
Gathering despite a linear number of weakly

Byzantine agents

Jion Hirose1, Junya Nakamura2, Fukuhito Ooshita3, and Michiko Inoue1

1Nara Institute of Science and Technology
2Toyohashi University of Technology

3Fukui University of Technology

May 31, 2022

Abstract

We study the gathering problem to make multiple agents initially scattered in arbitrary
networks gather at a single node. There exist k agents with unique identifiers (IDs) in the
network, and f of them are weakly Byzantine agents, which behave arbitrarily except for fal-
sifying their identifiers. The agents behave in synchronous rounds, and each node does not
have any memory like a whiteboard. In the literature, two algorithms for solving the gather-
ing problem have been proposed. The first algorithm assumes that the number n of nodes is
given to agents and achieves the gathering in O(n4 · |Λgood| · X(n)) rounds, where |Λgood| is
the length of the largest ID among non-Byzantine agents, and X(n) is the number of rounds
required to explore any network composed of n nodes. The second algorithm assumes that the
upper bound N of n is given to agents and at least 4f2 + 8f + 4 non-Byzantine agents exist,
and achieves the gathering in O((f + |Λgood|) ·X(N)) rounds. Both the algorithms allow agents
to start gathering at different times. The first algorithm can terminate agents simultaneously,
while the second one not. In this paper, we seek an algorithm that solves the gathering prob-
lem efficiently with the intermediate number of non-Byzantine agents since there is a large gap
between the numbers of non-Byzantine agents in the previous works. The resultant gathering
algorithm works with at least 8f + 8 non-Byzantine agents when agents start the algorithm at
the same time, agents may terminate at different times, and N is given to agents. To reduce
the number of agents, we propose a new technique to simulate a Byzantine consensus algorithm
for synchronous message-passing systems on agent systems. The proposed algorithm achieves
the gathering in O(f · |Λgood| · X(N)) rounds. This algorithm is faster than the first existing
algorithm and requires fewer non-Byzantine agents than the second existing algorithm if n is
given to agents, although the guarantees on simultaneous termination and startup delay are not
the same.

1 Introduction

1.1 Background

Mobile agents (in short, agents) are software programs that can move autonomously in a distributed
system. A problem to make multiple agents initially scattered in the system meet at a single node
is called gathering. This problem is fundamental to various cooperative behavior of agents [1] and
allows the agents to exchange information and plan for future tasks efficiently.

Since agents are software programs, they are exposed to bugs, cracking, and other threats. Thus,
as the number of agents increases, it is inevitable that some of those agents become faulty. Among
various faults of agents, Byzantine faults are known to be the most severe because we have no control
over the behavior of the faulty agents (called Byzantine agents). For example, Byzantine agents can

1

ar
X

iv
:2

20
5.

14
93

7v
1 

 [
cs

.D
C

] 
 3

0 
M

ay
 2

02
2



Table 1: A summary of synchronous gathering algorithms in the presence of weakly Byzantine agents
assuming that agents have unique IDs. Here, input is the information initially given to all agents,
n is the number of nodes, N is the upper bound of n, X(n) is the number of rounds required
to explore any network composed of n nodes, |Λgood| is the length of the largest ID among non-
Byzantine agents, |Λall| is the length of the largest ID among agents, k is the number of agents,
f is the number of Byzantine agents, and F is the upper bound of f .

Input
Condition of

#Byzantine agents
Startup
delay

Simultaneous
termination

Time complexity

[2] n f + 1 ≤ k Possible Possible O(n4 · |Λgood| ·X(n))
[2] F 2F + 2 ≤ k Possible Possible Poly. of n & |Λgood|
[3] N 4f2 + 9f + 4 ≤ k Possible No guarantee O((f + |Λgood|) ·X(N))
[3] N 4f2 + 9f + 4 ≤ k Possible Possible O((f + |Λall|) ·X(N))

This study N 9f + 8 ≤ k Impossible No guarantee O(f · |Λgood| ·X(N))

stay at the current node, move to a neighbor node, and convey arbitrary information to other agents,
deviating from their algorithms.

In this paper, we consider the gathering problem in the presence of Byzantine agents and propose
a deterministic synchronous gathering algorithm to solve this problem.

1.2 Related Works

The gathering problem has widely been studied in the literature. In particular, many of those stud-
ies deal with the gathering problem for exactly two agents, which is called the rendezvous problem.
Those studies assume the gathering problem in various environments, which is a combination of the
assumptions (e.g., agent synchronization, anonymity, presence/absence of memory on a node (called
whiteboard), presence/absence of randomization, topology). Then, those studies have been clarified
the solvability such as the gathering problem and, if solvable, they have been analyzed its cost (e.g.,
time, the number of moves, memory space, etc.). Pelc [1] has extensively surveyed deterministic
rendezvous problems under the various assumptions. Also, Alpern et al.[4] have described an exten-
sive survey of randomized rendezvous problems under the various assumptions. In the rest of this
section, we describe the existing results for the deterministic gathering in the network, on which we
focus in this paper.

If agents are anonymous (i.e., they do not have IDs) and no whiteboard exists (i.e., agents cannot
leave any information on nodes), they cannot achieve the rendezvous for some graphs and initial
arrangements because they cannot break the symmetry. Therefore, several studies [5, 6, 7] break
the symmetry by attaching unique IDs to agents, and have clarified the time complexity of the
rendezvous algorithm for arbitrary graphs under the assumption that agents behave synchronously
in the network. Dessmark et al. [5] have provided the rendezvous algorithm in polynomial time of
n, |λ|, and τ , where n is the number of nodes, |λ| is the length of the smallest ID, and τ is the
delay between the starting time of agents. Kowalski et al. [6] and Ta-Shma et al. [7] have proposed
the algorithms whose time complexity are independent of τ . Also, Miller et al. [8] have investigated
the trade-offs between cost and time required to solve the rendezvous problem. In contrast, some
studies [9, 10] aim to optimize the memory space, and have investigated the time or the number
of moves in the case where agents are anonymous. In this case, they have provided algorithms for
solvable graphs and arrangements. Fraigniaud et al. [9, 11] and Czyzowicz et al. [10] have proposed
algorithms for trees and an algorithm for arbitrary graphs, respectively. Furthermore, Dieudonné et
al. [12] have provided the gathering algorithm in the case where agents are anonymous.

Several studies [10, 13, 14, 15, 16] have considered the rendezvous problem in asynchronous
environments (i.e., different agents move at different constant speeds or move asynchronously). In
the latter case, the adversary determines the speed of every agent at each time. Also, agents cannot
achieve the rendezvous possibly, and thus this case allows agents to meet inside an edge.

Recently, some studies [2, 3, 17, 18, 19, 20, 21] have considered the gathering problem in the
presence of Byzantine agents assuming that agents have unique IDs, which this study also address.
These studies consider two types of Byzantine agents, weakly and strongly ones. While weakly

2



Byzantine agents can behave arbitrarily except for falsifying their own IDs, strongly Byzantine
agents can behave arbitrarily including falsifying their own IDs. Table 1 summarizes this study and
the related studies in the presence of weakly Byzantine agents. Note that the assumption of startup
delay in Table 1 means agents may start an algorithm at different times but agents can wake up
sleeping agents at the visited node.

Dieudonné et al. [2] first introduced the gathering problem in synchronous environments in the
presence of weakly Byzantine agents. They have provided two gathering algorithms under the
assumption that k agents exist in an arbitrary network composed of n nodes and at most F of them
are Byzantine agents. The first algorithm solves the gathering problem in O(n4 · |Λgood| · X(n))
rounds if k ≥ f + 1 holds (i.e., at least one non-Byzantine agent exist) and n is given to agents,
where f is the number of Byzantine agents, |Λgood| is the length of the largest ID among non-
Byzantine agents, and X(n) is the number of rounds required to explore any network composed
of n nodes. The second algorithm achieve the gathering in polynomial time of |Λgood| and X(n) if
k ≥ 2F + 2 holds (i.e., at least F + 2 non-Byzantine agent exist) and F is given to agents. The
numbers of non-Byzantine agents used in these algorithms match the lower bounds of the number
of non-Byzantine agents required to solve the gathering problem under the assumptions. Hirose et
al. [3] provided the two gathering algorithm with lower time complexity by assuming Ω(f2) non-
Byzantine agents. If the upper bound N of n is given to agents and k ≥ 4f2 + 9f + 4 holds (i.e.,
at least 4f2 + 8f + 4 non-Byzantine agents exist), the first algorithm achieves the gathering with
non-simultaneous termination in O((f + |Λgood|) · X(N)) rounds, and the second one achieves the
gathering with simultaneous termination in O((f + |Λall|) ·X(N)) rounds, where |Λall| is the length
of the largest ID among agents. Tsuchida et al. [20] reduced the time complexity using authenticated
whiteboards (i.e., each agent has a dedicated area for each node and can leave the information on its
area using its ID). Their algorithm assumes that F is given to agents and F < k holds and achieves
the gathering in O(Fm) rounds, where m is the number of edges. To efficiently achieve the gathering,
the authors proposed a technique for agents to simulate a consensus algorithm for Byzantine message-
passing systems. However, this technique requires each node to have an authenticated whiteboard.
Tsuchida et al. [21] have proved that agents achieve the gathering in asynchronous environments by
assuming that authenticated whiteboards exist.

Dieudonné et al. [2] also introduced the gathering problem in synchronous environments in the
presence of strongly Byzantine agents for the first time and have provided two gathering algorithms
under the different assumptions. The first algorithm solve the gathering problem in exponential
of |Λgood| and X(n) if k ≥ 3F + 1 holds (i.e., at least 2F + 1 non-Byzantine agents exist) and n
and F are given to agents. The second algorithm achieve the gathering in exponential of |Λgood|
and X(n) if k ≥ 5F + 2 holds (i.e., at least 4F + 2 non-Byzantine agents exist) and F is given to
agents. On the other hand, the lower bounds on the number of non-Byzantine agents required to
solve the gathering problems under these assumptions are F + 1 and F + 2, respectively. Bouchard
et al. [17] have provided two algorithms using the number of non-Byzantine agents that match the
lower bounds on the gathering problems under these assumptions. Bouchard et al. [18] reduced
the time complexity to polynomial time complexity by assuming that Ω(f2) non-Byzantine agents
exist. Their algorithm assume that dlog log ne is given to agents and k ≥ 5f2 + 7f + 2 holds (i.e.,
at least 5f2 + 6f + 2 non-Byzantine agents exist), and achieves the gathering in polynomial time
of n and |λgood|, where |λgood| is the length of the smallest ID among non-Byzantine agents, and
f is the number of Byzantine agents. Miller et al. [19] have proposed the gathering algorithm in
small time complexity by additional assumption. They assume that k ≥ 2f + 1 holds (i.e., f + 1
non-Byzantine agents exist) and an agent can get the subgraph induced by nodes within distance
Dr from its current node and the state of agents in the subgraph, where Dr is the radius of the
graph. Their algorithm achieves the gathering in O(kn2) rounds.

1.3 Contribution

Our goal is to provide an efficient algorithm that achieves the gathering with non-simultaneous
termination in synchronous environments where Ω(k) weakly Byzantine agents exist. Dieudonné et
al. [2] proposed the first algorithm that achieves the gathering in weakly Byzantine environments.

3



The algorithm achieves the gathering with simultaneous termination in O(n4 · |Λgood| ·X(n)) rounds
under the assumption that the number n of nodes is given to agents and at least f+1 agents exist in
the network, where f is the number of Byzantine agents, |Λgood| is the length of the largest ID among
non-Byzantine agents, and X(n) is the number of rounds required to explore any network composed
of n nodes. Hirose et al. [3] proposed an algorithm with lower time complexity by assuming that
Ω(f2) non-Byzantine agents exist for f Byzantine agents in the network. The algorithm achieves the
gathering with non-simultaneous termination in O((f+|Λgood|)·X(N)) rounds if the upper bound N
of n is given to agents and at least 4f2 + 9f + 4 agents exist in the network. In summary, the former
algorithm requires a small number of non-Byzantine agents but has high time complexity, while the
latter algorithm requires a large number of non-Byzantine agents but has low time complexity. In
particular, if agents need to achieve the gathering when the number of non-Byzantine agents is Ω(f),
they must only choose the former algorithm with high time complexity.

In this paper, we propose a deterministic gathering algorithm with low time complexity in the
existence of Ω(f) non-Byzantine agents. Since there is a large gap between the assumptions of
the number of agents in the above works, it is reasonable to consider an efficient gathering algo-
rithm under the intermediate assumption. The proposed algorithm achieves the gathering with
non-simultaneous termination in O(f · |Λgood| ·X(N)) rounds under the assumption that N is given
to agents, at least 9f+8 agents exist in the network, and agents start the algorithm at the same time.
This algorithm is faster than that of Dieudonné et al. and requires fewer non-Byzantine agents than
that of Hirose et al. if n is given to agents, although the guarantees on simultaneous termination and
startup delay are not the same. To solve the gathering under these assumptions, we propose a new
technique to simulate a consensus algorithm [22] for synchronous Byzantine message-passing systems
on agent systems, in which one agent imitates one process. It is known that Byzantine consensus is
solvable on a synchronous distributed system with at least 3b+ 1 processes where b is the number of
Byzantine processes [23, 24]. However, it is difficult for all agents to simulate synchronous rounds
of Byzantine message-passing systems and start the consensus algorithm at the same time. Instead,
we construct a group of at least 3f + 1 agents that realize the above behavior. This technique can
be used not only for Byzantine gatherings but also for other problems.

2 Agent Model and Problem

2.1 Model

Agent System Agent system is modeled by a connected undirected graph G = (V,E), where V
is a set of n nodes and E is a set of edges. We define d(v) as the degree of node v. Each incident
edge of node v is assigned a locally-unique port number in {1, . . . , d(v)}. That is, on node v, the
port number of edge (v, u) is different from that of edge (v, w) for node w 6= u. Nodes do not have
IDs or memories.

