
1

Petri Nets Compositional Modeling and Verification
of Flexible Manufacturing Systems

Paolo Ballarini1, Hilal Djafri2, Marie Duflot1, Serge Haddad2, Nihal Pekergin1

LACL1, Université Paris-Est Créteil, France
LSV2, ENS-Cachan, France

Email: {paolo.ballarini,duflot,nihal.pekergin}@u-pec.fr, {djafri,haddad}@lsv.ens-cachan.fr

Abstract—Flexible Manufacturing Systems (FMS) are amongst
the most studied types of systems, however due to their increasing
complexity, there is still room for improvement in their modeling
and analysis. In this paper we consider the design and the analysis
of stochastic models of FMS in two complementary respects.
First we describe a (stochastic) Petri Nets based compositional
framework which enables to model an FMS by combination of
an arbitrary number of basic components. Second we demon-
strate how classical transient-analysis of manufacturing systems,
including reliability and performability analysis, can be enriched
by application of a novel, sophisticated stochastic logic, namely
the Hybrid Automata Stochastic Logic (HASL). We demonstrate
the proposed methodology on an FMS example.

I. INTRODUCTION

Analysis of Flexible Manufacturing Systems (FMS). FMS
have been introduced in order to optimize different criteria
of manufacturing systems. For instance, one wants to reduce
the number of workstations in order to efficiently manage
crashes, increase the productivity and the flexibility, etc. In
such a context, a critical issue consists in evaluating these
criteria and comparing different architectures before selecting
the appropriate one. This implies to resort to formal models
and evaluation methods.

Modeling FMS with Petri Nets. The Petri net formalism
is applied in numerous application areas. Compared to other
formalisms, Petri nets are appropriate to model concurrent
activities (each one described by a finite automaton) sharing
resources (described by additional places) and communicating
via synchronization (described by transitions). Since FMS
present such characteristics, they are a good candidate to be
modeled and analyzed with the help of Petri nets [WD98].

Indeed several approaches have been undertaken differing
w.r.t. their goals and the kind of nets used for modeling. When
one is interested in qualitative properties of FMS like deadlock
prevention, modeling is based on structural subclasses of
Petri nets allowing to design efficient algorithms [ECM95].
When one is interested in performance of FMS, there are (at
least) two possible modeling approaches: either to substitute
discrete quantities by continuous ones leading to an hybrid
Petri net [BGS01] or to represent the uncertainties related to
the FMS behavior by distribution probabilities leading to a
stochastic Petri net [MBC+95], [LCGH93]. Here we follow
the latter approach.

Limitations of Petri net modeling of FMS. There are two
drawbacks of Petri nets w.r.t. the modeling. First there are no
net operators that would lead to a compositional modeling.
In [BDK01], Petri nets have been extended with operators.
This is an interesting theoretical approach but the subnets are
not viewed as components. For instance, they do not own
an interface and an internal part. Second, the syntax and
semantics of nets may prevent modelers used to their dedicated
formalism to switch to Petri nets.

Steady-state and transient-analysis of FMS. Although the
vast majority of FMS stochastic modeling studies have been
focused on the analysis of steady-state-based measures (such
as, for example, throughput, productivity, makespan) the rel-
evance of transient-analysis of FMS models has been exten-
sively demonstrated [NV94]. For instance, as soon as faults are
modeled, transient measures like the time until FMS stopping
are interesting. Furthermore it is well known that for systems
presenting regenerative points (like idle states), every steady-
state measure may be obtained by averaging the corresponding
transient measure between two occurrences of a regenerative
point.

Our contribution. In [BDD+11], we have presented a frame-
work with a dedicated prototype tool COSMOS for analyzing
complex systems modeled by stochastic Petri nets via quanti-
tative model-checking of formulas specified in an expressive
language HASL. Here we show an high-level modeling ap-
proach for FMS developed over this framework presenting the
following features.

• A compositional framework targeted to FMS
modeling. Our framework allows to build arbitrarily
large/complex models of FMS by composition of basic
elements representing the elementary parts of a FMS.
Following an object-oriented approach, we start with
three generic classes: the load unit class, the machine
class and the transportation class. Then the modeler
specializes these classes in order to express the charac-
teristics of his specific architecture. This specialization
concerns both the qualitative features like the routing
policy of a transporter and the quantitative features like
the loading time of a unit. By instantiating such classes
into components and gluing them through their inter-
face, he finally produces the FMS architecture. During
the modeling stage, Petri net patterns associated with

2

specialized classes are automatically generated. Then
these patterns are duplicated to reflect the components
corresponding to the classes and linked via place merging
to obtain the final stochastic Petri net. Observe that the
net is managed internally so that one does not require
any Petri net knowledge from the user.

