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A formal semantics for Grafcet specifications

Julien Provost Jean-Marc Roussel Jean-Marc Faure

Abstract— This paper shows how the behavior of a model
described in the specification language proposed by the IEC
60848 standard can be represented, without semantics loss, in
a formal manner, by a finite state machine (FSM) with logic
inputs and outputs. This contribution is illustrated on a non-
trivial example; this case study points out that the duration
of the construction of the equivalent FSM complies with the
requirements of designers of automation systems.

I. INTRODUCTION

Standardized specification languages have been developed
to ease design of industrial systems. To meet this objective,
they propose powerful, often graphical, constructs that al-
low the designers express easily their needs and facilitate
communication during the life-cycle. In the case of control
systems, the IEC 60848 standard presents a specification lan-
guage, called Grafcet, which describes graphical constructs
to express parallelism, concurrency, rendez-vous, outputs
assignment, and other mechanisms frequently met in this
class of systems. Unfortunately, no formal semantics of this
language is provided, as this is usually the case in standards.
This drawback prevents from using formal analysis methods,
like model-checking [1], to verify whether a Grafcet behaves
as expected once it is built.

The aim of this paper is to tackle out this issue by
providing a formal semantics of the IEC 60848 Grafcet
language. This will be achieved by representing the full
behavior of a Grafcet model in the form of a finite state
machine, named Stable Location Automaton (SLA). For
room reasons, only non-timed models will be considered
in this paper; this limitation is not too strong because the
first concern of engineers, during development, is functional
correctness, time correctness becoming a concern once func-
tional correctness is ensured.

It shall be noted that similar works have been achieved
for the IEC 61131 programming languages [2], [3], [4],
[5], [6]. Whatever the value of these works, it must be
highlighted that it is more significant, for costs reasons, to
analyze specification models, e.g. Grafcet models, before
these models are implemented, in the form of PLC programs
for instance, because the earlier in the life-cycle flaws are
detected, the less expensive flaws removal is; verification of
a specification does not prevent from checking the imple-
mentation of this specification but facilitates strongly this
latter analysis. Moreover, the formal semantics used in the
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referred works is often that of a specific tool, e.g. a non-
timed or timed model-checker, which limits the scope of
the contributions, while the method proposed in this paper is
based on a generic model which can be translated into several
well-known formalisms, like Mealy machines or transition
systems.

Several formalization methods of Grafcet specifications
have been proposed earlier [7], [8], [9], [10]. [7] and [8]
present a formalization of the Grafcet behavior using a static
meta-model. Then, interpretation rules need to be introduce
in order to take into account the dynamic aspect of the
Grafcet behavior. [9] proposes a formalization of reactive
Grafcet (Grafcet with event-based inputs), unfortunately this
formalization does not take into account any logical output.
[10] proposes a formalization method based on iterative
computation of the reachable sets of active steps from the
initial set of active steps defined in the Grafcet specification.

More recently, [11] proposed a formalization of Grafcet
for DES control synthesis. This formalization, based on the
current version of the Grafcet standard [12], does not take
into account the different types of actions associated to the
Grafcet steps, e.g. stored actions and conditional actions.

The formalization method proposed in this paper permits
to take into account the main features of the Grafcet se-
mantics (conditional and stored actions, macro-steps, ...).
Besides, since the knowledge of relations between inputs
and outputs is necessary to many verification and validation
methods, this formalization extends the one proposed by [10]
and puts the stress on the definition of the emitted outputs.

The outline of this paper is the following. The Grafcet
syntax and semantics are reminded in Section II. The formal
definitions of Grafcet and SLA are given respectively in
Sections III and IV while Section V deals with the construc-
tion of the equivalent SLA of a Grafcet. This proposal is
exemplified in section VI and some perspectives for further
work are sketched in section VII.

