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Abstract—There has been an increasing tendency to move
from outdoor to indoor lifestyle in modern cities. The emergence
of big shopping malls, indoor sports complexes, factories, and
warehouses is accelerating this tendency. In such an environment,
indoor localization becomes one of the essential services, and the
indoor localization systems to be deployed should be scalable
enough to cover the expected expansion of those indoor facilities.
One of the most economical and practical approaches to indoor
localization is Wi-Fi fingerprinting, which exploits the widely-
deployed Wi-Fi networks using mobile devices (e.g., smart-
phones) without any modification of the existing infrastructure.
Traditional Wi-Fi fingerprinting schemes rely on complicated
data pre/post-processing and time-consuming manual parameter
tuning. In this paper, we propose hierarchical multi-building
and multi-floor indoor localization based on a recurrent neural
network (RNN) using Wi-Fi fingerprinting, eliminating the need
of complicated data pre/post-processing and with less parameter
tuning. The RNN in the proposed scheme estimates locations
in a sequential manner from a general to a specific one (e.g.,
building→floor→location) in order to exploit the hierarchical
nature of the localization in multi-building and multi-floor
environments. The experimental results with the UJIIndoorLoc
dataset demonstrate that the proposed scheme estimates building
and floor with 100% and 95.24% accuracy, respectively, and
provides three-dimensional positioning error of 8.62 m, which
outperforms existing deep neural network-based schemes.

Index Terms—Multi-building and multi-floor Indoor localiza-
tion, Wi-Fi fingerprinting, recurrent neural networks (RNNs).

I. INTRODUCTION

In modern smart cities, there is a huge demand for location-
based services (LBS) like advertising, tracking, and navigation.
Because people spend most of their time in indoor environ-
ments like shopping malls, hospitals, and airports [1], we need
to provide LBS indoors. Most existing localization systems,
however, cannot be used indoors; the lack of line of sight and
the effect of multipath propagation on signals make it hard to
utilize the localization systems such as the global positioning
system (GPS) for indoor localization [2].

Different technologies have been utilized to implement in-
door LBS (ILBS), including wireless networks, active/passive
tags, and vision/camera technologies [3]. Among many wire-
less technologies for indoor localization Wi-Fi is the most
feasible and popular technology [4]; Especially, Wi-Fi fin-
gerprinting is widely used for indoor localization due to its
wide availability and the lack of strict requirements on the
information on network topologies. In Wi-Fi fingerprinting,
received signal strength (RSS) measurements are not directly

used for distance estimation with a path loss model, which is
a basis for multilateration, due to multipath fading effects [5];
instead, Wi-Fi fingerprinting uses RSS as one of location-
dependent characteristics (i.e., location fingerprint) in inferring
the location. We first build a database of the RSS indicators
(RSSIs) from all access points (APs) measured at known loca-
tions called reference points (RPs) together with their location
information like two dimensional (2D) or three dimensional
(3D) positions. This information should be collected many
times for each RP using different devices, different users, and
different orientations to mitigate the effect of fluctuations in
RSS measurements.

Traditional approaches for Wi-Fi fingerprinting—e.g., K-
nearest neighbor (KNN) [6], weighted KNN (wKNN), and
support vector machine (SVM) [7]—require a lot of efforts
for filtering and parameter tuning, which are quite time-
consuming. In recent years, deep neural networks (DNN)
have been widely adopted to deal with large-scale, noisy
Wi-Fi fingerprinting datasets [8], [9], and different machine
learning techniques are combined with DNNs, too [10]. Due
to its higher accuracy and less computational complexity,
convolutional neural network (CNN) are used in [11], [12].

In this paper, we introduce a new approach to hierarchical
multi-building and multi-floor indoor localization based on a
recurrent neural network (RNN) with stacked auto-encoder
(SAE) using Wi-Fi fingerprinting, eliminating the need of
complicated data pre/post-processing and with less parameter
tuning. The RNN in the proposed scheme estimates locations
in a sequential manner—i.e., building→floor→location—to
exploit the hierarchical nature of the localization in multi-
building and multi-floor environments.

The outline of the rest of the paper is as follows: Section II
reviews the related work on indoor localization. Section III
discusses the proposed network architecture. In Section IV,
we present experimental results with the best configuration,
where we also discuss the results in comparison with other
approaches. Finally, we conclude our work in Section V.

II. RELATED WORK

Traditional approaches like KNN [13] and wKNN algo-
rithms are time consuming and need a lot of tuning, which are
not suitable for large-scale indoor environments where a lot of
data are to be collected and processed. Recently, researchers
adopt deep learning approaches for indoor localization.
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As for multi-building and multi-floor indoor localization
datasets, this work is based on the publicly-available UJIIn-
doorLoc dataset [14]. Note that, however, there are several
works using only a subset of UJIIndoorLoc [11], [15] or
using only training data for both training and testing their
models [16]. Even though these works report good results,
there is no guarantee that the performance of their proposed
models would be good as well with the whole dataset due
to the statistical differences in the training and validation
datasets. In the following, therefore, we focus only on the
related works based on the full UJIIndoorLoc dataset.