• A set of formal properties customized for analysis
of FMS. As discussed before, several specific qualitative
and quantitative properties of FMS are relevant. Our
framework includes a set of FMS-oriented properties
described in natural language including the appropriate
parameters w.r.t. the property. Once the user fixes the
parameters, an HASL formula is automatically generated
and later evaluated over the SPN corresponding to the
FMS. Since HASL is very expressive the specification of
almost all relevant properties for FMS does not present
any difficulty.

Organization. In section II, we introduce the syntax and
semantics of SPNs. Then we present our modeling approach
in section III. We illustrate the approach on a toy example
in section IV and the adequation of HASL formulae for
analysis of FMS in section V. Finally we conclude and give
perspectives to this work in section VI.

II. STOCHASTIC PETRI NETS

Since the semantics of a stochastic Petri net (SPN) is a
discrete-event stochastic process (DESP), we briefly remind
what is a DESP. A DESP is given by a state space S and two
families of random variables {Sn} and {Tn} indexed by N.
S0 is the initial state and T0 = 0 is the initial time. For every
n > 0, Sn ∈ S is the state after the occurrence of the nth
event and Tn ∈ R≥0 is the occurrence time of this event.

In order to equip Petri nets with DESP as semantic, we need
to add information to the net. More precisely we must fix the
three policies ruling the behaviour of the net: the server policy,
the choice policy and the memory policy. The server policy is
related to the delay before firing a transition in a marking. So
we associate a distribution with every marking (state of the
net) and transition that represents the random delay before the
firing of a transition. The choice policy is related to the next
transition to be fired. We choose a race-based policy meaning
that one of the transitions with the shortest delay should be
selected. In order to solve the problem of equal delays, we
add (marking-dependent) priorities to transitions and in case of
both equal delays and priorities we add (marking-dependent)
weights to transitions in order to perform a random choice.
Finally, the sampled delay of each enabled transition different
from the selected one is decremented by the minimal delay
(i.e. enabling memory policy). This leads to the following
definition.

Definition 1: N = (P, T,W−,W+, I, dist, prio, wght,m0)
a stochastic Petri net is defined by:

• P the finite set of places. A marking is an item m of NP

and m(p) is the corresponding marking of place p;
• T the finite set of transitions with P ∩ T = ∅;
• W− (resp. W+) the backward (resp. forward) incidence

matrix from P × T to N;

• I the inhibitor matrix from P × T to N>0 ∪ {∞};
• dist the distribution mapping from NP × T to the set of

probability distributions over R≥0;
• prio the priority mapping from NP × T to N;
• wght the weighting mapping from NP × T to R>0;
• m0 is the initial marking.
A Petri net is graphically represented by a bipartite graph.

The vertices are the places (circles) and transitions (rectan-
gles). There is an arc from place p (resp. transition t) to t (resp.
p) labelled by W−(p, t) (resp. W+(p, t)) if W−(p, t) > 0
(resp. W+(p, t) > 0). There is an inhibitor arc from place p
to t (denoted by an arc ending in a circle) if I(p, t) < ∞.
The labels equal to one are omitted. The marking of a place
is represented by tokens (small black circles) in the place.
Figures 3 and 4 are typical examples of Petri nets.

Usual notions for Petri nets equally apply in the context
of SPNs. A transition t is enabled in a marking m if ∀p ∈
P, (m(p) ≥ W−(p, t) ∧ m(p) < I(p, t)). The firing of a
transition t enabled in m leads to marking m′ defined by ∀p ∈
P m′(p) = m(p)−W−(p, t) + W+(p, t).

Let us describe the stochastic process associated with an
SPN. The state space S is defined by a marking say m and
a family of (remaining) durations indexed by the transitions,
say durt such that durt = ∞ iff t is disabled in m. Assume
that Sn ≡ (m, {durt}t∈T) and Tn are given then:

• Let dmin ≡ min(durt). If dmin = ∞ then Sn+1 = Sn

and Tn+1 = Tn (the current marking is a deadlock).
• Otherwise Tn+1 = Tn + dmin. Now let T ′ be the subset

of transitions t with durt = dmin and (equal) highest pri-
ority for m (i.e. prio(m, t)). Whenever T ′ is not a single
element, sample a random choice between transitions of
T ′ with probabilities proportional to wght(m, t).

• Let t∗ ∈ T ′ be the selected transition. Then Sn+1 ≡
(m′, {dur′t}t∈T) is defined by:

– m′ is the marking reached by the firing of t∗ in m.
– Let t be a transition enabled in m′. If t 6= t∗ and

t was already enabled in m then dur′t = durt −
dmin. Otherwise sample dur′t w.r.t. the distribution
dist(m′, t).

The significant measures for an SPN are related to the
random execution path associated with the DESP. Transient
measures fix some time horizon τ and can be defined w.r.t.
the random marking at time τ like the (mean) marking of
some place or can be defined all along the whole path like
the (mean) maximal marking of some place along the path. τ
may be fixed to be the time that an event happens, like the
failure of a component etc. Steady-state measures assume that
the DESP will asymptotically reach some marking distribu-
tion and express properties of this distribution. For models
with regenerative points, the finite random execution paths
between consecutive regenerative points can be used to derive
steady-state measures. Most of qualitative and performability
measures can be expressed using formulas of our language
HASL (see subsection V-A).