Agent We denote by MA = {a1, a2, . . . , ak} the set of k agents. Each agent ai ∈ MA has an
unique ID denoted by ai.id ∈ N and is equipped with an infinite amount of memory. Also, agents
know the upper bound N of the number of nodes, but they know neither n, k, nor the IDs of other
agents. Agents cannot mark visited nodes or traversed edges in any way. An agent is modeled as a
state machine (S, δ), where S is a set of agent states and δ is a state transition function. A state is
represented by a tuple of the values of all the variables that an agent has. Each agent has a special
state that indicates the termination of an algorithm, called a terminal state. If an agent transitions
into a terminal state, it never moves or updates its state after that.

All agents start an algorithm at the same time, and the initial nodes of the agents are chosen by
an adversary. All agents repeatedly and synchronously execute a round. In each round, every agent
ai executes the following three operations:

Look Agent ai learns the state of ai, the degree d(u) of the current node u, and the port number i
of the edge through which the agent arrived at node u (or ai notices that u is an initial node).

4



Also, if multiple agents exist at node u, ai learns states of all agents at node u, including
agents in a terminal state. We define Ai ⊆ MA as the set of agents existing at node u and ai.

Compute Agent ai computes function δ using the information obtained in the previous Look oper-
ation as input. The output is the next agent state, whether it stays or leaves, and the outgoing
port number if it leaves.

Move If ai decides to stay, it stays at the current node until the beginning of the next round. If
ai decides to leave, it leaves through the decided outgoing port number and arrives at the
destination node before the beginning of the next round.

Note that, if two agents traverse the same edge in different directions at the same time, the agents
cannot notice this fact.

Byzantine Agent There are f weakly Byzantine agents in the agent system. Weakly Byzantine
agents act arbitrarily apart from an algorithm, except for changing their IDs. If multiple agents meet
Byzantine agents at the same node, all of them learn the same statuses of the Byzantine agents in
the Look operation. We call all agents except weakly Byzantine agents good agents and denote by
g = k− f the number of good agents. Good agents know neither the actual number f of Byzantine
agents nor the upper bound of f .

2.2 Gathering Problem

The gathering problem requires all good agents to transition into the terminal state at the same
node. This problem allows agents to enter a terminal state at different times. We measure the time
complexity of a gathering algorithm by the number of rounds required for the last good agent to
transition into the terminal state.

3 Building Blocks

In this section, we describe two existing algorithms that are used as building blocks to design our
proposed algorithm in Section 4.

3.1 Rendezvous Procedure

The proposed algorithm uses a rendezvous procedure, which allows two different agents to meet at
the same node in any connected graph composed of at most N nodes if each of the agents gives
a different ID and N as inputs to the procedure. The procedure is a well-known combination of
an ID transformation procedure and an exploration procedure. The ID transformation procedure
is proposed by Dessmark et al. [5]. The exploration procedure is based on universal exploration
sequences (UXS) and is a corollary of the result of Ta-Shma et al. [7]. We call this rendezvous
procedure REL(id), where id is an ID given as input. If the execution time of the exploration
procedure is tEX, the procedure from [5] allows two different agents to meet at the same node in at
most (2blog(id)c+ 6)tEX rounds. Also, the exploration procedure used in REL(id) allows an agent to
visit all nodes of the same type of graph in at most tEX = O(N5 log(N)) if the agent knows that the
number of nodes is at most N . Thus, the execution time tREL(id) of REL(id) is O(N5 log(N) log(id))
rounds. We have the following lemma about REL(id).

Lemma 3.1 ([5]). Let ai and aj be two different agents, and l1 (resp. l2) be ID that ai (resp.
aj) has. Assume that ai starts REL(l1) in round ri, aj starts REL(l2) in round rj, and l1 6= l2
holds. Then, agents ai and aj meet at the same node before round max(ri, rj) + tREL(lmin), where
lmin = min(l1, l2). Furthermore, ai (resp. aj) visits all nodes by round ri + tREL(ai.id) (resp. round
rj + tREL(aj .id)).

For integer t ≥ 0, we write the procedure of the t-th round of REL(id) by REL(id)(t).

5



3.2 A Parallel Consensus Algorithm in Byzantine Synchronous Message-
Passing Systems

The proposed algorithm uses a parallel consensus algorithm in [22] working in Byzantine Synchronous
Message-Passing Systems by simulating the algorithm on agents systems, as we describe Section 4.
In this section, we summarize the model and the property of the algorithm.

Model A message-passing distributed system, in which processors communicate by sending mes-
sages, is modeled by an undirected complete graph with m nodes. The nodes have unique IDs, and
these IDs do not necessarily have to be consecutive. The system includes at most b Byzantine nodes,
which can act arbitrarily apart from an algorithm. We call all nodes except Byzantine nodes good
nodes. At the beginning of an execution, each node knows its ID only and knows neither the number
m of nodes, the number b of Byzantine nodes, nor the other nodes’ IDs. The system is synchronous,
that is, nodes repeat synchronous phases. In a phase p, every good node executes local computation,
sends messages to some nodes, and then receives the messages that were sent to it in phase p. Node
v can send a message msg in two ways: (1) v broadcasts msg to all nodes, or (2) v sends msg to a
specific node that v knows its ID. Every message has the ID of its sender; thus, when a node receives
a message, it can obtain the sender’s ID. There is no restriction on the actions of Byzantine nodes
except for falsifying their IDs to a directly communicating node.

Parallel Byzantine Consensus Problem Each good node v has a set Sv composed of kv input
pairs (idiv, x

i
v) (1 ≤ i ≤ kv), where idiv is an ID of the input pair and xiv is an input number. We say

an algorithm solves the parallel Byzantine consensus problem if, when each good node v starts with
set Sv as an input, each node outputs a set of pairs subject to the following conditions:

Validity 1 If (id, x) is an input pair of every good node and x 6= ⊥, then the output set of a good
node must include (id, x).

Validity 2 If (id, x) is not an input pair of any good node, then the output set of any good node
does not include (id, x).

Agreement If the output set of a good node includes (id, x), then the output sets of all other good
nodes must include (id, x) as well.

Termination Every good node outputs a set of pairs exactly once in a finite number of phases.

If an algorithm satisfies the above four conditions, we say it satisfies the parallel Byzantine consensus
property (in short, PBC property). The PBC property allows that, if (id, x) is included in an input
set of a part of good nodes, but not all good nodes, (id, x) may not included in the output set of
any good node.

Parallel Byzantine Consensus Algorithm The proposed algorithm uses the parallel Byzantine
consensus algorithm in [22]. We call this algorithm PCONS(S), where S is a set given as input. We
have the following lemma about PCONS(S).

Lemma 3.2 ([22]). Assume that more than 3b nodes exist in a system. If every good node v
simultaneously starts PCONS(Sv) with a set Sv as input, its execution satisfies the PBC property.
Every good node outputs a set in O(b) phases, and its output time differs by at most one phase
among good nodes.

4 Byzantine Gathering Algorithm

To achieve the gathering, the proposed algorithm uses a subroutine that is used as a building block.
In this section, we first explain the overview of the proposed algorithm. After that, we give an
idea and a detailed description of the subroutine, and then we show an algorithm to achieve the
gathering. Throughout the paper, we assume k = g + f ≥ 9f + 8, which implies that there are at
least 8f + 8 good agents in the network. Recall that agents know N , but do not know n, k, or f .

6



4.1 Overview

Here, we give the overview of the proposed Byzantine gathering algorithm, which aims to gather all
good agents at a single node. For simplicity, we assume that agents know f here, and will remove this
assumption in Sections 4.2 and 4.3. The underlying idea of the algorithm is made of the following
three steps:

(1) All agents collect all agent IDs by using the rendezvous algorithm REL.

(2) After collecting all good agents’ IDs, every agent decides on an ID that is common to other
good agents as a target ID from the collected IDs.

(3) An agent atarget with the target ID stays at the current node and the other agents search for
atarget using REL.

If there are no Byzantine agents, all agents can decide on a common target ID by choosing the
smallest ID of the collected IDs. Therefore, in Step (3), all agents gather at the node where the
agent with the smallest ID exists. However, if there is a Byzantine agent, that idea fails. Let us
consider the case where a Byzantine agent Byz ∈ MA has the smallest ID. If Byz meets only a part
of good agents in Step (1), the other good agents do not choose Byz.id as a target ID. Therefore,
good agents are divided into two or more groups. Also, even if all agents know Byz.id, Byz can avoid
meeting the other agents in Step (3), and all good agents keep searching endlessly for atarget.

To solve these problems, the proposed algorithm suppresses the influence of Byzantine agents by
letting several agents create a reliable group such that good agents can trust the behavior of the
group. After collecting all good agents’ IDs, agents execute the following three steps:

(a) Agents create a group candidate of at least 3f + 1 agents.

(b) Agents in the group candidate make a common ID set by using the parallel Byzantine consensus
algorithm in Section 3.2.

(c) By using the common ID set, agents in the group candidate gather to create a reliable group
composed of at least f + 1 good agents.

The goal of Steps (a) and (b) is to make at least 3f + 1 agents make a common ID set. To do this,
we use the parallel Byzantine consensus algorithm in Section 3.2. Since the consensus algorithm
assumes message-passing systems, agents simulate the system by using the rendezvous algorithm
REL. Simply put, agents exchange messages when they meet other agents by REL. In Step (a),
agents create a group candidate of at least 3f + 1 agents such that they can send messages to each
other among the group candidate. In Step (b), as an input of the consensus algorithm, each agent
uses the set of agent IDs (known to the agent) in the same group candidate. If the group candidate
is composed of at least 3f + 1 agents, the output is common and includes IDs of all good agents in
the group candidate. In Step (c), agents in a group candidate decide on a target ID based on the
common ID set and gather at the node where an agent with the target ID exists. If at least 2f + 1
agents gather, they create a reliable group composed of at least f + 1 good agents. If agents do not
gather sufficiently, the agents determine the next target ID and find the agent with the new target
ID. The algorithm ensures that all good agents in the group candidate eventually gather and create
a reliable group.

Once at least one reliable group is created, the proposed algorithm can achieve the gathering as
follows. Good agents in the reliable group decide on the smallest agent ID in the group as a group
ID and execute REL using the group ID. On the other hand, good agents not in the reliable group
execute REL using their own IDs. Furthermore, when each good agent meets the reliable group with
a smaller group ID, it accompanies the group. All the group agents in the reliable group are at the
same node, act identically, and have the same group ID. If a good agent meets the reliable group,
the agent trusts the group since the group consists of at least f + 1 agents with the same group
ID, which implies that the group contains at least one good agent. As a result, all good agents
accompany the reliable group with the smallest ID and achieve the gathering.

7



The gathering algorithm by Hirose et al. [3] employs another strategy to create a reliable group
from collecting IDs instead of using a consensus algorithm. In the algorithm, each good agent
searches for one of the agents with the smallest f + 1 IDs of the collected IDs to gather at the
node where the agent is. Because good agents may be divided into Ω(f) nodes in this strategy, this
strategy requires at least Ω(f2) good agents to guarantee that a reliable group is created at any
of those nodes. On the other hand, the proposed algorithm uses the strategy such that Ω(f) good
agents make a common ID set, search for a target agent one by one synchronously, and try to gather
at the node with any of Ω(f) agents. Therefore, the algorithm requires Ω(f) good agents, i.e., the
key to the algorithm is the reliable group creation procedure using the consensus algorithm.

4.2 Algorithm to Create a Reliable Group

In this section, we explain an algorithm to create a reliable group, called MakeReliableGroup, by
assuming that k = g + f ≥ 9f + 8. Recall that agents know N , but do not know n, k, or f .

4.2.1 Idea of the Algorithm

As mentioned in Section 4.1, in MakeReliableGroup, agents in the group candidate make a common
ID set and search for agents with target IDs. Algorithm MakeReliableGroup uses the parallel
Byzantine consensus algorithm PCONS for at least 2f + 1 good agents to have a common ID set.
However, since PCONS assumes a Byzantine synchronous message-passing model, we cannot use
PCONS directly. Therefore, MakeReliableGroup simulates the model on an agent system as follows.

First, MakeReliableGroup selects a group candidate composed of at least 3f+1 agents and finds
time T that is sufficiently long to meet all the agents in the group candidate by REL. Then, agents
regard the time interval of T rounds as a phase in the message-passing model, and simulate the
behavior of the phase during the T rounds. More concretely, each agent ai in the group candidate
executes REL(ai.id) for T rounds and, if ai meets another agent aj in the group candidate, ai shares
a message that ai sent in the previous phase with aj . Then, in the last round of the interval, ai
executes the computation of the phase using the messages collected by the current phase. Since ai
can meet all good agents in the group candidate during the T rounds, this behavior can simulate
the broadcast of messages in the Byzantine synchronous message-passing model.

This simulation requires agents to (1) construct a group candidate composed of at least 3f +
1 agents, (2) start PCONS simultaneously with the agents in the same group candidate, and (3)
know time T that is long enough to meet the agents in the same group candidate. To meet the
requirements, agents synchronously repeat a cycle. Each agent sets the length of the first cycle as
Tini rounds, where Tini is a given positive integer, and doubles the length every cycle, i.e., that of
the second cycle is 2 ·Tini rounds, that of the third cycle is 4 ·Tini rounds, and so on. If the length of
a cycle is long enough for agent ai to meet all other good agents by REL(ai.id), ai starts REL(ai.id)
for the cycle. If the length of a cycle is long enough for at least 3f + 1 agents to meet each other,
MakeReliableGroup regards them as a group candidate and makes them start PCONS simultaneously.
By this behavior, MakeReliableGroup can achieve both (1) and (2). Furthermore, since the length
of the cycle is long enough for at least 3f + 1 agents to meet each other, MakeReliableGroup can
achieve (3) by defining T as the length of the cycle when the agents start PCONS.