II. GRAFCET SPECIFICATION LANGUAGE

Grafcet is a standardized graphical specification language
[12] to describe the behavior of logic sequential systems.
This language is widely used in several industrial domains,
like railway transport, electrical power production, man-
ufacturing industry, environment, to specify the expected
behavior of a logic control system which is connected to a
physical system (plant) that sends logic signals to the control
system and receives the logic signals which are generated
in response. Grafcet was first standardized in France at the
beginning of the 1980s, and at the international level in
1988. Since this date, several extensions have been proposed



to enhance the modeling possibilities; they are included
in the last version of the standard [12]. A good scientific
presentation of the main features of the previous and current
versions of the Grafcet standard can be found respectively in
[13] and [14]. Last, the reader is warned that the specification
language described in the IEC 60848 standard differs from
the SFC (Sequential Function Chart) proposed by the IEC
61131-3 standard [15], even if both are often named SFC
in English and if models in these two languages may look
similar; the differences stand both in syntax and semantics.
The main differences between those two languages will be
discussed in subsection ‘Differences between Grafcet and
SFC’. To avoid misunderstandings, only the term Grafcet
will be kept in the sequel of this paper for the specification
language.

Grafcet has been developed from the results of the Petri
nets community and in particular from those on Interpreted
Petri Nets. A specific syntax and semantics have been
defined, in a textual way, however in the standard, to take
into account the specific needs of engineers when specify-
ing complex sequential systems. The key features of these
definitions are briefly recalled in what follows.

A. Grafcet syntax

A Grafcet model describes the expected behavior of a logic
controller which receives logic input signals and generates
logic output signals; then, the input and output variables of
a Grafcet are both logic variables. A Grafcet (Figure 1)
comprises steps, graphically represented by squares, and
transitions, represented by horizontal lines; a step can only
be linked to transitions and a transition only linked to steps.
The links from steps to transitions and from transitions to
steps are oriented links. The default orientation is from top
to bottom and it is not necessary in this case to put an arrow
on the link. An arrow must be put on a link if this link
goes from bottom to top or may be put on any link to ease
understanding. A step defines a partial state of the system
and can be active or inactive; hence, a Boolean variable,
named step activity variable can be defined for each step.
Actions may be associated to a step; an action associated
to a step is performed only when this step is active and
then acts upon an output variable. A transition condition
must be associated to each transition; this condition is a
Boolean expression which may include input variables, steps
activity variables and conditions on time. As only non-timed
systems are considered in this work, only the Grafcets whose
transition conditions are built from input variables and steps
activity variables are dealt with.

Moreover, macro-steps may be introduced in a Grafcet,
to ease modeling. A macro-step, represented graphically by
a square with double-lines on top and at the bottom, is a
synthetic view of a part of the specification. The detailed
description of this part is termed macro-step expansion chart
and is a set of connected steps and transitions that starts
and ends by only one step, called macro-step expansion
input and output steps. Then, a Grafcet model may be
composed of several charts: classical charts, that include

(normal or macro) steps and transitions, and macro-step
expansion charts.

Figure 1 depicts a Grafcet that comprises a part of an
example coming from industry. This model is composed of
two classical charts (on the left side) and two macro-step
expansions (on the right side); these latter charts are the
expansions of macro-steps ‘M10’ and ‘M20’.

B. Evolution rules

The detailed behavior of any Grafcet model can be ob-
tained by applying five evolution rules that can be stated as
follows:
R1 At the initial time, all the initial steps, defined by the

model designer and double-squared, are active; all the
other steps are inactive.

R2 A transition is enabled when all the steps that imme-
diately precede this transition (upstream steps of the
transition) are active. A transition is fireable when it is
enabled and when the associated transition condition is
true. A fireable transition must be immediately fired.

R3 Firing a transition provokes simultaneously the activa-
tion of all the immediately succeeding steps and the
deactivation of all the immediately preceding steps.

R4 When several transitions are simultaneously fireable,
they are simultaneously fired.

R5 When a step shall be both activated and deactivated, by
applying the previous evolution rules, it is activated if
it was inactive, or remains active if it was previously
active.

These textual definitions of the evolution rules come from
the standard and are obviously not formal; formal definitions
of these rules will be given in Section V. However, these
rules show that the global state of a Grafcet, called situation,
is defined by the set of all the simultaneously active steps;
the initial situation of the model of figure 1, for instance, is
{A1,30,32,34,36,38}. An evolution from the current situation
to a new one corresponds to the firing of simultaneously fire-
able transitions, according to rules 2 (fireable transitions are
compulsory fired) and 4 (simultaneously fireable transitions
are simultaneously fired). This new situation may be tran-
sient or stable; a situation is transient if at least one transition
of the Grafcet can be fired from this situation without change
of the inputs values, and stable if no enabled transition is
fireable from this situation for the current values of inputs.
Then, the state of a Grafcet evolves from stable situation
to stable situation, possibly by crossing transient situations.
An evolution between two stable situations corresponds, in
a Grafcet model, to a sequence (may be reduced to one)
of firings of sets of fireable transitions and is instantaneous.
Examples of evolutions will be given in section VI, once the
formal semantics of Grafcet defined.