III. COMPOSITIONAL FMS MODELING USING PETRI NETS

We introduce a stochastic Petri net (SPN) based modeling
framework for FMS, by means of which a model of an

3

FMS can be obtained through assembling of the desired
combination of basic components. FMS are, by nature, het-
erogenous systems which may differ from one another both
in the functionality of components as well as on the workflow
of the production process. The compositional framework we
introduce is designed to cope with the heterogeneity of FMS.
For example, components for modeling of a simple linear
FMS (whose workflow is drafted in Figure 1(a)), whereby
the end product is obtained by processing of a single type
of raw material through a line of machines connected by a
conveyor belt, will be (internally) different from components
for modeling of a more complex FMS (e.g. workflow drafted
in Figure 1(b)), involving multiple types of material (ma

and mb), machine selection (e.g. workpiece w′
1 outputted by

machine M1 is delivered to either M3 or M5) and workpieces
combination (e.g. workpieces w′′

1 and w′′
2 are combined by

machine M6).

ma M1 M2 Mn
Prod

(a) A simple linear FMS with single type of raw
material

M1 M3,M5

M3,M4M2

M6

ma

mb

w�
1

w�
2 w��

2

w��
1

Prod

(b) An FMS with 2 types of raw materials,
machine-selection and workpiece-combination

Fig. 1. Different types of workflow for FMSs

A. Principles of the proposed approach

Goal. A framework for modeling and analysis of complex
systems is well suited to the user when this framework
allows the user to model his system as he has designed it
and to analyze it with logic formulas and/or performance
indices which are directly meaningful to him. This has led
us to the following choices in the context of FMSs. First
the modeling we propose is component-based as FMS are
explicitly obtained by assembling different functional parts.
In addition, the granularity of the components correspond to
the architectural decomposition of the FMS meaning that there
is a one to one mapping between the model components and
the business components. Although our internal formalism is
an SPN, the user can fully model his FMS without specifying
any Petri net. Similarly, while the formula language supported
by the framework is very expressive, a set of specific formula
patterns corresponding to usual FMS analyses is proposed to
the user. Since these patterns can be instantiated by fixing
different parameters, this yields a simple and flexible way to
check the model.
An overall view. The FMS modeling framework is based on
the following principles:

1) It lies on the following basic component classes: Load
Unit (representing the loading of raw materials into the
system), Machine (representing the various phases of the
actual manufacturing of workpieces) and Transportation
(representing the movement of materials/workpieces).
These component classes have different attributes re-
flecting their functional properties, that may be quite
complex. For instance routing policy may be fixed or
state-dependent and in the latter case may depend on
the occupation of buffers or occurrences of failures.

2) First the modeler specializes the basic classes by fixing
the values of their attributes. As in object-oriented
approaches, it allows to reuse the specialized classes for
different architectures of FMS sharing some identical
component types.

3) Then the modeler instantiates these specialized classes
in (named) components.

4) At last these components are combined using the names
to bind variables occurring in the interface of the class.
For instance, assume that the definition of a transporter
class involves some machine variable, say X , producing
the inputs of the transporter. Then, when the transporter
is instantiated as a component, variable X is substituted
by a machine name.

An internal view. When the set of specialized classes are
specified through a (natural-language-like) syntax, the cor-
responding SPN subnets are automatically generated from
such specifications. The SPN subnets can be seen as boxes
partitionned in an interface and an internal structure. SPN
components interface consists of local and imported places
arranged on the edge of a box. Local places (denoted as non-
filled-in circles) represent relevant aspects of a component’s
state (that may be imported by other components). Imported
places (denoted as filled-in circles) represent relevant aspects
of external components that influence the importing compo-
nent behavior.

Naming of places and transitions is essential for the assem-
bling of FMS. The name of local places can be viewed as
local identifiers. Depending on their role in the component,
the name can be predefined, as idle in Figure 3, or composed
by a predefined word followed by an identifier provided by the
user, like in a1 in the same figure. Here a1 corresponds to the
name of a product and in means that this product is an input of
the machine. Names of imported places are built by prefixing a
local name by a variable like X3.in a1 in Figure 4. Observe
that the set of variables occurring in a subnet corresponds
to the components that will communicate with a component
of this class. Since the variable are typed by their class, the
compilation stage checks that the interfaces intended to be
linked are compatible. Transition names are handled like local
place names.

When the modeler instantiates a class into one or several
(named) components, he must provide a component name per
variable occurring in this class. At the net level, we need one
class subnet copy per component of this class. The names of
local places and transitions are prefixed by the name of the
component while the name of imported places is obtained by

4

3 types of material (a1, a2, a3) are loaded in the FMS. Items of type ai
(1≤ i≤3) are loaded according to (delay) distribution ld ai. An SLU1 class
has a finite buffer of size s. When s items are present in the buffer
loading is interrupted, and it is automatically restarted as soon as one item is
withdrawn from the output buffer of SLU1.