Algorithm MakeReliableGroup consists of four stages: CollectID, MakeCandidate, AgreeID,
and MakeGroup stages. In the CollectID stage, agents collect IDs of all good agents. In the
MakeCandidate stage, agents select the group candidate. In the AgreeID stage, agents in the group
candidate obtain a common ID set by using consensus algorithm PCONS. In the MakeGroup stage,
agents create a reliable group.

4.2.2 Details of the Algorithm

Algorithm 1 shows the behavior of each round of Algorithm MakeReliableGroup and executes one
of Algorithms 2–5 depending on the current stage. In MakeReliableGroup, the procedure WAIT()
means that an agent stays at the current node for one round. Table 2 summarizes variables used in
MakeReliableGroup. Variable stage keeps the current stage of ai and its initial value is CollectID.

8



Algorithm 1 MakeReliableGroup

1: ai.elapsed← ai.elapsed + 1
2: if ai.stage = CollectID then
3: // While executing CollectIDStage, ai executes ai.length← 2 · ai.length.
4: Execute CollectIDStage

5: else if ai.stage = MakeCandidate then
6: // While executing MakeCandidateStage, ai executes ai.length← 2 · ai.length.
7: Execute MakeCandidateStage

8: else if ai.stage = AgreeID then
9: // While executing AgreeIDStage, ai executes ai.count← ai.count + 1

10: Execute AgreeIDStage

11: else if ai.stage = MakeGroup then
12: // While executing MakeGroupStage, ai executes ai.count← ai.count + 1
13: Execute MakeGroupStage

14: end if

Agent ai has variable length to keep the length of the current cycle Agent ai doubles length at the
last of each cycle if ai.stage ∈ {CollectID,MakeCandidate}. The initial value of length is Tini, where
Tini is a given positive integer. Agent ai has variable elapsed to keep the number of rounds from the
beginning of the current cycle. Variable count maintains the number of cycles that elapsed after the
beginning of the AgreeID stage.

The overall flow of MakeReliableGroup is shown in Fig. 1. In MakeReliableGroup, ai executes
the CollectID stage, the MakeCandidate stage, the AgreeID stage, and the MakeGroup stage in this
order (Algorithm 1). All good agents have the same initial length of a cycle and double their length
every cycle until they start the AgreeID stage. However, as we explain later, good agents may
transition into the next stage at different cycles. Therefore, good agents have the same length of
a cycle until they start the AgreeID stage. The following observation shows this fact formally. For
simplicity, we denote γ-th cycle of an agent ai and its length by cγi and |cγi |, respectively.

Observation 4.1. Let ai and aj be good agents. If ai and aj are in the CollectID stage or the
MakeCandidate stage, |cγi | = |c

γ
j | holds for any γ and they started these cycles at the same time.

In MakeReliableGroup, agents that start the AgreeID stage simultaneously compose a group
candidate. An agent ai can check whether another agent belongs to the same group candidate as
follows. Assume that ai stores AgreeID in ai.stage in round r.

Let aj be an agent that also stores AgreeID in aj .stage in round r. By Observation 4.1, |cγi | = |c
γ
j |

holds for cγi and cγj that include round r. Furthermore, since an agent does not double the length of
the cycle in the AgreeID and the MakeGroup stages, |cεi | = |cεj | holds for any ε > γ.

Let us consider another agent a` that stores AgreeID in a`.stage in round r′ (r′ 6= r). Since the
total number of cycles that a` has executed in the CollectID and the MakeCandidate stages is greater
or less than that of ai, the number of updates of a`.length is different from that of ai.length. Thus,
|cεi | = |cζ` | does not hold, where cζ` is the cycle when a` starts the AgreeID stage. Hence, when ai
witnesses a` at the current node after it starts the AgreeID stage, ai can understand that a` started
the AgreeID stage at a different round by observing a`.length. In other words, ai can understand
that a` is a member of the group candidate different from ai. The following observation summarizes
this discussion.

Observation 4.2. Let ai and aj be good agents that have entered the AgreeID or the MakeGroup
stage. If ai and aj started the AgreeID stage at the same time, |cγi | = |c

γ
j | holds for any γ, otherwise

|cγi | = |c
γ
j | does not hold.

Consider the case where ai starts the AgreeID stage faster than a` like Fig. 1b. Since ai does
not update ai.length anymore, the length of each cycle of the AgreeID and the MakeGroup stages
is identical. On the other hand, a` doubles a`.length every cycle until it starts the AgreeID stage.

9



Table 2: Variables of agent ai.

Variable Initial value Explanation
stage CollectID The current stage of ai. This variable takes one of

the following values: CollectID, MakeCandidate, AgreeID,
MakeGroup.

length Tini The length of the current cycle.
elapsed 0 The number of rounds from the beginning of the current

cycle.
count 0 The number of cycles from the beginning of the AgreeID

stage.
ready False True if and only if ai has met a certain condition, which

represents the decision that ai is ready to transition into the
AgreeID stage in the MakeCandidate stage.

endMakeCandidate False True if and only if ai has met the condition to transition
into the AgreeID stage.

gid ∞ The group ID of the reliable group to which ai belongs.
R ∅ A set of IDs of agents such that ai knows they satisfy ready =

True.
Sp {ai.id} A set of agent IDs that ai has collected in the CollectID

stage.
Sc ∅ An output of PCONS(Sp).
Pp ∅ A set of IDs of agents such that ai knows they belong to the

same group candidate as ai.
Pc ∅ An output of PCONS(Pp), which is used as a common ID set.

Its elements are ordered in increasing order.

This implies that a`.length ≡ 0 (mod ai.length) holds. That is, when a` starts a cycle, ai also starts
a cycle. From this discussion and Observations 4.1 and 4.2, we have the following observation.

Observation 4.3. Let ai and aj be good agents such that aj starts the AgreeID stage no earlier
than ai. When aj starts a cycle, ai also starts a cycle at the same time.

CollectID Stage Algorithm 2 is the pseudo-code of the CollectID stage. This stage aims to collect
IDs of all good agents. An agent ai uses variable Sp to record the IDs collected in the CollectID
stage.

If ai witnesses an agent aj with aj .ready = True at the current node at the beginning of a round,
ai stores aj .id in variable ai.R to record IDs of such agents (Line 1 of Algorithm 2). Recall that Ai
is a set of agents (including ai) that stay at the current node of ai at the beginning of a round. We
will explain the details of variable ai.ready and ai.R in Section 4.2.2.

If ai.length < 2 · (tREL(ai.id) + 1) holds in a cycle, ai stays at the current node for the cycle.
Additionally, ai updates variables at the last round of the current cycle for the next cycle. To
determine whether the current round is the last one of the current cycle, ai uses variable elapsed,
which keeps the number of rounds elapsed during the current cycle. If ai.length = ai.elapsed holds,
ai understands that the current round is the last one of the current cycle and updates variables
ai.elapsed and ai.length for the next cycle (Lines 3–6).

If ai.length ≥ 2·(tREL(ai.id)+1) holds in a cycle, ai collects IDs of all good agents using REL(ai.id)
(Lines 8–18). Agent ai uses variable Sp to record collected agent IDs. If ai witnesses aj at the current
node at the beginning of a round, ai stores aj .id in ai.Sp (Line 9). After that, if the current round
is not the last round, that is, ai.length > ai.elapsed holds, ai executes REL(ai.id)(ai.elapsed) (Lines
10–11). Otherwise, that is, if ai.length = ai.elapsed holds, ai stores MakeCandidate in ai.stage (to
move the MakeCandidate stage in the next cycle) and stays at the current node for one round (Lines
12–17). As we prove later, if ai.length ≥ 2 · (tREL(ai.id) + 1) holds in the current cycle, ai meets all

10



C M MC
𝑇!"! 8 ⋅ 𝑇!"!4 ⋅ 𝑇!"!2 ⋅ 𝑇!"!

C C MC

C C CC

： ：
(a) At starting MakeReliableGroup

2!"# ⋅ 𝑇$%$
2! ⋅ 𝑇$%$2! ⋅ 𝑇$%$2! ⋅ 𝑇$%$

2!&# ⋅ 𝑇$%$2! ⋅ 𝑇$%$
2!"# ⋅ 𝑇$%$：

M A A A

M A A A

C or M C or M C or M

𝑎$

𝑎'

𝑎ℓ

(b) At starting the AgreeID stage

Figure 1: The stage flow of Algorithm MakeReliableGroup. Notions C, M, and A represent cycles of the
CollectID stage, MakeCandidate stage, and the AgreeID stage, respectively.

other good agents by the end of the last round of the current cycle. Therefore, when ai finishes the
last round of that cycle, ai.Sp includes IDs of all good agents.

MakeCandidate Stage Algorithm 3 is the pseudo-code of the MakeCandidate stage. This stage
aims to create a group candidate consisting of at least 3f + 1 good agents. As we explain in Section
4.2.2, good agents estimate f to create a reliable group consists of at least 2f + 1 agents. However,
their estimated values differ by at most f . Thus, MakeReliableGroup requires at least 3f + 1 good
agents to allow for that error. In order to describe the MakeCandidate stage clearly, we define the
group candidate as follows.

Definition 4.1 (Group candidate). A set GC of agents is a group candidate if and only if all good
agents in GC satisfy the following: (1) All the good agents in GC start the AgreeID stage at the
same time. (2) For any good agent ai ∈ GC, ai.length ≥ 4 · (tREL(ai.id) + 1) holds after the beginning
of the MakeCandidate stage.

By the behavior of the CollectID stage, when an agent ai starts the MakeCandidate stage, the
length of ai’s cycle is at least 4 · (tREL(ai.id) + 1). Furthermore, since the MakeCandidate stage
does not include the action of reducing the length of a cycle, ai already satisfies Requirement (2) of
Definition 4.1. Also, by Observation 4.1, every good agent in the MakeCandidate stage has the same
length of a cycle. Therefore, agents that start the AgreeID stage at the same time satisfy Requirement
(1). Consequently, if at least 3f + 1 of the good agents start the AgreeID stage simultaneously, they
achieve the purpose of the MakeCandidate stage.

11



Algorithm 2 CollectIDStage

1: ai.R← ai.R ∪ {aj .id | aj ∈ Ai ∧ aj .ready = True}
2: if 2 · (tREL(ai.id) + 1) > ai.length then
3: if ai.length = ai.elapsed then
4: ai.elapsed← 0
5: ai.length← 2 · ai.length
6: end if
7: Execute WAIT()
8: else . 2 · (tREL(ai.id) + 1) ≤ ai.length
9: ai.Sp ← ai.Sp ∪ {aj .id | aj ∈ Ai}

10: if ai.length > ai.elapsed then
11: Execute REL(ai.id)(ai.elapsed)
12: else
13: ai.elapsed← 0
14: ai.length← 2 · ai.length
15: ai.stage← MakeCandidate
16: Execute WAIT()
17: end if
18: end if

Agent ai executes REL(ai.id) every cycle of the MakeCandidate stage. First, if ai witnesses an
agent aj with aj .ready = True at the current node at the beginning of a round, it stores aj .id in
ai.R (Line 1 of Algorithm 3). Then, if ai satisfies either of the following two conditions, ai stores
True in ready (Lines 2–7).

(1) Variable ai.Sp contains at least (8/9)|ai.Sp| IDs of agents that have started the MakeCandidate
stage.

(2) Agent ai has witnessed at least (4/9)|ai.Sp| agents with ready = True from the beginning of
MakeReliableGroup.

By the behavior of the CollectID stage, for a good agent ai, when the length of aj ’s cycle becomes
at least 4 · (tREL(aj .id) + 1), aj starts the MakeCandidate stage. Therefore, ai can determine Con-
dition (1) by checking whether ai.Sp contains at least (8/9)|ai.Sp| IDs, each id of which satisfies
ai.length ≥ 4 · (tREL(id) + 1). Also, ai can decide Condition (2) by judging whether ai.R includes
at least (4/9)|ai.Sp| IDs. Next, if ai.R contains at least (6/9)|ai.Sp| IDs, ai stores True in variable
endMakeCandidate (Lines 8–10). It means that ai starts the AgreeID stage from next cycle. Finally,
if the current round is not the last one of the current cycle, that is, ai.length > ai.elapsed holds,
then ai executes REL(ai.id)(ai.elapsed) to inform other agents of the current state of ai.ready (Lines
11–12). Otherwise, that is, if ai.length = ai.elapsed holds, ai stays at the current node for one round
(Lines 13–20). In this case, if ai.endMakeCandidate = True holds, ai stores AgreeID in ai.stage
before it stays for one round (Lines 16–18).

By the above behavior, at least one group candidate consisting of at least 3f + 1 good agents is
created. The reason is as follows. Assume that agent aini is the first good agent that stores True in
endMakeCandidate, and let cγini be the cycle in which aini does so. In this case, the following two
situations occur.

(a) Each good agent that started the MakeCandidate stage has witnessed at least (6/9)|aini.Sp|−f
good agents with ready = True by the beginning of cycle cγini.

(b) There exists at least one good agent that satisfies Condition (1) (Line 3 of Algorithm 3) by
the beginning of cycle cγini (proved in Lemma 4.5).

Let a` be a good agent that satisfies Condition (1) by the beginning of cycle cγini. By Condition (1)
and Situation (b), the following situation occurs:

12



Algorithm 3 MakeCandidateStage

1: ai.R← ai.R ∪ {aj .id | aj ∈ Ai ∧ aj .ready = True}
2: if ai.elapsed = 1 ∧ (either (1) or (2) holds) ∧ ai.ready = False then
3: // (1) |{id ∈ ai.Sp | ai.length ≥ 4 · (tREL(id) + 1)}| ≥ (8/9)|ai.Sp|
4: // (2) |ai.R| ≥ (4/9)|ai.Sp|
5: ai.ready← True
6: ai.R← ai.R ∪ {ai.id}
7: end if
8: if ai.elapsed = 1 ∧ |ai.R| ≥ (6/9)|ai.Sp| then
9: ai.endMakeCandidate← True

10: end if
11: if ai.length > ai.elapsed then
12: Execute REL(ai.id)(ai.elapsed)
13: else
14: ai.elapsed← 0
15: ai.length← 2 · ai.length
16: if ai.endMakeCandidate = True then
17: ai.stage← AgreeID
18: end if
19: Execute WAIT()
20: end if

(b’) At least (8/9)|a`.Sp| − f good agents have started the MakeCandidate stage by cycle cγini.