C. Actions

Two kinds of actions can be used in a Grafcet to specify
the values of outputs: continuous actions and stored actions.
An action is graphically represented by a rectangle linked to
the step symbol.



A1

t1 On · Off

F1

t2 Off

A3

t3 X31 · (X32 + X33) · X35 · X36 · X38

30

t31 Cam

31

32

t32 PceIn

33

34

t33 PceOut

35 36

t34 XF1

37

t35 Cam

39 40

t38 1

M20 Put down
cap

t39 1

38

t36 XF1

M10 Take
cap

t37 1

RotateM1

XF1 + XA3

RotateM2

XF1

RotateM2

XF1 + XA3

RotateM1

E10

t10 DrawOut · DrawIn

11

t11 PrhDown · PrhUp

12

t12 GripDone

13

t13 PrhUp · PrhDown

14

t14 DrawIn · DrawOut

S10

OutDrawer

DrawOut

DownGripper

GripPce:=1

UpGripper

InDrawerInDrawer

DrawIn

Expansion of
Macro-step M10

E20

t20 LockWheelOut

21

t21 PrhDown · PrhUp

22

t22 GripDone

23

t23 PrhUp · PrhDown

24

t24 LockWheelOut

S20

LockWheel:=1

DownGripper

GripPce:=0

UpGripper

LockWheel:=0

Expansion of
Macro-step M20

Grafcet Inputs
On, Off, Cam, DrawIn, DrawOut, GripDone, LockWheelOut, PceIn,
PceOut, PrhDown, PrhUp

Grafcet Outputs
DownGripper, GripPce, InDrawer, LockWheel, OutDrawer ,
RotateM1, RotateM2, UpGripper

Fig. 1. Grafcet specification used to illustrate the proposed approach

• A continuous action specifies the current value of an
output according to the current values of steps activity
variables and inputs. For figure 1, for instance, output
‘DownGripper’ is true if and only if step ‘11’ or step
‘21’ is active; output ‘OutDrawer’ is true if and only
if step ‘E10’ is active and the associated condition
‘DrawOut’ is true (i.e. ‘DrawOut’ is false).

• A stored action describes how a Boolean value is allo-
cated to an output variable, according to an allocation
rule. A rising arrow associated to the action symbol
means that the output variable is allocated when the
step becomes active. On the other hand, a falling arrow
means that the output variable is allocated when the step
is deactivated. For the example, output ‘LockWheel’ is
allocated to true (Set) when step ‘E20’ becomes active
and allocated to false (Reset) when step ‘24’ becomes
active.

It matters to underline that a continuous action is executed
if and only if the current situation is stable whereas a stored
action is executed whatever the situation.

This set of evolution rules and actions definitions ensures
that Grafcet models are deterministic, what is mandatory for
controllers’ specifications.

D. Differences between Grafcet and SFC

This comparison is based on the two normative texts that
define Grafcet and SFC, respectively [12] and [15]. In what
follows, the extracts from these documents will be written
in italics.

Grafcet is a specification language for the functional
description of the behavior of the sequential part of a control
system. On the opposite, SFC is an element to structure the
internal organization of a program organization unit executed
by a PLC (Programmable Logic Controller) and written
with one of the four IEC 61131-3 languages (LD, ST, IL,
FBD). Then, a Grafcet model is used to specify a behavior
regardless of the controller that will be used to implement

this specification, while an SFC model describes (part of)
the structure of a software running on a PLC.

The semantics of Grafcet and SFC are different. For in-
stance, in case of selection of sequence, exclusive activation
of a selected sequence is not guaranteed from the structure,
in Grafcet; the designer should ensure that [...] the transition
conditions are mutually exclusive. On the contrary in SFC,
any sequence selection is exclusive, [...] it cannot have
crossing simultaneous transitions in a sequence selection;
to do this, the user can define priorities between branches
at the divergence of sequence selection.