TABLE I
EXAMPLE OF (INFORMAL) SPECIALIZATION OF THE LOAD UNIT CLASS

substituting the component names to the variables. Now the
assembling of the whole net is straightforward: it consists in
merging places with identical names.

In the following subsections, we illustrate the specialization
of the three basic classes and the associated subnets.

B. Modeling the load unit

The Load Unit (LU) class represents the process through
which raw materials are loaded (from the “external world”)
into an FMS. LU’s parameters are: i) set of loaded materials:
the type of raw-materials the whole production system depends
upon; in the case of a closed-system, the number of items
for each material type ii) size of buffers: the size of the
output buffers of the LU component; iii) loading times: the
distribution of the loading time for each type of material.

SLU1

out

out a1

out a3
ld a3

ld a1

s

s

SLU2

out

out a1

out a3
ld a3

ld a1

N

N1

N3

in

in a1

in a3
sld a2

s
out a2

s

ld a1
N2in a2 out a2

s

Fig. 2. Internal structure of multi-material, buffered specialized Load Unit
class for open system (left) and closed system (right)

An example of LU specialization (for an open system) for a
FMS part named SLU1 is given in Table I. The corresponding
SPN component is depicted in Figure 2 (left), (Figure 2 (right)
instead corresponds to a closed system). The interface of
the (open system) SLU1 class consists of 4 (output) places
corresponding to the items loaded into the FMS: place out
containing the total of loaded items, place out ai containing
type ai loaded items. The interface of the SLU1 class consists
of 3 timed-transitions load ai (1≤ i≤3), representing loading
of each type of piece. Note that since transitions ld ai have no
input places the underlying model is inherently infinite-state if
we allow s = ∞. In case of a closed system (Figure 2 right) the
interface contains 4 additional (input) places. They represent
the initial amount of material: total amount (place in) and
type ai amount (place in ai) 1. The control on the fullness
of the s≥1 sized buffer is achieved through the inhibitor arcs
connecting each “loading” transition with the (output) place
out. An SLU1 class with infinite buffer capacity is obtained
by removing inhibitor arcs from the components in Figure 2.

1Note that in a closed system the input places of the LU component will
be “connected” with the output places of the machine(s) which delivers the
end product of the FMS.

SM1

in

in a1
in a2

in a3

idle

out

out b1

out b2
go1

go2
pra2a3

pra1

so

repair

down

fail2

2

so

fail1

fail3si si

full

Fig. 3. A specialized class of machine

C. Modeling the machine

The machine class (M) describes the behavior of machines
processing materials/workpieces. M’s parameters are: i) set
of input materials: the type of materials/workpieces processed
by the machine; ii) buffers dimension: the dimension (∈N∪
{∞}) of the input and output buffers of M; iii) processing
times: the distribution of the processing time for each type of
material/workpiece processed by M. This is given by a 3-tuple:
first parameter is the set of input materials, the second is the
set of produced workpieces, the third one is the distribution
for this production. iv) failure/repair times: the distribution of
failure and repairing times.

We now illustrate a possible specialization SM1 (described
in table II) of the machine class. The corresponding SPN
component is depicted in Figure 3.

The interface of the SM1 class consists of 10 places
(Figure 3): a 1-safe place idle indicating the idle state of
SM1 ; a 1-safe place down indicating whether SM1 is down;
a 1-safe place full indicating that the input buffer of the
machine is full; place in (out) representing the total number
of items in the input (output) buffer of SM1 and places in ai,
1 ≤ i ≤ 3 (out bj, 1 ≤ j ≤ 2) indicating the number of
items of type ai (bj) material (workpiece) in the input (output)
buffer of SM1. In case of a machine producing a single type of
workpiece from a single type of material, the interface of the
corresponding subclass would simply consist of places idle,
full, down, in and out.

Let us describe internal structure of SM1. Transition
pra1 and pra2a3 respectively represent processing of output
pieces b1 and b2. Their associated distributions are obtained
following the user specification. The control on the so ≥ 1
sized output buffer is achieved through the inhibitor arcs
connecting each “processing” transition with the (output) place
out. Failures are modeled by three transitions: fail1, fail2
and fail3 corresponding to a failure occuring respectively
when the machine is idle, processing piece b1 or b2. Transition
repair models the repairing process.

Many other specializations of the machine class can be con-
sidered, for instance a machine could simultaneously process
multiple inputs and outputs, or different materials could have
different separate buffers.

D. Modeling the transportation unit

The transporter class (T) describes a transportation unit
moving materials/workpieces from (a set of) source nodes to

5

Machine class SM1 processes 3 types of pieces: a1, a2, a3. It can process a a1
piece resulting in a type b1 piece. Another process consists in combining a2 and
a3 resulting in b2. SM1 class is prone to failure and repairing. After a repairing,
the unfinished workpieces are lost.