Here, (8/9)|a`.Sp| − f ≥ (8/9)g − f = (6/9)g + (2/9)g − f ≥ (6/9)g + (2/9)(8f + 8)− f = (6/9)g +
(7/9)f + 16/9 > (6/9)k holds because k ≥ |a`.Sp| ≥ g holds, which we prove by Corollary 4.1. That
is, at least (6/9)k good agents have started the MakeCandidate stage by cycle cγini. Here, let am be
such a good agent. By Situation (a), am has witnessed at least (6/9)|aini.Sp| − f ≥ (6/9)g − f =
(4/9)g+ (2/9)g− f ≥ (4/9)g+ (2/9)(8f + 8)− f = (4/9)g+ (7/9)f + 16/9 > (4/9)k ≥ (4/9)|am.Sp|
agents with ready = True before cycle cγini. Therefore, since am stores True in am.ready before cycle
cγini, am witnesses at least (6/9)k ≥ (6/9)|am.Sp| agents with ready = True during cycle cγini. Thus,
at least (6/9)k ≥ (6/9)(9f + 8) > 6f + 1 good agents store True in endMakeCandidate in the first
round of either cγini or cγ+1

ini . Hence, at least 3f + 1 good agents start the AgreeID stage at the same
time.

AgreeID Stage Algorithm 4 is the pseudo-code of the AgreeID stage. This stage aims to obtain
a common ID set among the agents in a group candidate by using consensus algorithm PCONS. The
common ID set contains at least f + 1 agent IDs in the same group candidate. The agents use the
common ID set in order to create a reliable group in the MakeGroup stage. By the behavior of the
MakeCandidate stage, we have the following observation.

Observation 4.4. Let ai and aj be good agents. If ai and aj belong to the same group candidate,
for any γ, they start the first round of cγi and cγj at the same time.

In order for agents to efficiently create a reliable group, an agent collects IDs in the same group
candidate and makes a consensus on a set of the collected IDs. In the MakeGroup stage, agents
create the reliable group by the method using the group candidate as described in Section 4.1. If
agents make a consensus on Sp to make the common ID set, the output may contain agent IDs not in
the same group candidate. This approach makes the reliable group creation in the MakeGroup stage
inefficient. Therefore, in the AgreeID stage, agents collect agent IDs in the same group candidate
and propose the IDs for consensus. Since the output contains agent IDs in the same group candidate
only, this idea can avoid the above problem. An agent uses variable Pp to record the IDs collected
in the AgreeID stage.

13



Algorithm 4 AgreeIDStage

1: if ai.count = 0 then
2: ai.Pp ← ai.Pp ∪ {aj .id | aj ∈ Ai ∧ aj .length = ai.length ∧ aj .stage = AgreeID}
3: else
4: Execute PCONS(ai.Sp)(ai.count)
5: Execute PCONS(ai.Pp)(ai.count)
6: end if
7: if ai.length > ai.elapsed then
8: Execute REL(ai.id)(ai.elapsed)
9: else

10: ai.elapsed← 0
11: ai.count← ai.count + 1
12: if PCONS(ai.Sp) and PCONS(ai.Pp) are finished then
13: ai.Sc ← the output of PCONS(ai.Sp)
14: ai.Pc ← the output of PCONS(ai.Pp)
15: ai.stage← MakeGroup
16: end if
17: Execute WAIT()
18: end if

In addition, an agent makes a consensus on Sp in this stage. As we explain in Section 4.2.2, the
output of the consensus is used in the MakeGroup stage.

Hereinafter, we explain the detailed behaviors of the AgreeID stage. If an agent ai executes the
first cycle cγi of the AgreeID stage, that is, ai.count = 0 holds, ai collects agent IDs in the same
group candidate, say GC (Lines 1–2 of Algorithm 4). To be more precise, if ai witnesses the agent
aj in GC at the current node in a round of cycle cγi , ai stores aj .id in ai.Pp. Agent ai determines
whether aj belongs to GC by checking aj .length and aj .stage. Agent ai meets all good agents in GC
and includes their IDs in ai.Pp by the end of cycle cγi .

If ai executes the second or later cycle of the AgreeID stage, that is, ai.count > 0 holds, then ai
makes a consensus on ai.Sp and ai.Pp using PCONS(ai.Sp) and PCONS(ai.Pp) to obtain the common
ID sets with good agents in GC (Lines 3–6). As we mentioned in Section 4.2.1, agents simulate
one phase of the message-passing model by executing REL during one cycle. In Algorithm 4, when
an agent executes PCONS(S)(q) except the last round of a cycle, it shares messages of algorithm
PCONS(S) with other agents at the current node. If an agent executes PCONS(S)(q) in the last round
of a cycle, it computes the q-th phase of PCONS(S) using the collected messages.

To simulate PCONS(ai.Sp) and PCONS(ai.Pp), ai meets the other agents in GC using REL for a
cycle. If the current round is not the last round of the current cycle, that is, ai.length > ai.elapsed
holds, then ai executes REL(ai.id)(ai.elapsed) to meet the other agents in GC in the first cycle,
and to execute PCONS(S)(q) with agents in GC in and after the second cycle (Lines 7–8). To
make a consensus with good agents in GC, ai checks to which group candidate an agent belongs,
identically with Pp. Otherwise, that is, if ai.length = ai.elapsed holds, then ai first checks the status
of PCONS(ai.Sp) and PCONS(ai.Pp). If both the consensus instances have finished, ai stores their
outputs in ai.Sc and ai.Pc, respectively and changes ai.stage into MakeGroup (Lines 12–16). Agent
ai then stays at the current node for one round (Line 17). If GC includes at least 3f + 1 agents,
the execution of PCONS by agents in GC satisfies the PBC property by Observation 4.4. Therefore,
all the good agents in GC has identical Pc and Sc. Moreover, since Pp of every good agent contains
the IDs of all good agents in GC, Pc also contains them by PBC Validity 1.

MakeGroup Stage Algorithm 5 is the pseudo-code of the MakeGroup stage. This stage aims to
create a reliable group. An agent ai has variable gid to store its group ID when it becomes a member
of a reliable group. In Algorithm ByzantineGathering, which we describe later, since agents do
not know f , when an agent a` determines whether a reliable group exists at the current node, a`
uses (1/8)|a`.Sp| instead of f for its decision. However, |a`.Sp| differs from the other good agents

14



Algorithm 5 MakeGroupStage

1: if (1/2) · ai.length ≥ ai.elapsed then
2: Execute REL(ai.id)(ai.elapsed)
3: else if ai.length > ai.elapsed then
4: if ∃aj ∈ Ai[aj .id = ai.Pc[ai.count mod |ai.Pc|]] then
5: Execute WAIT()
6: else
7: Execute REL(ai.id)(ai.elapsed)
8: end if
9: else

10: ai.elapsed← 0
11: ai.count← ai.count + 1
12: ai.D ← {aj .id | aj ∈ Ai ∧ |aj .Sc| ≥ (8/9)|aj .Sp| ∧ aj .length = ai.length ∧ aj .Sc = ai.Sc ∧

aj .stage = MakeGroup}
13: if |ai.Sc| ≥ (8/9)|ai.Sp| ∧ |ai.D| ≥ (3/9)|ai.Sc| then
14: ai.gid← min(ai.D)
15: end if
16: Execute WAIT()
17: end if

because every good agent possibly met a different number of Byzantine agents in the CollectID
stage. Therefore, in order to be able to recognize a reliable group even if a good agent has any Sp,
we define a reliable group as follows.

Definition 4.2 (Reliable group). A set RG of agents is a reliable group if and only if RG contains
at least k/8 good agents and ai.gid = aj .gid holds for any two different good agents ai, aj ∈ RG.

Agents behaves differently in the first and second halves of each cycle. If the current round
is in the first half of the current cycle, that is, (1/2) · ai.length ≥ ai.elapsed holds, ai executes
REL(ai.id)(ai.elapsed) to meet agents in the CollectID stage and a reliable group that acts for gath-
ering by Algorithm ByzantineGathering (Lines 1–2 of Algorithm 5).

If the current round is in the second half of the current cycle, that is, ai.length ≥ ai.elapsed >
(1/2) · ai.length holds, ai creates a reliable group using the common ID set of the AgreeID stage
(Lines 3–16). Let GC be a group candidate of ai. As we mentioned in Section 4.1, agents in GC
decide a target ID base on the common ID set. More concretely, they use variables Pc and count
to decide a target ID. Since agents in GC count the number of cycles from the time they started
the AgreeID stage, they have the same count. Therefore, agents in GC decide the same target ID in
each cycle of the MakeGroup stage. The strategy for the reliable group creation is as follows. Agents
in GC decide a target ID from variables Pc and count and searches for the agent with the target
ID, say atarget, using REL. Agent atarget stays at the node while the other agents in GC search for
atarget. If agents in GC fail to create a reliable group in the last round of the current cycle, they
decide on a new target ID from the common ID set using count in the first round of the next cycle
and repeat the above behavior. Since an agent updates count in the last round of each cycle, these
target IDs are different. Also, since the common ID set contains at least one ID of good agents in
GC and does not include IDs of good agents not in GC, good agents choose their IDs as the target
ID at least once and create a reliable group by they repeat f + 1 times.

Agent ai stores the common ID set in ai.Pc and achieves the above behavior as follows. If ai has
the target ID, ai stays at the node until the last round of the current cycle, otherwise ai searches for
atarget using REL until the last round of the current cycle (Lines 3–8). Then, ai updates variables
for the next cycle in the last round of the cycle (Lines 9–17).

Hereinafter, we explain the detailed behaviors of the second half of the MakeGroup stage. If the
current round is not the last round of the current cycle, that is, ai.length > ai.elapsed holds, and
either of the following is satisfied, then ai stays at the current node for one round (Lines 4–5).

(1) ai has the target ID.

15



(2) ai meets atarget at the current node.

Agent ai calculates ai.Pc[ai.count mod |ai.Pc|] to determine Conditions (1) and (2). The formula
is for ai to determine the target ID and uses ai.Pc and ai.count to determine the same target ID
among good agents in GC. Since agents in GC start the AgreeID stage at the same time, and they
start a cycle at the same time by Observation 4.3, every good agent in GC has the same count.
Furthermore, if GC contains at least 3f + 1 agents, every good agent in GC has the same Pc by
Lemma 4.10, which we prove later, and calculates the same target ID.

If the current round is not the last one of the current cycle, that is, ai.length > ai.elapsed holds,
and neither Conditions (1) nor (2) is satisfied, ai executes REL(ai.id)(ai.elapsed) to meet atarget
(Lines 6–8).

If the current round is the last round of the current cycle, that is, ai.length = ai.elapsed holds,
ai creates a reliable group if possible and stays at the current node for one round (Lines 9–17). If ai
witnesses an agent aj that satisfies all of the following, ai stores aj .id in variable D to record such
IDs (Line 12).

(a) aj .Sc contains at least (8/9)|aj .Sp| IDs.

(b) aj belongs to GC.

(c) ai.Sc and aj .Sc are the same.

(d) aj has started the MakeGroup stage.

If ai.Sc contains at least (8/9)|ai.Sp| IDs and ai.D contains at least (3/9)|ai.Sc| IDs, ai stores the
smallest ID in ai.D in ai.gid as the group ID (Lines 13–15).

By the above behavior, assuming that ai stores the group ID in ai.gid in the last round r
of some cycle, we can guarantee that the agents in GC create the reliable group. In round r,
there exist at least (3/9)|ai.Sc| agents that satisfy Conditions (a)–(d) at the current node, and
(3/9)|ai.Sc| ≥ (3/9)(8/9)|ai.Sp| = (8/27)|ai.Sp| ≥ (8/27)g holds by Line 13. If GC contains at least
3f + 1 agents, every good agent in GC has the same Sc. Furthermore, agents at the current node
have the same D. Therefore, at least (8/27)g−f good agents reach the same decision. By k ≥ 9f+8
and g ≥ 8f + 8, (8/27)g − f = (27/216)g + (37/216)g − f ≥ (27/216)g + (37/216)(8f + 8) − f =
(27/216)g + (80/216)f + 296/216 > (27/216)(g + f) = k/8 holds. Hence, in round r, at least k/8
good agents, including ai, store the same group ID and create a reliable group.

4.2.3 Correctness and Complexity Analysis

In this subsection, we prove the correctness and complexity of MakeReliableGroup. First, we prove
that, when agent ai executes REL(ai.id) throughout a cycle, it can meet all agents. Note that, at
the beginning of a cycle, ai determines whether it executes REL(ai.id) or waits for the whole cycle.
If ai starts REL(ai.id), it stops the procedure at the middle of a cycle only if ai satisfies Line 4 of
Algorithm 5. Even in this case, ai executes REL(ai.id) for at least the half of the cycle. We say “ai
executes REL(ai.id) without interruption” if ai executes REL(ai.id) throughout a cycle.

Lemma 4.1. Let ai be a good agent and cγi be a cycle in which ai starts REL(ai.id) at the beginning
of the first round of this cycle. If ai executes REL(ai.id) until the last round of cycle cγi without
interruption, then ai meets all good agents during cycle cγi .