In [8], a DNN model was proposed for the classification
of building/floor. An SAE is used to reduce the number of
features, which is followed by a DNN classifier for the multi-
class classification of building-floor using flattened labels.
Because a flattened label is represented with one-hot encoding,
this DNN model only classifies building and floor to avoid
huge number of output nodes required for locations. This work
achieves the success rate of 92%.

To tackle the problem of scalability, multi-label classifica-
tion was proposed in [9]. It reduces the number of output
nodes significantly. The proposed architecture also consists of
an SAE followed by a DNN, but the first N output nodes
of the DNN are used for building classification, where N is
the number of buildings, the next M output nodes for floor
classification, where M is the maximum number of floors in
all buildings, and the rest of the output nodes for location
estimation. This work achieves 91.27% for floor hit rate and
9.29m for 3D positioning error.

In [10], random forest followed by an SAE was used to filter
and reduce the dimensionality of the dataset. Filtered data is
classified using 4 primary classifiers (i.e., CNN, ELM, SVM,
and XGBoost), and then the secondary classifier predicts
the class from those 4 values. This work is only for floor
classification, and it achieves 95.13% for floor hit rate.

Integration of an SAE and CNNs was presented in [12].
Three different networks are used for floor classification, build-
ing classification and position estimation. The SAE followed
by dropout layers gives the input to one dimensional CNN
(1D-CNN) followed by fully-connected layers to give 5 output
nodes for floor classification. For building classification, the
SAE is directly connected to fully-connected layers with 3
output nodes. For position estimation, they used the same floor
classification model with some changes: First, they remove
dropout layers between the SAE and the 1D-CNN. Second,
they change the number of output nodes to 2 to represent x
and y coordinates. Finally to get continuous values for x and
y, they use rectified linear unit (ReLU) instead of softmax as
output activation function. Before training the model, however,
lots of data pre-processing is needed for this work; dividing the
dataset to sub-datasets, creating rectangle areas then dividing
them to cell grids, choosing the center of each cell grid,
selecting data based on the previous divisions are some of
the preparation steps for training phase. They achieve 96.03%
for floor hit rate and 11.78m for positioning error.

Fig. 1. Proposed network architecture based on RNN and SAE.

III. PROPOSED NETWORK ARCHITECTURE

Fig. 1 shows the proposed network architecture based on
RNN and SAE, which takes RSSIs as inputs and returns
building ID, floor ID, and location coordinates (x, y) as
outputs, where we take into account the following major points
in our design: First, we fed the output from upper-level class to
lower-level class to exploit the hierarchical nature of the multi-
building and multi-floor indoor localization. Second, because
the position estimation is different from building and floor
classification in nature, we exclude it from the RNN. Third,
we add an SAE before common hidden layers to reduce the
dimensionality of a feature space and thereby denoise RSSIs.

Note that scalability is one of the key challenges to be
addressed in large-scale multi-building and multi-floor indoor
localization. Reducing the number of output nodes is one of
the major techniques to make the system scalable. For the
UJIIndoorLoc dataset, the number of output nodes would be
905 when we use multi-class classification, which could be
reduced to 118—i.e., the sum of the number of buildings,
the maximum number of floors, and the maximum number
of floor locations—by using multi-label classification [17]. In
the proposed work, we greatly reduce this number to 4—i.e.,
1 for building, 1 for floor, and 2 for location—by numerical
representation of outputs instead of one-hot-encoding. We
convert building and floor classification to regression problem
and round the regression outputs to get the class numbers.

IV. EXPERIMENTAL RESULTS

We carry out experiments with the UJIIndoorLoc Wi-Fi
fingerprinting dataset [14] to investigate the effects of RNN
parameter values on the localization performance with a major
focus on RNN cell types and dropout rates. Note that the
publicly-available UJIIndoorLoc dataset provides only training
and validation data; test data were provided only to the com-
petitors at the Evaluating Ambient Assisted Living (EvAAL)
competition [18]. Therefore, we split the training data into new
training and validation data with the ratio of 90:10, and we
use the validation data as test data.



TABLE I
HYPER PARAMETERS

Parameter Value
SAE Hidden Layers 256-128-64
SAE Activation ReLU
SAE Optimizer Adam
SAE Loss MSE
Common Hidden Layers 128-128
Common Activation ReLU
Common Dropout 0.2
Common Loss MSE
RNN Cells 128-128
RNN Activation ReLU
RNN Optimizer Adam
RNN Loss MSE
BF Classifier Hidden Layers 32-1
BF Classifier Activation MSE
BF Classifier Optimizer Adam
BF Classifier Dropout 0.2
BF Classifier Loss ReLU
Position Hidden Layers 128-128-2
Position Activation MSE
Position Optimizer Adam
Position Dropout 0.1
Position Loss tanh

As for performance metrics, we use classification accuracy
and positioning error: As for the classification accuracy, we
calculate hit rates for building, floor, and building/floor, the last
of which counts only the correct identification of both building
and floor IDs; the positioning error is 2D or 3D Euclidean
distance between a predicted and true positions calculated as
discussed in [18].