The input (resp. output) buffer sizes are denoted si and so

TABLE II
EXAMPLE OF (INFORMAL) SPECIALIZATION OF THE MACHINE CLASS

(a set of) target nodes of an FMS. Source and target nodes of
a T component can be either machines or other transporters2.

At the level of generic class T, the parameters are untyped.
The types will be defined during the specialization. We now
describe them informally. T’s parameters are: i) level of
freedom of the unit, specifying whether the trajectory is fixed
or subject to change depending on the needs. ii) transportation
policy expressing when the transporter decides to move and
where. iii) delivery time depending on the materials to be
delivered and the location (initial or destination). Depending
on the nature of the transportation unit, new parameters will
appear in the specialized class. We now illustrate a possible
specialization ST1 (described in table III) of the transporter
class. The corresponding SPN component is depicted in
Figure 4. Note that almost all places in the interface are
represented in grey as they are imported from other SPNs.

The interface of the ST1 class is composed of: i) 3 input
places from machine X1, one for the total number of pieces
and one for each type (a1 and a2). ii) five output places
representing the input buffers of the destination machines, and
the number of pieces of each type in each machine iii) six
controlling places stating whether the destination machines are
full, idle and down. iv) Finally place idle indicates whether
the transporter is free.

ST1

X3.in a1

X2.in a1

X3.in a2

X2.in

X3.in

X2.idle

X1.out a1

X1.out a2

snd1

snd3

snd5

D1

D3

D2

X3.idle

idle

X1.out

X2.down X3.down

snd2

snd4

X3.full

X2.full

Fig. 4. An example of transporter class employing selective policies for
moving of pieces from multi-typed machine X1 to limited-size buffered target
machines X2, X3

The internal structure of ST1 describes the delivery policy.
The three internal places correspond to (from top to bottom)
the a1 pieces to be delivered to X2, the a1 pieces to be
delivered to X3 and the a2 pieces to be delivered to X3.
The black transitions named snd1 to snd4 correspond to the
delivering possibilities for a1 pieces. They are controlled by

2machine-to-transporter movements are useful when modeling continuous
transportation system such as, for example, conveyor belts transportation or
rail-guided AGVs.

Transporter class ST1 moves workpieces a1 and a2 from machine X1 to
machines X2 and X3 (to be instanciated during the linking phase).
a1 pieces can reach either X2 or X3; a2 pieces must reach X3.
delivery time from X1 to X2 for a1 follows distribution D1
delivery time from X1 to X3 for a1 follows distribution D2
delivery time from X1 to X3 for a2 follows distribution D3
if X3 is idle and not full then deliver a1 to X3,
else if X2 is idle and not full, then deliver a1 to X2,
else if X3 is up and not full, then deliver a1 to X3,
else if X2 is up and not full then deliver a1 to X2.

TABLE III
EXAMPLE OF (INFORMAL) SPECIALIZATION OF THE TRANSPORTER CLASS

controlling places through inhibitor or regular arcs. Note that,
in order to simplify the figure, the return time of the transporter
is abstracted away.

IV. EXAMPLE

LU1

M1

M2

M3

a
b

a

a
bb

a,b

a,b
a,b

Tr1 Tr2

Tr3Tr4

a,b

Fig. 5. Workflow of the modeled conveyor-belt FMS with 3 machines and
2 raw-materials

To demonstrate the application of the compositional SPN
framework we consider an example of FMS (push produc-
tion) system taken from [AMBC+95] (chapter 8). Such FMS
consists of: a loading unit LU1 and three machines M1,M2
and M3 arranged in a linear fashion according to the workflow
depicted in Figure 5. The FMS treats two types of material,
namely a and b, which are progressively transformed into
workpieces and eventually in the final products (i.e. the output
of M3). The transportation medium is a conveyor belt, which
we assume to consist of 4 adjacent belt segments (segment
LU1-M1, segment M1-M2, segment M2-M3 and segment
M3-LU1, each one commanded by a separate engine) The
first machine in the line, i.e. M1, processes only material of
type a (thus type b items arriving at M1 are bypassed to
M2); machine M2 processes both type b raw material and
pieces a′ outputted by M1; finally M3 processes only pieces
b′ outputted by M2. The SPN components corresponding to
such FMS are depicted in Figure 6. They consist of an LU-
component (i.e. LU1), three M-component (i.e. M1,M2,M3)
and four T-components (i.e. T1, T2, T3, T4).