Proof. By the behavior of MakeReliableGroup, since ai starts REL(ai.id) in cycle cγi , ai satisfies
Line 8 of Algorithm 2 no later than the first round of cycle cγi and thus |cγi | ≥ 2 · (tREL(ai.id) + 1)
holds. Let round r be the first round of cycle cγi . Let aj be a good agent other than ai and cεj be a
cycle of aj that includes round r. We prove that ai and aj meet during cycle cγi . We consider two
cases, |cγi | ≥ |cεj | and |cγi | < |cεj |.

First, we consider the case |cγi | ≥ |cεj |. In this case, by the behavior of MakeReliableGroup, aj
starts the AgreeID stage no later than ai. Therefore, by Observation 4.3, ai and aj start cycles

cγi and cεj at the same time at the beginning of round r. Furthermore, when ai starts cycle cγ+1
i ,

16



aj also starts cε+α+1
j at the same time for a non-negative integer α. In other words, aj finishes

all cycles cεj , . . . , c
ε+α
j by the time ai finishes cycle cγi . By the behavior of MakeReliableGroup, in

each cycle, aj executes REL(aj .id) for at least the half of the cycle or stays at the current node. We
consider two cases. First, we consider that aj stays at the current node in every cycle cεj , . . . , c

ε+α
j .

In this case, aj stays at the current node throughout all cycles cεj , . . . , c
ε+α
j , that is, cycle cγi . Since

|cγi | ≥ 2 · (tREL(ai.id) + 1) holds, and ai visits all nodes in tREL(ai.id) rounds after the first round
of cycle cγi by Lemma 3.1, ai and aj meet by the end of cycle cγi . Next, we consider that aj
executes REL(aj .id) in some cycle cε+βj (0 ≤ β ≤ α). In this case, aj executes REL(aj .id) for at least

(1/2) · |cε+βj | rounds from the first round of cycle cε+βj . Since aj satisfies Line 8 of Algorithm 2 no

later than the first round of cycle cε+βj , |cε+βj | ≥ 2 · (tREL(aj .id) + 1) holds. Thus, ai and aj execute
REL(ai.id) and REL(aj .id) at the same time for at least tREL(min(ai.id, aj .id)) rounds. Therefore, ai
and aj meet by the end of cycle cγi by Lemma 3.1.

Next, we consider the case |cγi | < |cεj |. By Observation 4.3, when aj starts cycle cε+1
j , ai starts

cycle cγ
′

i (γ′ > γ). Thus, the period of cycle cγi is completely included in the period of cycle cεj .
By Lemma 3.1, ai visits all nodes in tREL(ai.id) rounds after the first round of cycle cγi . Therefore,
since |cγi | ≥ 2 · (tREL(ai.id) + 1) holds, when aj stays at the current round throughout the first half
of cycle cγi , ai and aj meet by the end of cycle cγi . Also, when aj executes REL(aj .id) throughout
the first half of cycle cγi , ai and aj execute REL(ai.id) and REL(aj .id) at the same time for at least
tREL(min(ai.id, aj .id)) rounds. Thus, ai and aj meet by the end of cycle cγi by Lemma 3.1. On the
other hand, when aj is in the MakeGroup stage, it may interrupt REL(aj .id) in the fist half of cycle
cγi . In this case, aj stays at the current node throughout the last half of cycle cγi . During the last
half of cycle cγi , ai keeps executing REL(ai.id). Thus, from the above discussion, ai and aj meet by
the end of cycle cγi . Hence, the lemma holds.

In the CollectID stage, an agent ai executes REL(ai.id) without interruption during the cycle
whose length is at least 2 · (tREL(ai.id) + 1). Since ai meets all good agents by the end of the cycle,
we have the following corollary.

Corollary 4.1. For good agent ai, if ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup} holds,
ai.Sp contains IDs of all good agents and hence k = g + f ≥ |ai.Sp| ≥ g holds.

By k ≥ 9f + 8, g ≥ 8f + 8, and Corollary 4.1, we have the following corollary.

Corollary 4.2. For good agent ai, if ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup} holds,
g > (8/9)k ≥ (8/9)|ai.Sp| holds.

Next, we consider the MakeCandidate stage. Let amax be the good agent with the largest ID.
Regarding this stage, we clarify the following two facts: (1) All good agents finish the MakeCandidate
stage in some bounded rounds, and (2) At least (7/18)g good agents start the AgreeID stage at the
same time. We prove (1) with Lemma 4.2 to Lemma 4.4, and (2) with Lemma 4.5 to Corollary 4.3.

Lemma 4.2. Let cγmax be the first cycle of the MakeCandidate stage of amax. Every good agent ai
executes ai.stage← AgreeID by the end of cycle cγ+1

max.

Proof. First, we prove that every good agent ai executes ai.ready← True by the end of the first round
of cycle cγmax. Since amax has the largest ID among good agents, amax starts the MakeCandidate
stage latest among good agents. Therefore, all good agents start the MakeCandidate stage by
the time amax starts that. We consider two cases. First, we consider the case that ai is in the
MakeCandidate stage at the beginning of cycle cγmax. By Observation 4.1, ai.length = amax.length
holds in cycle cγmax and ai starts its cycle at the same time as amax. Since amax satisfies Line 8 of
Algorithm 2 before cycle cγmax, amax.length ≥ 4 · (tREL(amax.id) + 1) holds at the beginning of cycle
cγmax. Therefore, ai.length ≥ 4 · (tREL(amax.id) + 1) holds at the beginning of cycle cγmax. Since ai.Sp
contains IDs of all good agents by Corollary 4.1, it contains at least g IDs no larger than amax.id.
Since g > (8/9)|ai.Sp| holds by Corollary 4.2, ai satisfies Line 3 of Algorithm 3 at the beginning of
cycle cγmax. Thus, ai executes ai.ready← True by the end of the first round of cycle cγmax. Next, we
consider the case that ai is in either the AgreeID stage or the MakeGroup stage at the beginning of

17



cycle cγmax. Since ai has finished the MakeCandidate stage before cycle cγmax, ai satisfies Line 8 of
Algorithm 3, that is, |ai.R| ≥ (6/9)|ai.Sp| holds. Therefore, ai satisfies Line 4 of Algorithm 3 and
thus ai executes ai.ready← True before cycle cγmax.

Next, we prove that every good agent ai executes ai.stage← AgreeID by the end of cycle cγ+1
max.

Consider the situation that good agent ai has not yet executed ai.stage← AgreeID at the beginning
of cycle cγ+1

max. Let aj be a good agent. First, we consider the case that aj .ready = True holds at the
beginning of cycle cγmax. By Lemma 4.1, since ai executes REL(ai.id) throughout cycle cγmax, ai meets
aj by the last round of cycle cγmax. Thus, ai.R contains aj .id before cycle cγ+1

max. Next, we consider
the case that aj .ready = False holds at the beginning of cycle cγmax. In this case, aj executes the
MakeCandidate stage during cycle cγmax and executes aj .ready← True by the end of the first round
of the cycle. By Observation 4.1, ai and aj start their cycles at the same time and have the same
length of their cycles. Since |cγmax| ≥ 4 · (tREL(amax.id) + 1) holds, ai and aj execute REL(ai.id) and
REL(aj .id) at the same time for at least tREL(min(ai.id, aj .id)) rounds after the first round of cycle
cγmax. Therefore, by Lemma 3.1, ai meets aj at least once after aj executes aj .ready ← True. This
implies that ai.R contains aj .id before cycle cγ+1

max. From these two cases, ai.R contains at least g
IDs before cycle cγ+1

max. Since g > (8/9)|ai.Sp| holds by Corollary 4.2, ai satisfies Line 8 of Algorithm
3 at the beginning of cycle cγ+1

max. Since amax doubles amax.length in the last round of cycle cγmax,
|cγ+1
max| is identical to the length of a cycle of a good agent that executes the MakeCandidate stage

in cycle cγ+1
max. Therefore, ai executes ai.stage← AgreeID in the last round of cycle cγ+1

max.
Hence, the lemma holds.

In the following lemma, we calculate the maximum value of length of a good agent.

Lemma 4.3. For any good agent ai, ai.length is less than 32 · (tREL(amax.id) + 1).

Proof. Let cγmax be the first cycle of the MakeCandidate stage of amax. Each good agent ai updates
ai.length in the last round of a cycle of the CollectID and MakeCandidate stages, but not in the
AgreeID and MakeGroup stages. Also, by Lemma 4.2, ai executes ai.stage← AgreeID by the end of
cycle cγ+1

max. Thus, to calculate the maximum value of ai.length, it is enough to calculate the value of
alast.length at the beginning of cycle cγ+2

max for a good agent alast that starts the AgreeID stage latest.
Let lengthαlast be the value of alast.length at the beginning of cycle cαmax for a positive integer α.
When alast starts the MakeCandidate stage in cycle cγmax, alast satisfies Line 8 of Algorithm 2 (i.e.,
2·(tREL(amax.id)+1) ≤ lengthγ−1last holds at the beginning of cycle cγ−1max). On the other hand, since alast
does not satisfy Line 8 of Algorithm 2 at the beginning of cycle cγ−2max, 2·(tREL(amax.id)+1) > lengthγ−2last

holds. Hence, 24 ·2 · (tREL(amax.id) + 1) = 32 · (tREL(amax.id) + 1) > lengthγ+2
last holds at the beginning

of cycle cγ+2
max.

Lemma 4.4. All good agents finish the CollectID stage in O(tREL(amax.id)) rounds after starting
MakeReliableGroup. Furthermore, all good agents finish the MakeCandidate stage in O(tREL(amax.id))
rounds after starting MakeReliableGroup.

Proof. Let cγmax be the first cycle of the MakeCandidate stage of amax. By Lemma 4.2, all good
agents execute stage ← AgreeID by the end of cycle cγ+1

max. Let alast be a good agent that finishes
the MakeCandate stage latest. To prove this lemma, it is enough to analyze the time tmc that are
required for alast to finish the MakeCandidate stage. Agent alast repeats a cycle and its length is
alast.length. Furthermore, alast doubles alast.length in the last round of a cycle of the CollectID and
MakeCandidate stages. By Lemma 4.3, |cγ+2

max| < 32 · (tREL(amax.id) + 1) holds. Thus, since |cαmax|
is represented as 2α−1 · Tini for a positive integer α, tmc is at most Tini + 2 · Tini + 4 · Tini + . . . +
2γ+1 · Tini = (2γ+2 − 1) · Tini = |cγ+2

max| − Tini < 32 · (tREL(amax.id) + 1) − Tini. Therefore, alast
finishes the MakeCandidate stage in O(tREL(amax.id)) rounds after starting MakeReliableGroup.
Hence, all good agents finish the MakeCandidate stage in O(tREL(amax.id)) rounds after starting
MakeReliableGroup, which implies that they also finish the CollectID stage in O(tREL(amax.id))
rounds.

From now on, we will prove that at least (7/18)g good agents start the AgreeID stage at the
same time. First, we focus on the situation where the first good agent becomes ready to transition
into the AgreeID stage.

18



Lemma 4.5. Let ai be the first good agent that executes ready← True. Agent ai executes ai.ready←
True by satisfying Line 3 of Algorithm 3.

Proof. We prove this lemma by contradiction. Let cγi be the cycle in which ai executes ai.ready←
True. At the beginning of cycle cγi , |ai.R| ≤ f holds because only Byzantine agents can execute
ready ← True before cycle cγi . On the other hand, ai should satisfy |ai.R| ≥ (4/9)|ai.Sp| at the
beginning of cycle cγi to execute ai.ready = True without satisfying Line 3 of Algorithm 3. Since
k ≥ |ai.Sp| ≥ g holds by Corollary 4.1, (4/9)|ai.Sp| ≥ (4/9)g ≥ (4/9)(8f + 8) = (32/9)f + 32/9 > f
holds by g ≥ 8f + 8. This is a contradiction.

By Lemma 4.5, at least one good agent ai executes ai.ready ← True by satisfying Line 3 of
Algorithm 3. In the following lemma, we check Sp of good agents that execute the MakeCandidate
stage at the beginning of the cycle when ai executes ai.ready← True.

Lemma 4.6. Let ai be the first good agent that executes ready ← True and cγi be the cycle in
which ai executes that. Let aj be a good agent that is in the MakeCandidate stage in cycle cγi . At
the beginning of cycle cγi , aj .Sp contains at least (7/9)|aj .Sp| IDs of good agents that started the
MakeCandidate stage by the beginning of cycle cγi .

Proof. By Corollary 4.1, ai.Sp and aj .Sp contain IDs of all good agents at the beginning of cycle
cγi . Therefore, let fi (resp. fj) be the number of IDs of Byzantine agents in ai.Sp (resp. aj .Sp),
and then |ai.Sp| = g + fi (resp. |aj .Sp| = g + fj) holds. By Lemma 4.5, at the beginning of cycle
cγi , ai.Sp contains at least (8/9)|ai.Sp| IDs of agents that started the MakeCandidate stage by the
beginning of cycle cγi . Thus, ai.Sp contains at least (8/9)|ai.Sp| − fi IDs of good agents. By f ≥ fi,
k ≥ 9f + 8, and g ≥ 8f + 8, (8/9)|ai.Sp| − fi = (8/9)(g + fi) − fi = (1/9)(8g + 8fi − 9fi) =
(1/9)(8g− fi) ≥ (1/9)(8g− f) = (1/9)(7g+ g− f) ≥ (1/9)(7g+ 8f + 8− f) = (1/9)(7g+ 7f + 8) >
(7/9)(g + f) holds. Therefore, by f ≥ fj , at the beginning of cycle cγi , aj .Sp contains at least
(7/9)(g + f) ≥ (7/9)(g + fj) = (7/9)|aj .Sp| IDs of good agents that started the MakeCandidate
stage by the beginning of cycle cγi .

In the following lemma, we check R of good agents that execute the MakeCandidate stage when
a good agent ai executes ai.endMakeCandidate← True.

Lemma 4.7. Let ai be a good agent that executes endMakeCandidate ← True, and cγi be the cycle
in which ai executes that. Let aj be a good agent that is in the MakeCandidate stage in cycle cγi . At
the beginning of cycle cγi , aj .R contains at least (4/9)|aj .Sp| IDs of good agents.