But the main semantic difference is that the evolutions
of a Grafcet model are caused by the changes of its inputs
values (event-driven approach) whereas the evolutions of an
SFC model are controlled by the input scanning cycle of the
controller that executes this model (time-driven approach).
When the value of an input of a Grafcet model changes,
this model evolves to a new stable situation; this evolution is
instantaneous to avoid inputs values changes be missed, even
if transient situations are crossed. On the opposite, in an SFC
model, the clearing time1 of a transition may theoretically be
considered as short as one may wish, but it can never be zero;
in practice, this time is equal to the input scanning cycle time
of the controller on which the SFC runs. The consequence
is that only one set of simultaneous fireable transitions (may
be reduced to one transition) is fired at every scanning cycle.
Hence, the concepts of transient and stable situations do not
make sense in SFC; a situation lasts at least one cycle time
in this case.

III. FORMAL DEFINITION OF A GRAFCET MODEL

Formally, a Grafcet G is a 4-tuple (IG, OG, CG, SInitG)
where:
• IG is the non-empty set of logic inputs.
• OG is the non-empty set of logic outputs.

1clearing time = firing time



• CG is the set of Grafcet charts.
• SInitG is the set of initial steps.
The charts set CG is partitioned into the set CC of classical

charts and the set CE of macro-steps expansions charts.
• A classical chart c ∈ CC is defined by a 3-tuple

(S, T,A) where:
– S: non-empty set of steps s of c.
– T : set of transitions t of c.
– A: set of actions a of c.

• A macro-step expansion chart c ∈ CE is defined by a
5-tuple (m, sI , sO, Soth, T, A) where:

– m: macro-step name.
– sI : input step of the expansion.
– sO: output step of the expansion.
– Soth: set of the other steps s of the expansion.
– T : set of transitions t of the expansion.
– A: set of actions a associated to the steps of c.

Let S(c) be the set of all steps of the macro-step expansion
chart c (S(c) = {sI(c), sO(c)}∪Soth(c)). Let SG be the set
of all steps s of the Grafcet.

A transition t ∈ T of a given chart c is defined by a 3-tuple
(SU , SD, ECond(IG,SG)) where:
• SU : set of the immediately upstream steps of t.
• SD: set of the immediately downstream steps of t.
• ECond(IG,SG): transition condition. It is a Boolean

expression on inputs and steps activity variables2.
Let TG be the set of all transitions t of the Grafcet.
The set of actions A is partitioned into the set AS of stored

actions and the set AC of continuous actions. Similarly, the
outputs set OG is partitioned into the set OS of stored outputs
(controlled by stored actions) and the set OC of continuous
outputs (controlled by continuous actions).
• A continuous action ac ∈ AC of a given chart c is

defined by a 3-tuple (s, o, ECond(IG,SG)) where:
– s: step which the action is associated with.
– o: output which is assigned by the action.
– ECond(IG,SG): continuous action condition. It is

a Boolean expression on inputs and steps activity
variables.

• A stored action as ∈ AS of a given chart c is defined
by a 4-tuple (s,o,op,inst) where:

– s: step which the action is associated with.
– o: output which is allocated by the action.
– op: kind of allocation, op ∈ {Set,Reset}.
– inst: instant when the allocation is done, inst ∈
{Act,Deact}, where Act is the step activation
instant and Deact the step deactivation instant.

For each continuous output, an output condition emission
is then defined by a Boolean expression on inputs and steps
activity variables, as follows:

EEmit(IG,SG)(o) =
∑

a∈AC

o(a)=o

(
X(s(a)) · ECond(IG,SG)(a)

)
2X(s): activity variable of step s

This expression means merely that a continuous output is
emitted if at least one step to which is associated an action
that assigns this output is active and the condition of this
action true.

On the opposite, the values of stored outputs do not depend
simply on the values of inputs and steps activity variables
but must be computed dynamically during the construction
of the SLA, as it will be shown in Section V.