In this example we assume the 4 segments of the conveyor
belt to behave in a blocking fashion: if on reaching of a certain
position an item cannot be unloaded (because the destination
machine’s buffer is full or because the next segment is not
empty) then the belt (segment) blocks. Note that from a
behavioral point of view the conveyor’s segments can be
distinguished into: those performing delivering of an item (to a
machine) and bypassing (to the next segment) i.e. component
T1 and T3, and those performing delivering without bypass-
ing, i.e. component T2 and T4. To better understand such a

6

idle

M1
start_proc proc

in a

idle

out a

so

si si

full

 T1

LU1.out a

LU1.out b

aLUtoM1

Da
LU−M1

Db
LU−Tr2

idle

out b

LU1.out

bLUtoT2

M1.in a

M1.full

M
2

proc_aproc_b

start_a

start_b

in

in
a

in
b

ou
t

ou
t

a

ou
t

b

idle

so so

si
si

f
u
ll

LU1

out

out a

out b

ldb

lda
so

so

in

in a

in b

N

Na

Nb

M3.full

M3.in b

idle

M2.out

M2.out a

M2.out b

out a

T3
start_procproc

idle

so

sisi

full

in bout b

M3

 T2

M1.out a

T1.out b

aM1toM2 Da
M1−M2

Db
T1−M2bT1toM2

T1.idle

M2.in

M2.in a

M2.in b

M2.full
idle

idle

M3.out b

T3.out a
LU1.in

LU1.in a

LU1.in b

T3.idle

T4
M3.full

mv a

mv b

mv a

mv b

aM2toT4

bM2toM3

bM3toLU1

aT3toLU1Da
T3−LU1

Db
M3−LU1

Db
M2−M3

Da
M2−T4

mv a

mv b
mv a

mv b

Fig. 6. SPN components for the conveyor-belt FMS of Figure 5

difference let’s consider, for example, the (SPN) component
T1 of Figure 6. If T1 is carrying a type a item (i.e. a token
is in place T1.mv a) then it will return idle as soon as it
drops it in the input buffer of M1 and this happens only if
M1 buffer is not full (firing of transition T1.Da

LU−M1). If T1
is carrying a type b item (i.e. a token is in place T1.mv b)
then T1 will return idle only when T2 takes on the item
b from T1, but this can happen only if T2 is idle: if it is
carrying an item to M3 (i.e. a token is either in T2.mv a or
in T2.mv b) then it will be able to take on the item from
T1 only when it has delivered the one it is carrying (i.e.
firing of transition T2.Da

M1−M2 or T2.Da
T1−M2). In practice

the dependency between a by-passing transporter (i.e. T1 or
T3) with its successor (i.e. T2, respectively T4) is achieved
by importing of a place (i.e. place idle) from the interface
of the controlled node to the interface of the controlling one
(i.e. place T1.idle imported by component T2, and place
T3.idle imported by component T4). We consider that the
unloading time of the finished workpieces in LU1 component
is negligible. Thus when workpieces are returned to LU1, new
raw materials are charged and new productions begin.

V. FINE-GRAINED TRANSIENT-ANALYSIS OF FMS

A. Hybrid Automata Stochastic Logic

In order to describe and verify interesting properties of
FMS, we use an expressive logic called HASL, introduced
in [BDD+11]. This logic is based on two components: first an
extension of timed automata, called linear hybrid automata,
that will synchronize with the SPN in order to precisely select
a set of timed paths, then an expression based on moments of
path random variables is defined and evaluated on the system.

The first component of a HASL formula is a restriction
of hybrid automata [ACHH92], namely synchronized Lin-
ear Hybrid Automata (LHA). LHA extend the Deterministic
Timed Automata (DTA) used to describe properties of Markov
chain models [DHS09], [CHKM09]. Simply speaking, LHA

are automata whose set of locations is associated with a n-
tuple X of real-valued variables (called data variables) that
evolve with a linear rate depending on the location of the
automaton and on the current state of the SPN (through special
functions called indicators). Our model also uses constraints,
which describe the conditions for an edge to be traversed,
and updates, which describe the actions taken on the data
variables on traversing an edge. Both constraints and updates
are more general than their timed automata counterpart as
they allow for linear combinations of data variable values
(possibly multiplied by indicators). The automaton has two
types of transitions: autonomous, i.e. time-triggered (or rather
variable-triggered), labeled with], that take place as soon as
a constraint is satisfied, and synchronized i.e. triggered by
the SPN and take place when an event occurs in the SPN.
Due to the determinism ensured on the hybrid automaton, the
synchronisation between the SPN and the LHA leads to a
stochastic process3.

An HASL automaton expresses requirements associated to
the specification process. The link between the SPN (corre-
sponding implementation) and HASL is made through state
indicators and transition labels (see examples below).