Proof. At the beginning of cycle cγi , ai.R contains at least (6/9)|ai.Sp| IDs of agents. Thus, ai.R
contains at least (6/9)|ai.Sp| − f IDs of good agents. Since k ≥ |ai.Sp| ≥ g holds by Corollary
4.1, (6/9)|ai.Sp| − f ≥ (6/9)g − f holds. By g ≥ 8f + 8, (6/9)g − f = (1/9)(4g + 2g − 9f) >
(1/9)(4g + 16f − 9f) = (1/9)(4g + 7f) > (4/9)(g + f) holds. Since k ≥ |aj .Sp| ≥ g holds, aj .R
contains at least (4/9)(g + f) ≥ (4/9)|aj .Sp| IDs of agents at the beginning of cycle cγi .

By Lemma 4.2, every good agent starts the AgreeID stage by the time amax starts that. In the
following lemma, we show that several good agents start the AgreeID stage at the same time.

Lemma 4.8. Let aini be the first good agent that starts the AgreeID stage and cγini be a cycle in
which aini starts the AgreeID stage. At least (7/9)g good agents start the AgreeID stage in the first
round of cycle cγini or cycle cγ+1

ini .

Proof. First, we prove that at least (7/9)g good agents have started the MakeCandidate stage be-
fore cycle cγ−2ini . By the assumption of aini, every good agent executes the CollectID stage or the

MakeCandidate stage at the beginning of cycle cγ−1ini . Thus, by Observation 4.1, every good agent

has the same length and starts its cycle at the same time at the beginning of cycle cγ−1ini . Since aini
starts the AgreeID stage at the beginning of cycle cγini, aini satisfies Line 8 of Algorithm 3 at the

beginning of cycle cγ−1ini . That is, |aini.R| ≥ (6/9)|aini.Sp| holds. Since k ≥ |aini.Sp| ≥ g holds by
Corollary 4.1, |aini.R| ≥ (6/9)|aini.Sp| ≥ (6/9)g ≥ (6/9)(8f+8) holds by g ≥ 8f+8. Since f Byzan-
tine agents exist in the network, at least (6/9)(8f + 8) − f > 1 good agents execute ready ← True

19



in cycle cγ−1ini or earlier. This implies, by Lemma 4.6, that aini.Sp contains at least (7/9)|aini.Sp|
IDs of good agents that have started the MakeCandidate stage before cycle cγ−2ini . That is, at least

(7/9)|aini.Sp| ≥ (7/9)g good agents have started the MakeCandidate stage before cycle cγ−2ini .
Let Aem be a set of good agents that are in the MakeCandidate stage in the first round of cycle

cγ−1ini . From the above discussion, |Aem| ≥ (7/9)g holds. The set Aem are divided into the following
two sets A1 and A2: A1 is a set of agents that satisfies Line 8 of Algorithm 3 in the first round of cycle
cγ−1ini , and A2 = Aem \A1. Note that agents in A1 start the AgreeID stage in the first round of cycle
cγini. Consider an arbitrary agent aem in Aem. Since aini executes aini.endMakeCandidate ← True

in the first round of cycle cγ−1ini , |aem.R| contains at least (4/9)|aem.Sp| IDs at the beginning of cycle

cγ−1ini by Lemma 4.7. Therefore, aem satisfies Line 4 of Algorithm 3 and executes aem.ready← True

in the first round of cycle cγ−1ini if aem.ready = False holds. That is, aem.ready = True holds in the

first round of cycle cγ−1ini . Consider an agent ai in A2. Since ai meets all good agents by the end

of cycle cγ−1ini by Lemma 4.1, |ai.R| contains at least |Aem| ≥ (7/9)g IDs at the beginning of cycle
cγini. Since g > (8/9)k by Corollary 4.2, (7/9)g > (7/9) · (8/9)k = (56/81)k > (6/9)k holds. Thus,
ai satisfies Line 8 of Algorithm 3 in the first round of cycle cγini and executes ai.stage← AgreeID in
the last round of cycle cγini. Therefore, agents in A1 start the AgreeID stage at the beginning of cγini
and agents in A2 start that at the beginning of cγ+1

ini . Hence, at least (7/9)g good agents start the

AgreeID stage at the beginning of cycle cγini or cycle cγ+1
ini .

By Lemma 4.8, we have the following corollary.

Corollary 4.3. At least (7/18)g good agents start the AgreeID stage at the same time.

Next, we consider the AgreeID stage. Regarding this stage, we check Pp of good agents in the
AgreeID stage and the execution of PCONS for both Sp and Pp.

Lemma 4.9. Let GC be a group candidate, ai be a good agent in GC, and cγi be a cycle in which
ai starts the AgreeID stage. Variable ai.Pp contains at least IDs of all good agents in GC at the

beginning of cycle cγ+1
i .

Proof. Since ai.count = 0 holds at the beginning of cycle cγi by the behavior of MakeReliableGroup,
ai satisfies Line 1 of Algorithm 4 at the beginning of cycle cγi and thus starts collecting IDs of agents
in GC using REL(ai.id). All good agents in GC have the same length of a cycle by Observation 4.2.
Also, since all good agents in GC start the AgreeID stage at the same time by Definition 4.1, they
execute stage ← AgreeID before cycle cγi . Therefore, since ai meets all good agents by the end of
cycle cγi by Lemma 4.1, ai.Pp contains at least IDs of all good agents in GC at the beginning of cycle

cγ+1
i .

Lemma 4.10. Let GC be a group candidate, ai be a good agent in GC, and cγi be a cycle in which
ai starts the AgreeID stage. If at least (7/18)g good agents belong to GC, all good agents in GC start
the MakeGroup stage in O(f) cycles after cycle cγi . Furthermore, the executions of both PCONS(ai.Sp)
and PCONS(ai.Pp) satisfy the PBC property.

Proof. First, we show that all good agents in GC can simulate PCONS. Algorithm MakeReliableGroup

tries to realize one phase in the Byzantine synchronous message-passing model by one cycle. By
Observations 4.2 and 4.4, all good agents in GC have the same length of a cycle and start a cycle
at the same time. By the behavior of MakeReliableGroup, ai executes REL(ai.id) every cycle of the
AgreeID stage. Also, by Lemma 4.1, ai meets all good agents in GC by the end of the cycle. Thus,
for a message msg that a good agent s in GC send in a phase, its destination agent d receives msg
from s by hand when they meet during the phase and d knows the ID of s at that time. This be-
havior follows the definition of the synchronous message-passing model that PCONS assumes. Hence,
all good agents in GC can simulate PCONS.

Next, we prove this lemma. By g ≥ 8f + 8, (7/18)g ≥ (7/18)(8f + 8) = (56/18)f + 56/18 > 3f
holds. Since all good agents in GC can simulate PCONS and (7/18)g > 3f holds, by Lemma 3.2,
the executions of both PCONS(ai.Sp) and PCONS(ai.Pp) satisfy the PBC property and ai finishes
both PCONS(ai.Sp) and PCONS(ai.Pp) in O(f) cycles after cycle cγi . Thus, ai executes ai.stage ←

20



MakeGroup in the last round of the cycle in which ai finishes both PCONS(ai.Sp) and PCONS(ai.Pp).
Hence, this lemma holds.

For a good agent ai, at the beginning of the second cycle of the AgreeID stage, ai.Pp contains
all IDs of good agents in the same group candidate by Lemma 4.9, but does not contain IDs of the
other good agents by the behavior of MakeReliableGroup. By Lemma 4.10, since the execution of
PCONS(ai.Pp) satisfies the PBC property, by Validity 1 and Validity 2 of the PBC property, ai.Pc
contains all IDs of good agents in the same group candidate but not IDs of the other good agents.
From this discussion, Lemma 4.10 and Corollary 4.1, we have the following corollary.

Corollary 4.4. Let GC be a group candidate, ai be a good agent in GC, and cγi be the first cycle
in which all good agents in GC are in the MakeGroup stage. If at least (7/18)g good agents belong
to GC, all good agents in GC have the same Pc and Sc at the beginning of cycle cγi . For each good
agent ai in GC, |ai.Sc| ≥ g and |ai.Pc| ≥ (7/18)g hold. Also, ai.Sc contains all IDs of good agents,
and ai.Pc contains all IDs of good agents in GC but not IDs of the other good agents.

Next, we consider the MakeGroup stage. In the following two lemmas, we prove that when there
exists at least one group candidate consisting of at least (7/18)g good agents, at least one reliable
group is created.

Lemma 4.11. Let GC be a group candidate, ai be a good agent in GC, and cγi be a cycle in which
all good agents in GC are in the MakeGroup stage. If at least (7/18)g good agents belong to GC, ai
stores a group ID in ai.gid within f + 1 cycles after cycle cγi .

Proof. If ai has stored a group ID in ai.gid before cycle cγi , the lemma clearly holds. Therefore, we
consider the case where ai has not stored a group ID in gid before cycle cγi .

First, we prove that all good agents in GC decide at least one same ID of a good agent in GC as
a target ID within f + 1 cycles after cycle cγi . By Corollary 4.4, since at least (7/18)g good agents
belong to GC, for each good agent ai in GC, |ai.Pc| ≥ (7/18)g holds at the beginning of cycle cγi .
Since (7/18)g ≥ (7/18)(8f + 8) > f + 1 holds by g ≥ 8f + 8, and agent ai in GC increments ai.count
by one in the last round of every cycle, ai uses different f + 1 IDs in ai.Pc as target IDs during f + 1
cycles starting from cycle cγi . Hence, since f Byzantine agents exist in the network, the IDs contain
at least one ID of a good agent in ai.Pc. Since all good agents in GC start the AgreeID stage at the
same time by Definition 4.1, and they start a cycle at the same time by Observation 4.2, all good
agents in GC have the same count. By Corollary 4.4, all good agents in GC have the same Pc, and
ai.Pc contains all IDs of good agents in GC but not IDs of the other good agents. Thus, all good
agents in GC decide the same agent ID in Pc of them as a target ID in every cycle from cycle cγi .
Hence, all good agents in GC decide at least one same ID of a good agent in GC as a target ID
within f + 1 cycles after cycle cγi .

Next, let cεi be the first cycle that a good agent in GC has a target ID, agt be the good agent
that has the target ID in cycle cεi , and agm be the good agent with the largest ID of good agents
in GC. We prove that all good agents in GC gather at a single node by the last round of cycle cεi .
Agent agt stays at the current node throughout cycle cεi . By the behavior of MakeReliableGroup,
an agent searches for an agent with a target ID in the last half of a cycle. Since agm satisfies Line
8 of Algorithm 2, and all good agents in GC have the same length of a cycle by Observation 4.2,
|cγi | ≥ 2 · (tREL(agm.id) + 1) holds. On the other hand, by Lemma 3.1, ai visits all nodes during
tREL(ai.id) rounds. Therefore, ai meets agt during the last half of cycle cεi . Hence, all good agents
in GC gather at a single node by the last round of cycle cεi .

Finally, we prove that ai stores a group ID in ai.gid when all good agents in GC gather at a single
node. All good agents in GC have started the MakeGroup stage. By Observation 4.2, all good agents
in GC have the same length. By Corollary 4.4, all good agents in GC have the same Sc and, for each
good agent ai in GC, |ai.Sc| ≥ g holds at the beginning of cycle cγi . Since g > (8/9)k ≥ (8/9)|ai.Sp|
holds by Corollary 4.2, |ai.Sc| ≥ g ≥ (8/9)|ai.Sp| holds. For every good agent aj in GC other
than ai, since g > (8/9)|ai.Sp| and |aj .Sc| = |ai.Sc| ≥ g hold, |aj .Sc| ≥ g ≥ (8/9)|aj .Sp| holds.
Therefore, ai.D contains at least IDs of all good agents in GC. Since (7/18)g = (6/18)g+ (1/18)g ≥
(6/18)g+ (1/18)(8f + 8) = (6/18)g+ (8/18)f + 8/18 > (6/18)(g+ f) = (3/9)k holds by g ≥ 8f + 8,

21



|ai.D| > (3/9)k ≥ (3/9)|ai.Sc| holds. Thus, ai satisfies Line 13 of Algorithm 5 and thus stores a
group ID in ai.gid when all good agents in GC gather at a single node.

Hence, this lemma holds.

Lemma 4.12. Let ai be a good agent. When ai stores a group ID in ai.gid, at least k/8 good agents
store the same group ID as ai in their gid.

Proof. First, we prove that ai.D includes at least k/8 IDs of good agents. By the behavior of
MakeReliableGroup, ai satisfies Line 13 of Algorithm 5. Since k ≥ |ai.Sp| ≥ g holds by Corollary 4.1,
|ai.Sc| ≥ (8/9)k ≥ (8/9)|ai.Sp| ≥ (8/9)g holds. Therefore, |ai.D| ≥ (3/9)|ai.Sc| ≥ (3/9)(8/9)g =
(8/27)g holds. Since f Byzantine agents exist in the network, at least (8/27)g− f of them are good
agents. By g ≥ 8f+8, (8/27)g−f = (27/216)g+(37/216)g−f ≥ (27/216)g+(37/216)(8f+8)−f =
(27/216)g+(80/216)f+296/216 > (27/216)(g+f) = (1/8)(g+f) = k/8 holds. Hence, ai.D includes
at least k/8 IDs of good agents.

Next, we prove that at least k/8 good agents in ai.D store the same group ID as ai in their
gid when ai stores a group ID in ai.gid. Let aj be a good agent in ai.D other than ai. Since
ai executes ai.D ← ai.D ∪ {aj .id} by satisfying Line 12 of Algorithm 5, |aj .Sc| ≥ (8/9)|aj .Sp|,
ai.length = aj .length, |ai.Sc| = |aj .Sc|, and aj .stage = MakeGroup hold. Since ai and aj observe
the same states of agents at the current node, ai.D = aj .D holds. Since |ai.D| ≥ (3/9)|ai.Sc|,
ai.D = aj .D, and |ai.Sc| = |aj .Sc| hold, |aj .D| ≥ (3/9)|aj .Sc| holds. Therefore, aj satisfies Line 13
of Algorithm 5 and thus stores the same group ID in aj .gid.