Table I summarizes the values of hyper parameters for the
experiments. We use SAE consists of three hidden layers
of 256, 128, and 64 nodes, which is mentioned as the best
architecture for SAE in [8]. The SAE is then followed by
two common hidden layers with 128 nodes each. For building
and floor classifiers, we have two stacked RNN cells followed
by two fully-connected layers of 32 nodes and 1 node as
the output node. Position estimator consists of three fully-
connected layers of 128, 128, and 2 nodes. Note that there are
two output nodes for coordinates (x, y). As for epochs, we
apply early stopping with patience of 5, which forces early
stopping to run at least 5 epochs even though there is no
improvement.

First, we compare the performance of two stacked RNN
cell types, i.e., standard RNN and long short-term memory
(LSTM). The experiments were first conducted using standard
RNN cells over a range of the numbers of nodes, batch sizes,
and dropout rates and repeated again using LSTM cells, whose
best results and configurations are summarized in Tables II and
III, respectively. The results show that LSTM cell provides
slightly better performance in floor estimation and positioning
error: The best results for standard RNN are 100% for building
hit rate, 94.42% for floor hit rate, and 8.68m for positioning
error; for LSTM, the best results are 100% for building hit
rate, 95.23% for floor hit rate, and 8.62m for positioning
error. Table IV compares our results against those of other

TABLE II
RESULTS OF DIFFERENT RNN CELL TYPES

RNN Cell Type Building Hit Rate (%) Floor Hit Rate (%) Positioning Error (m)
Standard RNN 100 94.42 8.68
LSTM 100 95.23 8.62

TABLE III
BEST CONFIGURATION

Configuration Value
RNN Cell Type LSTM
Number of Nodes 128
Batch Size 32
Building/Floor Classifier Dropout 0.2
Building/Floor Classifier Epochs 10
Position Estimation Dropout 0.1
Position Estimation Epochs 30

TABLE IV
COMPARISON WITH OTHER DNN-BASED APPROACHES

Approach Floor Hit Rate (%) Positioning Error (m)
Proposed 95.23 8.62
DNN [8] 92.00 N/A
Scalable DNN [9] 91.27 9.29
RF+SAE+Stacking [10] 95.13 N/A
CNNLoc [12] 96.03 11.78
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Fig. 2. Effect of dropout rate on building and floor hit rate.

approaches based on the same UJIIndoorLoc data set, where
we observe that the proposed approach outperforms all other
approaches except CNNLoc [12]; CNNLoc, which requires
a lot of data pre-processing compared to the proposed one,
shows slightly better floor hit rate of 96.03% but much higher
positioning error of 11.78m.

We also investigate the effect of dropout rate on the localiza-
tion performance as shown in Figs. 2 and 3. From the figures,
we can observe that dropout rate of 0.2 gives the best results
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Fig. 3. Effect of dropout rate on position estimation.

for both building and floor estimation, while dropout rate of
0.1 always gives the best results for coordinates estimation.

Table V compares our results against those of the best four
teams in the EvAAL competition. Even though the objective

TABLE V
COMPARISON WITH THE RESULTS FROM EVAAL/IPIN 2015

COMPETITION [18]

Proposed MOSAIC HFTS RTLSUM ICSL
Building Hit Rate (%) 100 98.65 100 100 100
Floor Hit Rate (%) 95.23 93.86 96.25 93.74 86.93
3D Positioning Error (m) 8.62 11.64 8.49 6.20 7.67

and fair comparison is not possible due to the unavailability
of the original testing dataset, which were given only to the
participants of the EvAAL competition, the comparison in
Table V could give us an idea on the relative performance
of the proposed approach, where we find that the proposed
approach outperforms MOSAIC in all aspects and that our
floor hit rate is higher than that of MOSAIC, RTLSUM, and
ICSL.

V. CONCLUSIONS

In this paper, we have proposed RNN-based hierarchical
multi-building and multi-floor indoor localization based on
Wi-Fi fingerprinting. In our approach, SAE and RNN are
used for the reduction of feature space dimension and the
exploitation of the hierarchical nature of the localization in
multi-building and multi-floor environments, respectively.

Through the experimental results based on the publicly-
available UJIIndoorLoc dataset, we observe that the proposed
indoor localization scheme achieves the accuracy of 100% and
95.23% for building and floor estimation and 3D positioning
error of 8.62m, which outperforms most of the existing
approaches including those based on DNNs.

Note that the proposed scheme clearly shows the advantages
of hierarchical indoor localization enabled by the use of RNN,

while sharing the benefits of the single-DNN-based schemes
of [9], [17], [19] like the elimination of complicated data
pre/post-processing and less parameter tuning.
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