Example. The automata of figure 7 illustrate some of the
possibilities of HASL. The first one has two variables: x1 is
in fact a clock, reset at the occurrence of the first failure (in
figure 3, fail should label all three transitions whose name is
prefixed by fail), and x2 is a counter (rate 0) that counts the
number of objects processed (transition labelled out) between
the two first failures. The second automaton has two variables
counting the global time (x1) and the time in state Mthre (x2).
The automaton changes state from Init to Mthre depending on
whether the number of tokens in a specified buffer reaches a
threshold or not. Here on the example of figure 6, the condition
m(M2.in) > s with s equal to a chosen threshold is a good
candidate for indicator thre. After k time units, the execution
reaches state End and terminates. In the third automaton, x2

3Details can be found in [BDD+11]

7

counts the number of pieces arrived so far, and x1 the number
of pieces, arrived among the k first ones, that are still waiting.
The execution terminates when all of the k first pieces are
being/have been served (x1=0). Since both variables have rate
0 in each state, the rates are omitted in the figure.

One
ẋ1:1
ẋ2:0

Init
ẋ1:1
ẋ2:0

Two

E/fail out,x2++

E/{fail∪out}

failfail,x1:=0

Init
ẋ1:1
ẋ2:0

¬thre Mthre
ẋ1:1
ẋ2:1

thre

End

E

E

x1=k,]

x1=k,]

E

E

Init kIn End
],x2=k

{start a},x1++;x2++

{proc a},x1−− E\{proc a,start a}

E\{proc a}

{proc a},x1−−

x1=0,]

Fig. 7. Three LHAs to compute interesting measures on FMS

Expressions. The second component of a HASL formula is
an expression related to the automaton. Such an expression,
denoted Z, is based on moments of a path random variable Y
and is defined as follows. First y is an arithmetic expression
built on top of LHA data variables and constants. Then Y is a
path dependent expression built on top of basic path random
variables such as last(y) (resp. min(y), max(y))i.e. the last
(resp. minimum, maximum) value of y along a synchronizing
path, int(y) (i.e. the integral over time along a path) and
avg(y) (the average value of y along a path). Finally Z, the
actual target of HASL verification, is an arithmetic expression
built on top of the first moment of Y (E[Y]), and thus allowing
for the consideration of diverse significant characteristics of Y
including, for example, expectation, variance and covariance.
Ensuring that, with probability 1, the system (SPN + LHA)
will reach a final state, the expression Z associated with the
formula may be evaluated with expectations defined w.r.t. the
distribution of a random path conditioned by acceptance of
the path. In other words, the LHA A both calculates the
relevant measures during the execution and selects the relevant
executions for computing the expectations. This evaluation
gives the result of the formula (A, Z) for an SPN S.

Example. Given the first LHA of figure 7, the expected
throughput between the two first failures corresponds to ex-
pression E(last(x2)/last(x1)). If we slightly modify it by
considering state One as a final state, we can compute the

mean time to first failure by E(last(x1)) and its variance
(which is often a critical parameter) by E(last(x1)2) −
E(last(x1))2. If we consider the second LHA, the expected
value of the average time (within k time units) that the
input buffer of machine M is full can be computed us-
ing E(last(x2)) and the ratio of the time it is full is
E(last(x2)/last(x1)). For automaton 3 we can express the
expected value of the mean waiting time for k products using
expression E(int(x1)/k).

This logic extends the transient properties that can be
expressed and verified using other stochastic logics (such as
CSL, CSRL, asCSL, CSLTA,...) both capturing probabilistic
properties of standard probabilistic model checking and also
enabling to express more complex performance evaluation
measures, coupled with a more precise selection of paths.

B. Expressing qualitative and quantitative properties of FMS

The steady-state analysis has been the focus of many perfor-
mance studies for manufacturing systems. Traditionally we are
interested in customer average measures like mean fabrication
time for a kind of product, time average measures like mean
number of raw materials in a buffer. The relevance of transient
measures for manufacturing systems has been emphasized in
[NV94]. In FMSs the arrivals of raw materials to feed the
input buffers, and the extraction of finished products from
output buffers may be bursty. This means there may be high-
activity and low-activity periods due to some external reasons
like logistic problems. For such cases it is really important to
observe transient behaviors which may be radically different
from equilibrium (steady-state) behaviors. For instance, the
buffers must be dimensioned by considering high-activity pe-
riods, and the throughput (mean number of finished products)
during low-activity may be important. We can state here the
case when the setting of FMS is changed, the time until the
system reaches a stationary regime may be long and it may
be important to observe this transient period. In FMS, the
components are prone to failures or human interventions that
may provoke the unavailability of some parts of the system.
Such phenomena may lead to a deadlock situation or to a
complete unavailability of the system. For such cases only
transient measures provide some lights on FMS properties.

Using the HASL formalism, we can express interesting
quantitative measures on FMS. We give here several examples.
First we can characterize (and evaluate) properties related to
the occupation of finite-capacity buffers, like the blocking
probability for a machine, the mean time to fill x% of buffers,
the mean number of pieces in buffers during a given time
interval. These measures are important for an appropriate
dimensioning of buffers. In order to evaluate the efficiency
of the underlying FMS we are also interested in the measures
related to throughput (mean number of produced workpieces
per time unit), and make-span (average production time for
a given production workflow). We can state for instance the
probability that a certain number of workpieces are produced
during a given time interval, the average time to produce a
given number of workpieces. The reliability measures when
some components are prone to failures can be also considered

8

like the Mean Time To Failure (MTTF) of a component or
whole system, throughput of a given production workflow
between the first and the second failure.