Hence, this lemma holds.

Finally, we prove the complexity of MakeReliableGroup.

Theorem 4.1. Let n be the number of nodes, k be the number of agents, g be the number of good
agents, f be the number of weakly Byzantine agents, amax be a good agent with the largest ID among
good agents. If the upper bound N of n is given to agents and k ≥ 9f + 8 holds, Algorithm 1 makes
good agents create at least one reliable group in O(f · tREL(amax.id)) rounds.

Proof. By Lemma 4.4, all good agents finish the MakeCandidate stage in O(tREL(amax.id)) rounds
after starting MakeReliableGroup. By Lemma 4.8 and Corollary 4.3, in O(tREL(amax.id)) rounds
after starting MakeReliableGroup, there is at least one round that at least (7/18)g good agents
start the AgreeID stage at the same time. Let GC be a group candidate of at least (7/18)g good
agents, cζgc be a cycle that all good agents in GC start the AgreeID stage, and cηgc be the first cycle
in which all good agents in GC are in the MakeGroup stage. By Lemma 4.10, all good agents in
GC have started the MakeGroup stage in O(f) cycles after cycle cζgc. By Lemma 4.11, a good agent
in GC stores a group ID in its gid within f + 1 cycles after cycle cηi . Also, by Lemma 4.12, when
a good agent in GC stores a group ID in its gid, at least k/8 good agents store the same group
ID as the agent in their gid. That is, a reliable group is created within f + 1 cycles after cycle cηi .
Therefore, since the maximum length of the cycles is at most 32 · (tREL(amax.id) + 1) by Lemma
4.3, a reliable group is created in 32 · (tREL(amax.id) + 1) · O(f) + 32 · (tREL(amax.id) + 1)(f + 1) =
O(f · tREL(amax.id)) rounds after starting cycle cζgc. Hence, since the first round of cycle cζgc is
within O(tREL(amax.id)) rounds after starting MakeReliableGroup, a reliable group is created in
O(tREL(amax.id)) + O(f · tREL(amax.id)) = O(f · tREL(amax.id)) after starting MakeReliableGroup.
Hence, this theorem holds.

4.3 Gathering Algorithm

In this section, we propose an algorithm that solves the gathering problem by assuming that k =
g+ f ≥ 9f + 8. The proposed algorithm uses MakeReliableGroup described in Section 4.2 to create
at least one reliable group. Recall that agents know N , but do not know n, k, f or F .

22



Algorithm 6 ByzantineGathering(N) for agent ai

1: if ai.stage = CollectID then
2: Execute MakeReliableGroup

3: else . ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup}
4: ai.Sgid ← {x | ∃Arg ⊂ Ai[|Arg| ≥ (1/8)|ai.Sp| ∧ ∀aj ∈ Arg : aj .gid = x]}
5: if ai.Sgid 6= ∅ then
6: ai.minGID← min(ai.Sgid)
7: end if
8: if ai.Sgid 6= ∅ ∧ ai.gid > ai.minGID then
9: ai.Srg ← {id | ∃aj ∈ Ai[aj .gid = ai.minGID ∧ aj .id = id]}

10: Execute FOLLOW(ai.Srg)
11: else if ai.gid 6=∞ then
12: ai.elapsed← ai.elapsed + 1
13: if ai.length = ai.elapsed then
14: Execute TERMINATE()
15: end if
16: Execute REL(ai.gid)(ai.elapsed)
17: else
18: Execute MakeReliableGroup

19: end if
20: end if

4.3.1 Description of the Algorithm

Algorithm 6 shows the behavior of each round of Algorithm ByzantineGathering. The proposed
algorithm aims to make all good agents transition into the terminal state at the same node using a re-
liable group. In ByzantineGathering, we introduce procedures TERMINATE() and FOLLOW(Srg). Pro-
cedure TERMINATE() means that an agent transitions into the terminal state. Procedure FOLLOW(Srg)
means that an agent ai executes the following two actions: (1) When a majority of agents in Srg
move to some node, ai also moves to the node. (2) When a majority of agents in Srg execute
TERMINATE() or have entered a terminal state, ai executes TERMINATE(). Agent ai can refer to the
variables used in MakeReliableGroup at any time.

First, we provide the overall execution of ByzantineGathering. Every good agent executes
MakeReliableGroup unless it does not stay with a reliable group at a node. After creating a reliable
group, good agents in the group collect the other good agents. To do this, when agents create a
reliable group in round r, a good agent a` in the reliable group executes REL(a`.gid) for a`.length
rounds after round r + 1. Then, when a good agent meets the reliable group with a smaller group
ID, it accompanies the group. By Lemma 4.12, when a good agent stores a group ID in its gid, at
least k/8 good agents store the same group ID in their gid. Thus, a reliable group contains at least
k/8 good agents. Since k ≥ |ai.Sp| ≥ g holds by Corollary 4.1, k/8 ≥ (1/8)|ai.Sp| ≥ g/8 holds.
Therefore, if a reliable group contains at least one good agent and exists at the node with ai, ai
can recognize the group. On the other hand, by g ≥ 8f + 8, (1/8)|ai.Sp| ≥ g/8 ≥ f + 1 holds and
thus only f Byzantine agents are not enough to create a reliable group. Thus, if a group of only
f Byzantine agents exists at the node with ai, ai does not recognize the group as a reliable group.
Summarizing the above, we have the following observation.

Observation 4.5. If a good agent meets a reliable group consisting of at least k/8 good agents with
the same group ID, the agent recognizes the group as a reliable group, otherwise, the agent does not
recognize the group as a reliable group.

Furthermore, a reliable group contains at least k/8 good agents, by k ≥ 9f+8, k/8 ≥ (9/8)f+1 >
f+1 holds. That is, a reliable group contains more than f+1 good agents. Thus, good agents are the
majority of agents in a reliable group even if the group contains f Byzantine agents. Therefore, when
a good agent meets a reliable group, it can trust the group. By the behavior of MakeReliableGroup,

23



round r is the last round of some cycle of the MakeGroup stage, and thus round r + 1 is the first
round of the next cycle of that. All good agents in the same reliable group have the same length of
their cycles, and thus the execution of REL(a`.gid) can be regarded as the execution of an additional
cycle of the MakeGroup stage by a`. The following observation summarizes this discussion.

Observation 4.6. When a good agent ai belongs to a reliable group, the start round and length of
the execution of REL(ai.gid) are the same as those of the last cycle in the MakeGroup stage of ai.

Therefore, by Lemma 4.1, when a` executes REL(a`.gid) for a`.length rounds after round r + 1,
a` meets all good agents not in the same reliable group. Consequently, all good agents accompany
the reliable group with the smallest ID and achieve the gathering.

Hereinafter, we explain the detailed behaviors of ByzantineGathering. At the beginning of
every round, an agent ai determines its action depending on the states of ai and other agents at the
current node.

If ai.stage = CollectID holds, it executes MakeReliableGroup until it collects IDs of all good
agents (Lines 1–2 of Algorithm 6).

If ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup} holds, ai determines whether the current
node contains a reliable group or not. First, if ai finds groups with at least (1/8)|ai.Sp| agents, it
stores the group IDs to variable ai.Sgid (Line 4). After that, if ai.Sgid contains at least one group
ID, ai calculates the smallest group ID among ai.Sgid and stores the smallest ID in variable minGID
(Line 5–7). Initially, ai.Sgid = ∅ and ai.minGID =∞ hold.

Consider the case where ai.Sgid contains at least one group ID and ai.minGID is smaller than
ai.gid (Line 8). This implies one of the following two conditions.

(1) Agent ai is not a member of a reliable group and meets a reliable group at the current node.

(2) Agent ai is a member of a reliable group and meets a reliable group with a group ID smaller
than ai.gid at the current node.

In this case, ai finds agents with gid = ai.minGID and stores their IDs in variable ai.Srg. Then, ai
follows the action of the majority of agents in ai.Srg (Lines 8–10).

If ai is a member of a reliable group with the smallest group ID at the current node, it executes
REL(ai.gid) to meet other good agents and then transitions into a terminal state (Lines 11–16).
Note that, if ai meets a reliable group with a group ID smaller than ai.gid during the execution, it
follows the group as in the previous paragraph. When ai executes REL(ai.gid) for ai.length rounds,
by Observation 4.6, the execution and a cycle of the MakeGroup stage in MakeReliableGroup start
and finish at the same time. Thus, by Lemma 4.1, ai meets all good agents.

If ai does not satisfy the above conditions (i.e., the current node does not contain a reliable
group), it executes MakeReliableGroup for one round (Lines 17–19).

4.3.2 Correctness and Complexity Analysis

In this subsection, we prove the correctness and complexity of the proposed algorithm.
By the behavior of ByzantineGathering, an agent executes MakeReliableGroup until the cur-

rent node contains a reliable group. By Theorem 4.1, agents create at least one reliable group after
starting ByzantineGathering. Therefore, we prove that, after a reliable group is created, all good
agents gather at a single node using a reliable group and transition into a terminal state.

Let rini be the round in which the first reliable group is created, SRGini be a set of the reliable
groups created in round rini, and RGmin be the reliable group with the smallest group ID among
SRGini. Let Aec be a set of good agents that execute the CollectID stage in round rini + 1. Let
Afc be a set of good agents that have finished the CollectID stage and do not belong to a reliable
group in round rini + 1. For a good agent ai ∈ Aec ∪Afc, let c∗i be a cycle of ai that includes round
rini + 1 and round r∗i be the last round of cycle c∗i . For a good agent aj in some reliable group of
SRGini, let round r∗j be the last round of the execution of REL(aj .gid). Let r∗ = max({r∗i | ai is a
good agent in MA}). By the behavior of MakeReliableGroup, since an agent extends the length of
its cycle in the CollectID and MakeCandidate stages but not in the AgreeID and MakeGroup stages,

24



good agents in the CollectID and MakeCandidate stages have the longest cycles. By Observation
4.6, when a good agent aj belongs to a reliable group in SRGini, the length of the execution of
REL(aj .gid) is the same as that of the last cycle in the MakeGroup stage of aj . Thus, by Observation
4.3, when good agents in the CollectID and MakeCandidate stages start a cycle, aj and good agents
in the AgreeID and MakeGroup stages also start executing REL(aj .gid) and a cycle. Therefore, the
period of a cycle of good agents in the CollectID and MakeCandidate stages includes the period of
a cycle of good agents in the AgreeID and MakeGroup stages and the execution of REL(aj .gid). By
Observation 4.1, good agents in the CollectID and MakeCandidate stages have the same length of
their cycles. Hence, if Aec includes at least one good agent, r∗ is the last round of the cycle of an
agent in Aec. From this discussion, we have the following observation.

Observation 4.7. If Aec includes at least one good agent, r∗ is the last round of cycle c∗i for some
agent ai ∈ Aec.

In the following lemma, we prove that a good agent ai in Afc and RGmin meet if ai and good
agents in RGmin never interrupt MakeReliableGroup and REL with the group ID in any round before
they meet.

Lemma 4.13. Assume that a good agent ai in Afc executes MakeReliableGroup until the last
round of cycle c∗i , and every good agent aj in RGmin executes REL(aj .gid) for aj .length rounds
without interruption after round rini + 1. In this case, ai and RGmin meet before the last round of
cycle c∗i .

Proof. First, we consider the case that the first round of cycle c∗i is round rini+1. In this case, by the
behavior of MakeReliableGroup, ai executes REL(ai.id) for at least the first half of cycle c∗i . Since ai
and aj satisfy Line 8 of Algorithm 2 before round rini, |c∗i | ≥ 2 · (tREL(ai.id) + 1) and aj .length ≥ 2 ·
(tREL(aj .id)+1) hold. Since aj .id ≥ aj .gid holds by the behavior of MakeReliableGroup, aj .length ≥
2 · (tREL(aj .gid) + 1) holds. Thus, ai and aj execute REL(ai.id) and REL(aj .gid) at the same time for
at least tREL(min(ai.id, aj .gid)) rounds. Also, by Definition 4.2, all good agents in RGmin have the
same gid and length. Thus, they behave identically during the execution of REL(aj .gid). Therefore,
by Lemma 3.1, ai meets RGmin in at least tREL(min(ai.id, aj .gid)) rounds after round rini + 1, that
is, before the last round of cycle c∗i .

Next, we consider the case that the first round of cycle c∗i is not round rini + 1. By Observations
4.3 and 4.6, if |c∗i | ≤ aj .length holds, when aj starts executing REL(aj .gid), ai also starts cycle c∗i .
That is, this case does not apply if |c∗i | ≤ aj .length holds. Thus, this case implies that |c∗i | > aj .length
holds. By Observations 4.3 and 4.6, the execution of REL(aj .gid) is completely included in the period
of cycle c∗i . Therefore, by Lemma 4.1, aj meets ai by the last round of execution of REL(aj .gid).
Since all good agents in RGmin behave identically during the execution of REL(aj .gid), ai and RGmin

meet before the last round of the execution of REL(aj .gid).

For an agent ai and a reliable group RG, we say “ai follows RG in round r” if ai and RG satisfy
the following condition: (1) If all good agents in RG terminate in round r, ai also terminates in
round r, and (2) If all good agents in RG move to node v, ai also moves to node v. In the following
lemma, we prove that, if a good agent meets a reliable group, the good agent follows the reliable
group with the smallest group ID at the node.

Lemma 4.14. Assume that at least one reliable group exists at a node v in round r′. Let RG′ be
the reliable group with the smallest group ID at v in round r′. Then, all good agents not in RG′ at
v follow RG′ in round r′.