IV. FORMAL DEFINITION OF THE STABLE LOCATION
AUTOMATON (SLA) OF A GIVEN GRAFCET

Formally, a stable location automaton SLA is a 5-tuple
(ISLA, OSLA, L, lInit, Evol) where:
• ISLA is the set of inputs of Grafcet G: ISLA = IG(G).
• OSLA is the set of outputs of G: OSLA = OG(G).
• L is a set of stable locations l.
• lInit is the initial location, lInit ∈ L.
• Evol is a set of evolutions e.
A stable location is characterized by a set of simul-

taneously active steps, a set of emitted outputs and a
stability condition, Boolean expression on the inputs val-
ues. Then, a stable location is defined by the 3-tuple:
(SAct, OEmit, EStab(IG)) where:
• SAct is a subset of steps G, (SAct ⊂ SG(G)).
• OEmit is a subset of outputs of G, (OEmit ⊂ OG(G)).
• EStab(IG) is a Boolean expression on inputs of G. This

stability condition is true only for the combinations of
inputs values for which the location l is stable.

An evolution e of Evol is defined to represent an evolution
between stable locations. Each one of these evolutions can be
formally defined by the 3-tuple: (lU , lD, EEvol(IG)), where:
• lU is the upstream location, lU ∈ L.
• lD is the downstream location, lD ∈ L.
• EEvol(IG) is a Boolean expression on inputs of G. This

evolution condition, is true only for the combinations of
inputs values for which the SLA evolves from location
lU to location lD.

An SLA is well-defined if the following seven properties
are satisfied:

1) Uniqueness of locations: ∀(l1, l2) ∈ L2,
(SAct(l1), OEmit(l1)) 6= (SAct(l2), OEmit(l2))

2) Uniqueness of evolutions: ∀(e1, e2) ∈ Evol2,
(lU (e1), lD(e1)) 6= (lU (e2), lD(e2))

3) Absence of self-loop: ∀e ∈ Evol, lU (e) 6= lD(e)
4) Determinism of evolution3: ∀(e1, e2) ∈ Evol2,

lU (e1) = lU (e2) ⇒ EEvol(IG)(e1) ·EEvol(IG)(e2) = 0
5) Distinguishability between stability and evolution:
∀e ∈ Evol, EEvol(IG)(e) · EStab(IG)(lU (e)) = 0

6) Completeness4: ∀l ∈ L,
EStab(IG)(l) +

∑
e∈Evol, lU (e)=l

EEvol(IG)(e) = 1

7) Absence of transient location: ∀(e1, e2) ∈ Evol2,
lD(e1) = lU (e2)⇒ EEvol(IG)(e1) ·EEvol(IG)(e2) = 0

3In Boolean equations, 0 means False, 1 means True
4For each location and for each combination of inputs values, the behavior

is completely defined (either the location is stable, or there exists an
evolution from this location).



V. CONSTRUCTION OF THE SLA OF A GIVEN GRAFCET
MODEL

As previously pinpointed, every evolution of an SLA
comes from a change of inputs values. However, two kinds
of evolutions may occur in an SLA:
• Evolutions that correspond to the firing of a sequence of

sets of simultaneously fired transitions in the Grafcet.
• Evolutions that do not correspond to the firing of

Grafcet transitions but only to the change of the emitted
outputs.

In the first case, the set of active steps SAct is changed;
this is not true in the second one where only OEmit and
EStab(IG) are modified. The SLA of a given Grafcet model
G is then built from the initial stable location by determining
all these evolutions.

From a stable location l = (SAct, OEmit, EStab(IG)), com-
putation of evolutions conditions is performed by symbolic
calculus on Boolean expressions on inputs and steps activity
variables; if two sets S1 and S2 of inputs values combinations
are defined by expressions Exp1 and Exp2, then sets S1∩S2,
S1 ∪ S2, and S1 \ S2 are respectively represented by
(Exp1·Exp2), (Exp1+Exp2) and (Exp1·Exp2). Locations
stability and outputs emission conditions will be computed in
a similar manner. This solution avoids combinatorial explo-
sion and is well suited to Grafcet models where transitions
and actions conditions are Boolean expressions.

A. SLA evolutions due to the firing of a sequence of sets of
simultaneously fired Grafcet transitions

These evolutions are determined from a stable location
l = (SAct, OEmit, EStab(IG)), by:

1) Looking for the set of fireable Grafcet transitions and
all subsets of simultaneously fireable transitions, from
the situation SAct.