In addition, steady state measures can also be obtained by
transient analysis when the system admits regeneration points.
Indeed, the steady state measure is then the average measure
between two regeneration points.

C. Automatic Generation of properties for FMS

Just as we did not want to assume that a modeller knows
the Petri net formalism, this modeller should be able to
verify different properties without any knowledge about hybrid
automata. The goal of the automatic generation of properties
for FMS is to hide this formalism and to let the user chose
a property to verify in an intuitive way. The user selects a
property pattern in a predefined list (for example the mean
time to fill x% of a buffer), selects the appropriate parameters
(the desired buffer and the percentage) and the HASL formula
(automaton + expression) is generated automatically. This
generation is possible and efficient since, as we consider a
predefined list of relevant properties, there is no combinatory
explosion and the translation is relatively simple.

An important point to mention is that the generation of
SPNs for the FMS model and of the automaton for the HASL
formula are linked, since the SPN needs to be coherent in
terms of labels on events and indicators.

VI. CONCLUSION

We have presented here a compositional modeling frame-
work for flexible manufacturing systems using stochastic
Petri nets. The FMS is modeled piecewise by specifying the
classes of components to be used (loading unit, transporters,
machines), specifying their parameters (type of raw material
needed/produced, size of input/output buffers, transporting
policy, ...) and then combining all these components.

In order to evaluate these FMS, we then use a stochastic
logic named HASL. This logic enables a precise selection of
succesful path by synchronizing the SPN with an hybrid au-
tomaton, and then a quantitative evaluation using an expression
that can express both model checking (the probability of the
set of winning paths, ...) and performance evaluation (mean
waiting time, ...) measures.

These two steps are meant to be facilitated for the modeler.
The goal is to generate both the SPN for the FMS and the
automaton + expression for the formula in an automated way,
not requiring the modeler to be familiar to either type of
models. We aim at an analysis that is both formal, using the
COSMOS tool for evaluating HASL formulas on FMS, and
user oriented, providing the user with an easy way to describe
his model and specify the useful formulas.

As numerous biological systems analysis rely on complex
stochastic processes, we plan to undertake a similar work in
this area.

REFERENCES

[ACHH92] R. Alur, C. Courcoubetis, T. A. Henzinger, and
P.-H. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of
hybrid systems. In Hybrid Systems, volume 736
of LNCS, pages 209–229. Springer, 1992.

[AMBC+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Do-
natelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. John Wiley
& Sons, 1995.

[BDD+11] P. Ballarini, H. Djafri, M. Duflot, S. Haddad,
and N. Pekergin. HASL : an expressive lan-
guage for statistical verification of stochastic
models. In Proc. 5th Int. ICST Conference
on Performance Evaluation Methodologies and
Tools, 2011. To appear.

[BDK01] Eike Best, Raymond Devillers, and Maciej
Koutny. Petri net algebra. Monographs in
Theoretical Computer Science. Springer, 2001.

[BGS01] F. Balduzzi, A. Giua, and C. Seatzu. Modelling
and Simulation of Manufacturing Systems with
First-Order Hybrid Petri Nets. International
Journal of Production Research, Special Is-
sue on Modeling, Specification and Analysis of
Manufacturing Systems, 39(2):255–282, 2001.

[CHKM09] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre.
Quantitative model checking of continuous-time
Markov chains against timed automata specifi-
cations. In Proc. of the 24th Annual IEEE Sym-
posium on Logic in Computer Science (LICS),
pages 309–318. IEEE, 2009.

[DHS09] S. Donatelli, S. Haddad, and J. Sproston. Model
checking timed and stochastic properties with
CSLTA. IEEE Transactions on Software Engi-
neering, 35:224–240, 2009.

[ECM95] J. Ezpeleta, J.M. Colom, and J. Martinez. A
Petri net based deadlock prevention policy for
flexible manufacturing systems. IEEE transac-
tions on robotics and automation, 4(2):173–184,
1995.

[LCGH93] Christoph Lindemann, Gianfranco Ciardo, Rein-
hard German, and Günter Hommel. Performa-
bilty modeling of an automated manufacturing
system with deterministic and stochastic petri
nets. In ICRA (3), pages 576–581, 1993.

[MBC+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Do-
natelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. J. Wiley,
1995.

[NV94] Y. Narahari and N. Viswanadham. Transient
analysis of manufacturing systems performance.
IEEE Transactions on Robotics and Automation,
10(2):230 –244, 1994.

[WD98] Jiacun Wang and Yi Deng. Incremental mod-
eling and verification of flexible manufacturing
systems. Journal of Intelligent Manufacturing,
4, 1998.

