially maintained.

When Pi wishes to change its state into OutCS by Exit(), the safety is
maintained by the following way.

• First, Pi sends a Query message to each process Pj ∈ Qi. Then, each
Pj ∈ Qi sends a Response1 message with procsInCS j back to Pi.

• Pi stores procsInCS which Pi received from each Pj ∈ Qi in variable
currentInCSi. That is, currentInCS i =

⋃
Pj∈Qi

procsInCS j holds.

• If |currentInCSi| ≥ l + 1 holds, then at least l + 1 processes are in InCS

state. Thus, even if Pi changes its state from InCS to OutCS, at least
l processes remain in InCS state. Then, safety is maintained. Therefore,
only if the condition |currentInCSi| ≥ l+1 is satisfied, Pi sends an Acquire

message to each Pj ∈ Qi, and changes its state to OutCS.
Above idea guarantees safety if only one process wishes to change its state

into OutCS, however, it does not if more than one processes wish to change
their state into OutCS. To avoid this situation, we serialize requests which oc-
cur concurrently. One of the typical techniques to serialize is using the priority
based on the timestamp and the preemption mechanism of permissions. This
technique is employed in a lot of distributed mutual exclusion algorithms. We
use this technique for serialization, however, for simplicity of the description
of the proposed algorithm, we use an ordinary mutual exclusion algorithm [15]
in the proposed algorithm instead of explicitly use timestamp and preemption
mechanism. This is because typical ordinary mutual exclusion algorithms use
the same mechanism for serialization, and hence underlaying mechanism is es-
sentially the same. We denote the object for the ordinary mutual exclusion
with mx. When a process wishes to change its state into OutCS, it invokes the
mx.Entry() method and this allows it to enter the CS of mutual exclusion. After
changing its state into OutCS successfully, it invokes the mx.Exit() method and
this allows it to exit the CS of mutual exclusion. Thus, by incorporating a dis-
tributed mutual exclusion algorithm mx, the state change from InCS to OutCS

is serialized between processes. Additionally, before execution of Pi’s mx.Exit(),
Pi waits to receive Ack messages which are responses from each Pj ∈ Qi to an
Acquire message sent by Pi. Thus, the update of the variable procsInCSj is
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atomic. By this way, it is ensured that each process Pk ∈ currentInCSi is in
InCS. Thus, #L ≥ |currentInCS i| is guaranteed.

Finally, we explain the idea to guarantee liveness. When exactly l processes
are in InCS state, Pi observes this by the Query/Response1 message exchange,
and Pi is blocked. When process Pk enters CS, its Release message is sent to
each process in Qk, and some Pj ∈ Qk ∩ Qi sends a Response2 message to
Pi. Hence Pi is eventually unblocked. Note that, there exists at least such Pj

because of the intersection property of quorums.
Even if there are more than l processes in InCS state, there is a case that Pi

observes that the number of processes in InCS state is l by the Query/Response1
message exchange. When this occurs, Pi is blocked not to violate the safety.
This case occurs if the Release message from some Pk is in transit towards
Pj ∈ Qk ∩ Qi by asynchrony of message passing when Pj handles the Query

message from Pi. Even if this case occurs, the Release message of Pk eventually
arrives to some Pj ∈ Qk ∩ Qi. Then, Pj sends a Response2 message to Pi.
Hence Pi is eventually unblocked. Because Pi is unblocked by single Response2

message, it is enough for each process to send Response2 message at most once.
Class MUTIN (l) uses the following local variables for each process Pi ∈ V .
• reqCnti : integer, initially 0

– The request counter of Pi. This value is used by Response1/Response2
message to distinguish it from the corresponding Query message.

• procsInCSi : set of processIDs

– A set of processes in InCS state to the best knowledge of Pi.
• currentInCSi : set of processIDs

– A set of processes in InCS state, which are gathered by Pi. That is,
each process in this set is known to be in InCS state by some process
in quorum Qi.