2) Determining the situation that is reached when each
subset of simultaneously fireable transitions is fired; if
the new situation is transient, then 1 and 2 are to be
reiterated until a stable situation is found5.

3) Finding the set of emitted outputs for the stable situa-
tion reached by the sequence of firings.

In the remainder of this section, these three computations
are detailed and illustrated from the stable location

ls = ({A1, 30, 33, 35, 36, 38}, ∅, ((On + Off) · Cam))

of the Grafcet model presented Figure 1. This location is
reachable from the initial location and has been selected
because it permits to well illustrate the three computations.

1) Phase 1: A Grafcet transition is fireable when it is
enabled and its associated condition true. Hence, the set of
enabled transitions t from location l is first computed:

TEnab(l) = {t ∈ T (G) | SU (t) ⊂ SAct(l)}

5When the sequence of firings is infinite, e.g. a cycle of evolutions from
transient situation to transient situation, the Grafcet is said ‘not sound’ and
is to be redesigned.

Thus, it comes for ls: TEnab(ls) = {t1, t31, t36}

Then, TFire(l) the set of fireable transitions from location
l is calculated. This subset of TEnab(l) contains only transi-
tions t for which the transition condition is compatible with
the current location:

TFire(l) = {t ∈ TEnab(l) | EFire(l)
IG

(t) 6= 0}

Where E
Fire(l)
IG

(t) is the simplification of the transition
condition of t according to l. It represents the combinations
of inputs for which transition t can be fired from location
l. This Boolean expression is easily obtained from the
transition condition of t by substituting all steps activity
variables by their corresponding value (1 or 0) according to
SAct(l).

Thus, it comes for ls: TFire(ls) = {t1, t31} since:

E
Fire(l)
IG

(t1) = On · Off E
Fire(l)
IG

(t36) = 0

E
Fire(l)
IG

(t31) = Cam

Let SSFT (l) be the set of couples (SFT,E
Fire(l)
SFT ) of

subsets SFT of simultaneously fireable transitions from l

and the corresponding firing condition E
Fire(l)
SFT . This set is

defined by:

SSFT (l) = {(SFT,E
Fire(l)
SFT ) |

[SFT ⊂ TFire(l)] ∧ [E
Fire(l)
SFT 6= 0]}

where

E
Fire(l)
SFT =

∏
t∈SFT

E
Fire(l)
IG

(t) ·
∏

t∈TFire(l)\SFT

E
Fire(l)
IG

(t)

For ls, SSFT (ls) comprises three couples:

SSFT (ls) = {({t1},On · Off · Cam),

({t31},Cam · (On · Off)), ({t1, t31},On · Off · Cam)}

2) Phase 2: The situation that is reached when a given
set SFT of simultaneously fireable transitions are fired from
location l is defined by:

Sl
SFT =

(
SAct(l) \

⋃
t∈SFT

SU (t)

)
∪

⋃
t∈SFT

SD(t)

Let SSl
SFT the set of couples (Sl

SFT , E
Fire(l)
SFT ) of sit-

uations Sl
SFT and the corresponding accessing conditions

E
Fire(l)
SFT .
For ls, this gives:

SSls
SFT = {({F1, 30, 33, 35, 36, 38},On · Off · Cam),
({A1, 31, 33, 35, 36, 38}, (On + Off) · Cam),
({F1, 31, 33, 35, 36, 38},On · Off · Cam)}

The first term of each couple of (Sl
SFT , E

Fire(l)
SFT ), may

be a fully stable situation, a totally transient situation, or a



partially transient situation. A partially transient situation is
a situation such that the combinations of inputs values can be
partitioned into two subsets: a subset that lets the situation
stable and a subset that drives the situation transient.

Hence, for each situation sit reachable from location l by
firing the set SFT of simultaneously fireable transitions, the
stability condition EStab and the transient condition ETran

are to be calculated as follows:

EStab(sit) = E
Fire(l)
SFT ·

∑
t∈TFire(sit)

E
Fire(sit)
IG

(t)

ETran(sit) = E
Fire(l)
SFT ·

∑
t∈TFire(sit)

E
Fire(sit)
IG

(t)

If one of these expressions is always false the situation is
fully stable or totally transient; otherwise, the situation must
be split into two situations, one stable and one transient,
according to the subsets of inputs combinations.