Proof. Let ai be a good agent not in RG′ at v in round r′. Let C ′ be a set of all group IDs of reliable
groups at v in round r′. By Observation 4.5, ai recognizes all reliable groups at v. Thus, ai executes
ai.Sgid ← C ′, and then ai executes ai.minGID ← min(ai.Sgid). This implies that ai executes
ai.minGID← min(C ′). By the assumption of this lemma, since ai.Sgid 6= ∅ and ai.gid > ai.minGID
hold in round r′i, ai calculates ai.Srg and executes FOLLOW(ai.Srg). Note that ai.Srg contains all
good agents in RG′. Recall that all good agents in RG′ make the same behavior and the number
of good agents in RG′ is at least f + 1 by Definition 4.2, Lemma 4.12, and k ≥ 9f + 8. Hence, ai
follows RG′.

25



In the following lemma, we prove that agents do not create a reliable group between round rini+1
and round r∗ inclusive.

Lemma 4.15. Assume that every good agent aj in RGmin executes REL(aj .gid) for aj .length rounds
without interruption after round rini + 1. No reliable group is created between round rini + 1 and
round r∗ inclusive.

Proof. We prove this lemma by contradiction. Assume that a reliable group is created in round
r′ (r∗ ≥ r′ ≥ rini + 1) and no reliable group is created between round rini + 1 and round r′ − 1
inclusive. By Observation 4.7, if Aec includes at least one good agent, an agent in Aec starts
the MakeCandidate stage after round r∗ and hence it cannot participate in the creation of a reliable
group. Thus, it is sufficient to consider only agents in Afc. By the behavior of ByzantineGathering,
each agent ai ∈ Afc behaves according to MakeReliableGroup until the current node contains a
reliable group. On the other hand, by Lemma 4.14, if ai meets a reliable group, it follows the
reliable group and hence cannot participate in the creation of a reliable group. Therefore, to derive
a contradiction, it is enough to prove that ai meets some reliable group before round r∗. However, if
ai continues MakeReliableGroup without meeting a reliable group, by Lemma 4.13, ai and RGmin

meet before the last round of cycle c∗i . Since round r′ is the last round of cycle c∗i or later by the
behavior of MakeReliableGroup, and r∗ ≥ r′ holds, ai meets RGmin before round r∗. This is a
contradiction. Hence, this lemma holds.

In the following lemma, we prove that good agents in RGmin never interrupt REL.

Lemma 4.16. Every good agent ai in RGmin executes REL(ai.gid) for ai.length rounds without
interruption after round rini + 1 and then transitions into a terminal state.

Proof. By the behavior of ByzantineGathering, ai interrupts REL(ai.gid) if it meets a reliable
group with a smaller group ID. However, by Lemma 4.15, no reliable group is created between
round rini + 1 and round r∗ inclusive, and hence the group ID of RGmin is the smallest until round
r∗. This implies that, since r∗ ≥ rini + ai.length holds, ai executes REL(ai.gid) for ai.length rounds
without interruption.

In the following lemma, we prove that two reliable groups in SRGini meet.

Lemma 4.17. Let RG be a reliable group in SRGini \ {RGmin}. Then, all good agents in RG meet
a reliable group with a group ID smaller than RG before round r∗.

Proof. Let ai be an arbitrary good agent in RGmin. By Lemma 4.16, ai executes REL(ai.gid) for
ai.length rounds without interruption after round rini + 1.

For contradiction, assume that some agent aj in RG never meets a reliable group with a group
ID smaller than RG. In this case, aj executes REL(aj .gid) for aj .length rounds without interruption
after round rini + 1. Also, ai.id ≥ ai.gid and aj .id ≥ aj .gid hold. Thus, since ai and aj satisfy
Line 8 of Algorithm 2, ai.length ≥ 2 · (tREL(ai.id) + 1) ≥ 2 · (tREL(ai.gid) + 1) and aj .length ≥
2 · (tREL(aj .id) + 1) ≥ 2 · (tREL(aj .gid) + 1) hold. Therefore, since ai.gid < aj .gid holds, by the
behavior of ByzantineGathering, ai and aj execute REL(ai.gid) and REL(aj .gid) at the same time
for at least tREL(ai.gid) rounds after round rini + 1. By Lemma 3.1, ai and aj meet in tREL(ai.gid)
rounds after round rini + 1. Since r∗ > rini + tREL(ai.gid) holds and all good agents in RGmin stay
at the same node, aj meets RGmin. This is a contradiction.

Lemma 4.18. All good agents in Afc and all good agents in reliable groups in SRGini gather at the
node with RGmin and transition into a terminal state by round r∗.

Proof. By Lemma 4.16, every good agent ai in RGmin executes REL(ai.gid) without interruption
and transitions into a terminal state before round r∗. In addition, if a good agent meets RGmin, it
follows RGmin after that by Lemma 4.14. Hence, it is sufficient to prove that all good agents in Afc
and all good agents in reliable groups other than RGmin meet RGmin before round r∗.

Consider a reliable group RG in SRGini \ {RGmin}. By Lemma 4.17, agents in RG meet a
reliable group RG′ with a smaller group ID before round r∗. If RG is RGmin, agents in RG meet

26



RGmin. Otherwise, good agents in RG follow RG′ by Lemma 4.14. Similarly good agents in RG′

meet another reliable group RG′′ with a smaller group ID before r∗. Hence, good agents in RG also
meet RG′′. By repeating this discussion, eventually good agents in RG meet RGmin before round
r∗.

Lastly consider a good agent ai in Afc. As long as ai does not meet a reliable group, it continues
MakeReliableGroup. In this case, by Lemma 4.13, ai meets RGmin before round r∗. Otherwise, if
ai meets a reliable group, it follows the reliable group by Lemma 4.14. In this case, similarly to the
previous paragraph, ai meets RGmin before round r∗.

Finally, we prove the correctness and complexity of ByzantineGathering.

Theorem 4.2. Let n be the number of nodes, k be the number of agents, f be the number of weakly
Byzantine agents, and amax be a good agent with the largest ID among good agents. If the upper
bound N of n is given to agents and k ≥ 9f + 8 holds, Algorithm 6 solves the gathering problem in
O(f · tREL(amax.id)) rounds.

Proof. By the behavior of ByzantineGathering, an agent executes MakeReliableGroup until the
current node contains a reliable group. By Theorem 4.1, a reliable group is created in O(f ·
tREL(amax)) rounds after starting MakeReliableGroup. Thus, round rini is in O(f · tREL(amax))
rounds after starting MakeReliableGroup.

First, we consider agents in Afc or some reliable group of SRGini \ {RGmin}. By Lemma 4.18,
all good agents in Afc or some reliable group of SRGini \ {RGmin} gather at the node with RGmin

and transition into a terminal state by round r∗.
Next, we consider agents in Aec. Let a` be a good agent in Aec. By Observation 4.7, round r∗

is the last round of cycle c∗` . Therefore, from discussion in the previous paragraph, when a` starts
the MakeCandidate stage, all good agents in Afc or some reliable group of SRGini have gathered
with RGmin and entered a terminal state. Also, since a` satisfies Line 8 of Algorithm 2, by the
behavior of MakeReliableGroup, a` executes REL(a`.id) for at least tREL(a`.id) rounds in the first
cycle of the MakeCandidate stage. Therefore, by Lemma 3.1, a` visits all nodes in the first cycle
of the MakeCandidate stage and thus meets RGmin during the cycle. By Lemma 4.14, a` follows
RGmin at that time and hence transitions into a terminal state by the last round of the first cycle
of the MakeCandidate.

Finally, we analyze the time complexity of ByzantineGathering. From the above discussion, the
time required to achieve the gathering depends on whether Aec contains at least one good agent or
not. Thus, since amax finishes the CollectID stage the latest, we consider the two cases, one where Aec
does not contain amax and the other where Aec contains amax. In the former case, since ai.length <
32·(tREL(amax.id)+1) holds for any good agent ai by Lemma 4.3, r∗ ≤ rini+32·(tREL(amax.id)+1)+1
holds. Thus, good agents achieve the gathering in rini + ai.length + 1 < O(f · tREL(amax)) + 32 ·
(tREL(amax.id) + 1) + 1 = O(f · tREL(amax)) rounds. In the latter case, r∗ is the last round of cycle
c∗max by Observation 4.7. Also, amax finishes the CollectID stage in O(tREL(amax.id)) rounds after
starting MakeReliableGroup by Lemma 4.4. Thus, since amax.length < 32·(tREL(amax.id)+1) holds,
good agents achieve the gathering in O(tREL(amax.id)) + 32 · (tREL(amax.id) + 1) = O(tREL(amax.id))
rounds.

Hence, all good agents gather at the same node and transition into a terminal state in O(f ·
tREL(amax)) rounds after starting ByzantineGathering.

5 Conclusion

In this paper, we have developed an algorithm that achieves the gathering with non-simultaneous
termination in weakly Byzantine environments. The algorithm reduces time complexity compared to
the existing algorithm if n is given to agents, although the guarantees on simultaneous termination
and startup delay are not the same. More specifically, the proposed algorithm achieves the gathering
in O(f · |Λgood| ·X(N)) rounds if the upper bound N of the number of nodes is given to agents and
at least 9f + 8 agents exist in the network. In the algorithm, several good agents first create a
reliable group so that good agents can trust the behavior of the group to suppress the influence of

27



Byzantine agents. After that, the reliable group collects the other good agents, and all good agents
gather at a single node. To create a reliable group, several good agents make a common ID set by
simulating a parallel Byzantine consensus algorithm and gather by using the common ID set. In
future work, it is interesting to consider the case that agents start at different times. In the existing
gathering algorithm [3], when an agent starts the algorithm, it executes an exploring algorithm to
wake up sleeping agents. By this behavior, this algorithm creates an upper bound on the startup
delay between good agents, and thus it deals with the startup delay in a similar way to simultaneous
startup. We will examine whether this approach can be taken for the proposed algorithm as well. It
is also worth studying a gathering algorithm using a Byzantine consensus algorithm with less than
9f + 8 agents.

References

[1] Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini, Giuseppe Prencipe, and
Nicola Santoro, editors, Distributed Computing by Mobile Entities, Current Research in Moving
and Computing, pages 423–454. Springer, 2019.

[2] Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Transac-
tions on Algorithms, 11(1):1–28, 2014.

[3] Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Gathering with a strong
team in weakly byzantine environments. In ICDCN ’21: International Conference on Dis-
tributed Computing and Networking, pages 26–35. ACM, 2021.

[4] Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55. Springer
Science & Business Media, 2006.

[5] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc. Deterministic
rendezvous in graphs. Algorithmica, 46(1):69–96, 2006.

[6] Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. Theoretical
Computer Science, 399(1-2):141–156, 2008.

[7] Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts, and strongly uni-
versal exploration sequences. ACM Transactions on Algorithms, 10(3):12:1–12:15, 2014.

[8] Avery Miller and Andrzej Pelc. Time versus cost tradeoffs for deterministic rendezvous in
networks. Distributed Computing, 29(1):51–64, 2016.

[9] Pierre Fraigniaud and Andrzej Pelc. Delays induce an exponential memory gap for rendezvous
in trees. ACM Transactions on Algorithms, 9(2):17:1–17:24, 2013.

[10] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Computing, 25(2):165–178, 2012.

[11] Pierre Fraigniaud and Andrzej Pelc. Deterministic rendezvous in trees with little memory. In
Distributed Computing, 22nd International Symposium, DISC 2008, pages 242–256, 2008.

[12] Yoann Dieudonné and Andrzej Pelc. Anonymous meeting in networks. Algorithmica, 74(2):908–
946, 2016.

[13] Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, and Arnaud Labourel.
Almost optimal asynchronous rendezvous in infinite multidimensional grids. In Distributed
Computing, 24th International Symposium, DISC 2010, pages 297–311, 2010.

[14] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc, and
Ugo Vaccaro. Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science,
355(3):315–326, 2006.

28



[15] Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asynchronously at polyno-
mial cost. SIAM Journal on Computing, 44(3):844–867, 2015.

[16] Samuel Guilbault and Andrzej Pelc. Gathering asynchronous oblivious agents with local vision
in regular bipartite graphs. Theoretical Computer Science, 509:86–96, 2013.

[17] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gathering in
networks. Distributed Computing, 29(6):435–457, 2016.

[18] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial
time. Distributed Computing, 2022.

[19] Avery Miller and Ullash Saha. Fast byzantine gathering with visibility in graphs. In Algorithms
for Sensor Systems - 16th International Symposium on Algorithms and Experiments for Wireless
Sensor Networks, ALGOSENSORS 2020. Springer, 2020.

[20] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant gathering of mo-
bile agents in arbitrary networks with authenticated whiteboards. IEICE Transactions on
Information and Systems, 101-D(3):602–610, 2018.

[21] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant gathering of mo-
bile agents in asynchronous arbitrary networks with authenticated whiteboards. IEICE Trans-
actions on Information and Systems, 103-D(7):1672–1682, 2020.

[22] Pankaj Khanchandani and Roger Wattenhofer. Byzantine agreement with unknown participants
and failures. In 35th IEEE International Parallel and Distributed Processing Symposium, IPDPS
2021, pages 952–961. IEEE, 2021.

[23] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

[24] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

29


	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Contribution

	2 Agent Model and Problem
	2.1 Model
	2.2 Gathering Problem

	3 Building Blocks
	3.1 Rendezvous Procedure
	3.2 A Parallel Consensus Algorithm in Byzantine Synchronous Message-Passing Systems

	4 Byzantine Gathering Algorithm
	4.1 Overview
	4.2 Algorithm to Create a Reliable Group
	4.2.1 Idea of the Algorithm
	4.2.2 Details of the Algorithm
	4.2.3 Correctness and Complexity Analysis

	4.3 Gathering Algorithm
	4.3.1 Description of the Algorithm
	4.3.2 Correctness and Complexity Analysis


	5 Conclusion