• ackFromi : set of processIDs, initially ∅
– A set of processes from which Pi receives an Ack message. An Ack

message is an acknowledgment of an Acquire message sent to each
Pj ∈ Qi, where Pi waits while ackFromi = Qi holds. Due to this
handshake, Pi 6∈ procsInCSj is guaranteed for each Pj ∈ Qi before
Pi invokes mx.Exit().

• responseAgainToi : processID, initially nil

– A process id Pj to which Pi should send a Response2 message when
Pj is waiting for |currentInCSj | to exceed l. This value sets when Pi

receives a Query message.
• respAgainReqCnti : integer, initially 0

– Request count value for the Query of the process responseAgainToi.

5.1 Proof of correctness of MUTIN (l)

In this subsection, we again denote the number of processes with state = InCS

by #L.
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Lemma 8 (Safety) The number of processes in InCS state is at least l at any
time.

Proof. First, in each point of the execution, for each Pi, we show that
Pj ∈ procsInCS i ⇒ statej = InCS.

In the initial configuration, procsInCS i is the set of processes in Ri in InCS.
Thus, Pj ∈ procsInCS i ⇒ statej = InCS holds.

Consider the case that, in the configuration such that Pj ∈ procsInCS i ⇒
statej = InCS holds, statej changes from InCS to OutCS. Such case occurs only
when Pj invokes Exit(). In the Exit() execution of Pj , because ofmx.Enter()/mx.Exit()
and waiting to update procsInCS i by Ack message, Pj is not included in any
procsInCS i when Pj finishes the execution of Exit(). Thus, Pj ∈ procsInCS i ⇒
statej = InCS holds.

Now, we show that the safety is guaranteed. In the initial configuration, it
is clear that the safety is guaranteed because #L ≥ l. We observe the execu-
tion after that. In the algorithm, only when |currentInCS i| ≥ l + 1 is satisfied,
Pi exits from the CS. The value of currentInCS i is computed based on Re-

sponse1 and Response2 messages. That is, currentInCS i =
⋃

Pj∈Qi
procsInCS j

holds. By mx in Exit(), because other processes than Pi do not invoke Exit(),
Pj ∈ currentInCS i ⇒ statej = InCS holds. Thus, #L ≥ |currentInCS i| holds.
Therefore, because #L ≥ l + 1, even if Pi changes its state to OutCS, #L ≥ l
holds. That is, lemma holds. ✷

Lemma 9 (Liveness) Each process Pi ∈ V changes OutCS and InCS states
alternately infinitely often.

Proof. By contrast, suppose that some processes do not change OutCS and
InCS states alternately infinitely often. Let Pi be any of these processes. Because
Entry() has no blocking operation, we assume that Pi is blocked from executing
the Exit() method. There are three possible reasons that Pi is blocked in the
Exit() method: (1) Pi is blocked by mx.Entry(), (2) Pi is blocked by the first
wait statement in Exit() method, or (3) Pi is blocked by the second wait

statement in Exit() method.
Any process is not blocked forever by case (3) because each Pj ∈ Qi imme-

diately sends back an Ack message in response to an Acquire message. Below,
we consider cases (1) and (2).

First, we consider the case that all of the blocked processes are blocked
by mx.Entry(), that is, all of the blocked processes are in case (1). However,
this situation never occurs because we have incorporated a mutual exclusion
algorithm with liveness. Thus, at least one process is blocked in case (2).

The number of processes that is blocked in case (2) is exactly one because no
two process reach the corresponding statement at the same time by mx.Entry().

Additionally, we claim that all of the processes are eventually blocked in case
(1), except Pk in case (2). Each non-blocked process in InCS state eventually
calls the Exit() method and it is then blocked by mx.Entry() because Pk obtains
the lock of mutual exclusion. Now the system reaches a configuration in which

13



Pk is blocked in case (2), remaining n− 1 processes are blocked in case (1), and
all the processes are in InCS state.

Finally, we show that Pk is unblocked eventually. Recall that Pk is blocked
in case (2), i.e., it is waiting for a condition |currentInCSk| ≥ l + 1 becomes
true.