From a transient situation sit, computation of the next
sets of simultaneously fireable Grafcet transitions and
reachable situations from sit is to be reiterated until a stable
situation is reached.

For ls, these conditions are:
EStab({F1, 30, 33, 35, 36, 38}) = 0
ETran({F1, 30, 33, 35, 36, 38}) = On · Off · Cam
EStab({A1, 31, 33, 35, 36, 38}) = (On + Off) · Cam
ETran({A1, 31, 33, 35, 36, 38}) = 0
EStab({F1, 31, 33, 35, 36, 38}) = 0
ETran({F1, 31, 33, 35, 36, 38}) = On · Off · Cam

3) Phase 3: For each stable situation, it is necessary to
determine the emitted outputs.

A continuous action ac is executed from a situation sit if
the continuous condition of this action satisfies:

E
Exe(sit)
IG

(ac) 6= 0

Where E
Exe(sit)
IG

(ac) is the simplification of the continuous
condition of ac according to sit. It represents the combi-
nations of inputs for which action ac can be executed in
situation sit. This Boolean expression is easily obtained
from the continuous condition of ac by substituting all
steps activity variables by their corresponding value (1 or
0) according to sit.

A continuous output oc is emitted for a stable situation
(sit, EStab(sit)) for the following condition:

E
Emit(sit)
IG

(oc) = EStab(sit) ·
∑

ac∈A(oc,sit)

E
Exe(sit)
IG

(ac)

where A(oc, sit) = {ac | [s(ac) ∈ sit] ∧ [o(ac) = oc]}
Let SSEO(sit, EStab) be the set of couples

(SEOc, E
Emit(sit)
SEOc

) of subsets SEOc of simultaneously
emitted continuous outputs from sit and the corresponding
emission condition E

Emit(sit)
SEOc

. This set is defined by:

SSEO(sit, EStab) = {(SEOc, E
Emit(sit)
SEOc

) |
[SEOc ⊂ OC ] ∧ [E

Emit(sit)
SEOc

6= 0]}

where

E
Emit(sit)
SEOc

=∏
o∈SEOc

E
Emit(sit)
IG

(o) ·
∏

o∈OC\SEOc

E
Emit(sit)
IG

(o)

The set of emitted outputs that are controlled by stored
actions is determined by analyzing the sequence of firings be-
tween two successive stable situations. When a stored action
is associated to a step that belongs to a (stable or transient)
situation crossed by this sequence, the corresponding output
is set or reset, according to the action type. When several
stored actions on the same output are sequentially executed
during a sequence, only the consequence of the latter one
remains.

B. SLA evolutions without firing transitions

These evolutions correspond to changes of the set of
emitted outputs while staying in the same situation. They
are determined by finding the sets of simultaneously emitted
continuous outputs obtained from the combinations of inputs
that satisfy this equation (no transition enabled for SAct(l)
can be fired).

EStab =
∏

t∈TFire(l)

E
Fire(l)
IG

(t)

VI. ILLUSTRATION ON THE EXAMPLE

A software tool has been developed during this work to
automate the construction of the SLA of a given Grafcet by
using the above-presented definitions. This tool is available
at http://www.lurpa.ens-cachan.fr/isa/teloco.

It has been used for the example presented on figure 1;
the SLA of this Grafcet contains 343 locations and 7813
evolutions. The construction of this SLA lasts approximately
30 s, what shows that the use of such a tool in an industrial
context is quite realistic. For the studied location
ls = ({A1, 30, 33, 35, 36, 38}, ∅, ((On + Off) · Cam))
only 11 evolutions to other stable locations are possible.
Table I presents these evolutions, line by line. The first
column gives the location that is reached when the evolution
occurs, the second column contains the evolution condition
(when the source location is active and this condition true,
the evolution occurs), the third column the sequence of sets
of simultaneously fired transitions from the source to the
target location and the continuous outputs calculation. For
the fourth and fifth evolutions, for instance, two sets of
transitions are successively fired; from the source location,
transitions t1 and t31 are first simultaneously fired, leading
to a transient situation, then transitions t34 and t36 are
fired simultaneously and the stable locations ({F1,37,E10},
{RotateM1}, Off·Cam·DrawIn·DrawOut) and ({F1,37,E10},
{RotateM1,OutDrawer}, Off · Cam · DrawOut) are finally
reached. The difference between these two evolutions is
that the evolution condition of the first one does not satisfy
the continuous action condition associated to output ‘Out-
Drawer’, whereas the second one does.



Reachable location Evolution condition Sequence of SFT, Outputs changes

{A1,31,33,35,36,38}, {}, On + Off (On + Off) · Cam 〈{t31}〉, {}

{F1,30,33,35,36,E10}, {RotateM1},
Off · Cam · DrawIn · DrawOut On ·Off ·Cam ·DrawIn ·DrawOut 〈{t1}, {t36}〉,

{RotateM1}

{F1,30,33,35,36,E10}, {RotateM1,OutDrawer},
Off · Cam · DrawOut On · Off · Cam · DrawOut 〈{t1}, {t36}〉,

{RotateM1,OutDrawer}

{F1,37,E10}, {RotateM1}, Off · Cam · DrawIn · DrawOut On ·Off ·Cam ·DrawIn ·DrawOut 〈{t1, t31}, {t34, t36}〉, {RotateM1}

{F1,37,E10}, {RotateM1,OutDrawer}, Off · Cam · DrawOut On · Off · Cam · DrawOut 〈{t1, t31}, {t34, t36}〉, {RotateM1,OutDrawer}

{F1,30,33,35,36,11}, {RotateM1,DownGripper},
Off · Cam · (PrhDown + PrhUp))

On · Off · Cam · DrawIn ·
DrawOut · (PrhDown + PrhUp)

〈{t1}, {t36}, {t10}〉,
{RotateM1,DownGripper}

{F1,37,11}, {RotateM1,DownGripper},
Off · Cam · (PrhDown + PrhUp)

On · Off · Cam · DrawIn ·
DrawOut · (PrhDown + PrhUp)

〈{t1, t31}, {t34, t36}, {t10}〉,
{RotateM1,DownGripper}

{F1,30,33,35,36,12}, {RotateM1,GripPce},
Off · Cam · GripDone

On ·Off ·Cam ·DrawIn ·DrawOut ·
GripDone · PrhDown · PrhUp

〈{t1}, {t36}, {t10}, {t11}〉,
{RotateM1}

{F1,37,12}, {RotateM1,GripPce},
Off · Cam · GripDone)

On ·Off ·Cam ·DrawIn ·DrawOut ·
GripDone · PrhDown · PrhUp

〈{t1, t31}, {t34, t36}, {t10}, {t11}〉,
{RotateM1}

{F1,30,33,35,36,13}, {RotateM1,UpGripper,GripPce},
Off · Cam · (PrhDown + PrhUp))

On ·Off ·Cam ·DrawIn ·DrawOut ·
GripDone · PrhDown · PrhUp

〈{t1}, {t36}, {t10}, {t11}, {t12}〉,
{RotateM1,UpGripper}

{F1,37,13}, {RotateM1,UpGripper,GripPce},
Off · Cam · (PrhDown + PrhUp))

On ·Off ·Cam ·DrawIn ·DrawOut ·
GripDone · PrhDown · PrhUp

〈{t1, t31}, {t34, t36}, {t10}, {t11}, {t12}〉,
{RotateM1,UpGripper}

TABLE I
SET OF EVOLUTIONS FROM LOCATION ({A1,30,33,35,36,38},∅,(ON + OFF) · CAM) FOR THE GRAFCET MODEL PRESENTED FIGURE 1

VII. CONCLUSIONS AND PROSPECTS

A proposal to endow the Grafcet model with a formal
semantics is the main contribution of this paper. On this
basis, any non-timed IEC 60848 model can be translated
into an equivalent formal model, a FSM with inputs and
outputs, which can be used for verification purposes or to
build conformance test sequences [16]. The knowledge of
the SLA permits for instance to check absence of deadlock,
reachability of particular locations, possibility of firing se-
quences or absence of conflicting outputs at every moment.
Moreover, experiments have shown that this translation is
fast enough to be integrated into industrial environments for
automation systems development.

Further work is aiming at extending this contribution by
focusing on timed systems. Timed constructs of Grafcet,
timed actions and transition conditions with timed constraints
on time, will be then to consider and the semantics shall be
expressed by a timed extension of the SLA.
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