The size of a collection
⋃

Pj∈Qk
procsInCS j , each of which is attached to the

Response1 message sent from Pj to Pk, is at least l, i.e., |currentInCSk| ≥ l
holds, because atomic update of each procsInCS j, #L ≥ l holds by the safety
property, and, for any Px ∈ V , there exists Pj ∈ Qi such that Pj ∈ Qx by
intersection property of quorums.

Although it is assumed that |currentInCSk| = l holds and Pk is blocked, a
Releasemessage from some Py which is not in currentInCSk eventually arrives at
some Pj in Qk, and Pj sends a Response2message which includes Py to Pk. Note
that such process Py exists because n > l is assumed and Qy ∩Qk 6= ∅ holds by
the intersection property of quorums. Hence, Pk observes |currentInCSk| = l+1
when it receives the Response2 message, and it is unblocked. ✷

Lemma 10 The message complexity of MUTIN (l) is O(|Q|), where |Q| is the
maximum size of the quorums of a coterie used by MUTIN (l).

Proof. As noted above, we incorporate a distributed mutual exclusion al-
gorithm with a message complexity of O(|Q|), such as that proposed by [15].
Thus, mx requires O(|Q|) messages.

In the Exit() method, Pi sends |Qi| Query messages. For each Pj ∈ Qi, Pj

sends exactly one Response1 message for each Query message: |Qi| Response1
messages. Pi sends |Qi| Acquire messages. Then, each Pj ∈ Qi sends an Ack

message: |Qi| Ack messages. Hence, O(|Q|) messages are exchanged.
In the Entry() method, Pi sends |Qi| Release messages. For each Pj ∈ Qi,

Pj sends at most one Response2 message for Query messages: |Qi| Response2
messages. Therefore, O(|Q|) messages are exchanged.

In total, O(|Q|) messages are exchanged. ✷

Lemma 11 The waiting time of MUTIN (l) is 7.

Proof. The waiting time is 3 for the mutual exclusion algorithm employed
by MUTIN (l), which was described by Maekawa [15] (2 for Entry() and 1 for
Exit(); see [2].)

In Exit(), a chain of messages, i.e., Query, Response1, Acquire, Ack is ex-
changed between Pi and the processes in Qi. Hence, 4 additional time units are
required. In total, the waiting time for exit is 7 time units.

In Entry(), a Release message and a Response2 message are exchanged be-
tween Pi and the processes in Qi. The waiting time for entry is 2 time units.

Thus, the waiting time is 7 time units. ✷

By lemmas 8-11, we derived the following theorem.

14



Theorem 12 MUTIN (l) solves the l-mutual inclusion problem with a message
complexity of O(|Q|) where |Q| is the maximum size of the quorums of a coterie
used by MUTIN (l). The waiting time of MUTIN (l) is 7. ✷

6 Discussion

In this section, finally, we discuss the case that, by the complementary theorem
(theorem 1), in (l, k)-GCS, we use the proposed class as MUTIN (l) to obtain
object lmin and as MUTIN (n− k) to obtain object kmex.

Then, by the proof of lemma 10, the message complexity is O(|Q|). Addi-
tionally, by the proof of lemma 11, both of waiting times for exit and entry of
(l, k)-GCS are 9. Thus, by theorem 7, we derive the following theorem.

Theorem 13 (l, k)-GCS solves the global (l, k)-CS problem with a message
complexity of O(|Q|) where |Q| is the maximum size of the quorums of a co-
terie used by (l, k)-GCS. The waiting time of (l, k)-GCS is 9. ✷

7 Conclusion

In this paper, we discuss the global critical section problem in asynchronous
message passing distributed systems. Because this problem is useful for fault-
tolerance and load balancing of distributed systems, we can consider various
future applications.

In the future, we plan to perform extensive simulations and confirm the
performance of our algorithms under various application scenarios. Additionally,
we plan to design a fault tolerant algorithm for the problem.
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